//============================================================================= int Epetra_SerialSpdDenseSolver::Invert(void) { if (!Factored()) Factor(); // Need matrix factored. POTRI ( SymMatrix_->UPLO(), N_, AF_, LDAF_, &INFO_); // Copy lower/upper triangle to upper/lower triangle: make full inverse SymMatrix_->CopyUPLOMat(SymMatrix_->Upper(), AF_, LDAF_, N_); double DN = N_; UpdateFlops((DN*DN*DN)); Inverted_ = true; Factored_ = false; EPETRA_CHK_ERR(INFO_); return(0); }
int INV_CHOL(MATRIX_T L) { /* computes the inverse of a symmetric square NxN * matrix using its Cholesky factorization (in place) */ int info; int N = (int)L.nrows; char uplo = 'L'; POTRI(&uplo,&N,L.m,&N,&info); for(int i=0;i<N;i++){ for(int j=i+1;j<N;j++){ L.m[i+N*j] = L.m[j+N*i]; }} return info; }
int main(int argc, char *argv[]){ #ifndef COMPLEX char *trans[] = {"T", "N"}; #else char *trans[] = {"C", "N"}; #endif char *uplo[] = {"U", "L"}; FLOAT alpha[] = {1.0, 0.0}; FLOAT beta [] = {0.0, 0.0}; FLOAT *a, *b; char *p; char btest = 'F'; blasint m, i, j, info, uplos=0; double flops; int from = 1; int to = 200; int step = 1; struct timeval start, stop; double time1; argc--;argv++; if (argc > 0) { from = atol(*argv); argc--; argv++;} if (argc > 0) { to = MAX(atol(*argv), from); argc--; argv++;} if (argc > 0) { step = atol(*argv); argc--; argv++;} if ((p = getenv("OPENBLAS_UPLO"))) if (*p == 'L') uplos=1; if ((p = getenv("OPENBLAS_TEST"))) btest=*p; fprintf(stderr, "From : %3d To : %3d Step = %3d Uplo = %c\n", from, to, step,*uplo[uplos]); if (( a = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){ fprintf(stderr,"Out of Memory!!\n");exit(1); } if (( b = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){ fprintf(stderr,"Out of Memory!!\n");exit(1); } for(m = from; m <= to; m += step){ #ifndef COMPLEX if (uplos & 1) { for (j = 0; j < m; j++) { for(i = 0; i < j; i++) a[i + j * m] = 0.; a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.; for(i = j + 1; i < m; i++) a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5; } } else { for (j = 0; j < m; j++) { for(i = 0; i < j; i++) a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5; a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.; for(i = j + 1; i < m; i++) a[i + j * m] = 0.; } } #else if (uplos & 1) { for (j = 0; j < m; j++) { for(i = 0; i < j; i++) { a[(i + j * m) * 2 + 0] = 0.; a[(i + j * m) * 2 + 1] = 0.; } a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.; a[(j + j * m) * 2 + 1] = 0.; for(i = j + 1; i < m; i++) { a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5; a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5; } } } else { for (j = 0; j < m; j++) { for(i = 0; i < j; i++) { a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5; a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5; } a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.; a[(j + j * m) * 2 + 1] = 0.; for(i = j + 1; i < m; i++) { a[(i + j * m) * 2 + 0] = 0.; a[(i + j * m) * 2 + 1] = 0.; } } } #endif SYRK(uplo[uplos], trans[uplos], &m, &m, alpha, a, &m, beta, b, &m); gettimeofday( &start, (struct timezone *)0); POTRF(uplo[uplos], &m, b, &m, &info); gettimeofday( &stop, (struct timezone *)0); if (info != 0) { fprintf(stderr, "Potrf info = %d\n", info); exit(1); } time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6; flops = COMPSIZE * COMPSIZE * (1.0/3.0 * (double)m * (double)m *(double)m +1.0/2.0* (double)m *(double)m + 1.0/6.0* (double)m) / time1 * 1.e-6; if ( btest == 'S' ) { for(j = 0; j < to; j++){ for(i = 0; i < to * COMPSIZE; i++){ a[i + j * to * COMPSIZE] = ((FLOAT) rand() / (FLOAT) RAND_MAX) - 0.5; } } gettimeofday( &start, (struct timezone *)0); POTRS(uplo[uplos], &m, &m, b, &m, a, &m, &info); gettimeofday( &stop, (struct timezone *)0); if (info != 0) { fprintf(stderr, "Potrs info = %d\n", info); exit(1); } time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6; flops = COMPSIZE * COMPSIZE * (2.0 * (double)m * (double)m *(double)m ) / time1 * 1.e-6; } if ( btest == 'I' ) { gettimeofday( &start, (struct timezone *)0); POTRI(uplo[uplos], &m, b, &m, &info); gettimeofday( &stop, (struct timezone *)0); if (info != 0) { fprintf(stderr, "Potri info = %d\n", info); exit(1); } time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6; flops = COMPSIZE * COMPSIZE * (2.0/3.0 * (double)m * (double)m *(double)m +1.0/2.0* (double)m *(double)m + 5.0/6.0* (double)m) / time1 * 1.e-6; } fprintf(stderr, "%8d : %10.2f MFlops : %10.3f Sec : Test=%c\n",m,flops ,time1,btest); } return 0; }