/* * this puts the device in an inactive state */ static void smc_shutdown(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; struct sk_buff *pending_skb; DBG(2, "%s: %s\n", CARDNAME, __func__); /* no more interrupts for me */ spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, 0); pending_skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; spin_unlock_irq(&lp->lock); if (pending_skb) dev_kfree_skb(pending_skb); /* and tell the card to stay away from that nasty outside world */ SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_CLEAR); SMC_SET_TCR(lp, TCR_CLEAR); #ifdef POWER_DOWN /* finally, shut the chip down */ SMC_SELECT_BANK(lp, 1); SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); #endif }
static void smc_shutdown(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; struct sk_buff *pending_skb; DBG(2, "%s: %s\n", CARDNAME, __func__); spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, 0); pending_skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; spin_unlock_irq(&lp->lock); if (pending_skb) dev_kfree_skb(pending_skb); SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_CLEAR); SMC_SET_TCR(lp, TCR_CLEAR); #ifdef POWER_DOWN SMC_SELECT_BANK(lp, 1); SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN); #endif }
static void smc_enable(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int mask; DBG(2, "%s: %s\n", dev->name, __func__); SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); SMC_SET_RCR(lp, lp->rcr_cur_mode); SMC_SELECT_BANK(lp, 1); SMC_SET_MAC_ADDR(lp, dev->dev_addr); mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; if (lp->version >= (CHIP_91100 << 4)) mask |= IM_MDINT; SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, mask); }
static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int phydata; SMC_SELECT_BANK(lp, 3); smc_mii_out(dev, 0xffffffff, 32); smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); phydata = smc_mii_in(dev, 18); SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); return phydata; }
static int smc_phy_fixed(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int phyaddr = lp->mii.phy_id; int bmcr, cfg1; DBG(3, "%s: %s\n", dev->name, __func__); cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); cfg1 |= PHY_CFG1_LNKDIS; smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); bmcr = 0; if (lp->ctl_rfduplx) bmcr |= BMCR_FULLDPLX; if (lp->ctl_rspeed == 100) bmcr |= BMCR_SPEED100; smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); SMC_SELECT_BANK(lp, 0); SMC_SET_RPC(lp, lp->rpc_cur_mode); SMC_SELECT_BANK(lp, 2); return 1; }
/* * Reads a register from the MII Management serial interface */ static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int phydata; SMC_SELECT_BANK(lp, 3); /* Idle - 32 ones */ smc_mii_out(dev, 0xffffffff, 32); /* Start code (01) + read (10) + phyaddr + phyreg */ smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14); /* Turnaround (2bits) + phydata */ phydata = smc_mii_in(dev, 18); /* Return to idle state */ SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); return phydata; }
/* * Enable Interrupts, Receive, and Transmit */ static void smc_enable(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int mask; DBG(2, "%s: %s\n", dev->name, __func__); /* see the header file for options in TCR/RCR DEFAULT */ SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); SMC_SET_RCR(lp, lp->rcr_cur_mode); SMC_SELECT_BANK(lp, 1); SMC_SET_MAC_ADDR(lp, dev->dev_addr); /* now, enable interrupts */ mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT; if (lp->version >= (CHIP_91100 << 4)) mask |= IM_MDINT; SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, mask); /* * From this point the register bank must _NOT_ be switched away * to something else than bank 2 without proper locking against * races with any tasklet or interrupt handlers until smc_shutdown() * or smc_reset() is called. */ }
static void smc_tx(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int saved_packet, packet_no, tx_status, pkt_len; DBG(3, "%s: %s\n", dev->name, __func__); packet_no = SMC_GET_TXFIFO(lp); if (unlikely(packet_no & TXFIFO_TEMPTY)) { PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name); return; } saved_packet = SMC_GET_PN(lp); SMC_SET_PN(lp, packet_no); SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ); SMC_GET_PKT_HDR(lp, tx_status, pkt_len); DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n", dev->name, tx_status, packet_no); if (!(tx_status & ES_TX_SUC)) dev->stats.tx_errors++; if (tx_status & ES_LOSTCARR) dev->stats.tx_carrier_errors++; if (tx_status & (ES_LATCOL | ES_16COL)) { PRINTK("%s: %s occurred on last xmit\n", dev->name, (tx_status & ES_LATCOL) ? "late collision" : "too many collisions"); dev->stats.tx_window_errors++; if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) { printk(KERN_INFO "%s: unexpectedly large number of " "bad collisions. Please check duplex " "setting.\n", dev->name); } } SMC_WAIT_MMU_BUSY(lp); SMC_SET_MMU_CMD(lp, MC_FREEPKT); SMC_WAIT_MMU_BUSY(lp); SMC_SET_PN(lp, saved_packet); SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); SMC_SELECT_BANK(lp, 2); }
/* . Function: smc_reset( void ) . Purpose: . This sets the SMC91111 chip to its normal state, hopefully from whatever . mess that any other DOS driver has put it in. . . Maybe I should reset more registers to defaults in here? SOFTRST should . do that for me. . . Method: . 1. send a SOFT RESET . 2. wait for it to finish . 3. enable autorelease mode . 4. reset the memory management unit . 5. clear all interrupts . */ static void smc_reset (struct eth_device *dev) { PRINTK2 ("%s: smc_reset\n", SMC_DEV_NAME); /* This resets the registers mostly to defaults, but doesn't affect EEPROM. That seems unnecessary */ SMC_SELECT_BANK (dev, 0); SMC_outw (dev, RCR_SOFTRST, RCR_REG); /* Setup the Configuration Register */ /* This is necessary because the CONFIG_REG is not affected */ /* by a soft reset */ SMC_SELECT_BANK (dev, 1); #if defined(CONFIG_SMC91111_EXT_PHY) SMC_outw (dev, CONFIG_DEFAULT | CONFIG_EXT_PHY, CONFIG_REG); #else SMC_outw (dev, CONFIG_DEFAULT, CONFIG_REG); #endif /* Release from possible power-down state */ /* Configuration register is not affected by Soft Reset */ SMC_outw (dev, SMC_inw (dev, CONFIG_REG) | CONFIG_EPH_POWER_EN, CONFIG_REG); SMC_SELECT_BANK (dev, 0); /* this should pause enough for the chip to be happy */ udelay (10); /* Disable transmit and receive functionality */ SMC_outw (dev, RCR_CLEAR, RCR_REG); SMC_outw (dev, TCR_CLEAR, TCR_REG); /* set the control register */ SMC_SELECT_BANK (dev, 1); SMC_outw (dev, CTL_DEFAULT, CTL_REG); /* Reset the MMU */ SMC_SELECT_BANK (dev, 2); smc_wait_mmu_release_complete (dev); SMC_outw (dev, MC_RESET, MMU_CMD_REG); while (SMC_inw (dev, MMU_CMD_REG) & MC_BUSY) udelay (1); /* Wait until not busy */ /* Note: It doesn't seem that waiting for the MMU busy is needed here, but this is a place where future chipsets _COULD_ break. Be wary of issuing another MMU command right after this */ /* Disable all interrupts */ SMC_outb (dev, 0, IM_REG); }
/*********************************************** * Show available memory * ***********************************************/ void dump_memory_info(void) { word mem_info; word old_bank; old_bank = SMC_inw(BANK_SELECT)&0xF; SMC_SELECT_BANK(0); mem_info = SMC_inw( MIR_REG ); PRINTK2("Memory: %4d available\n", (mem_info >> 8)*2048); SMC_SELECT_BANK(old_bank); }
static void smc_eph_interrupt(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int ctl; smc_10bt_check_media(dev, 0); SMC_SELECT_BANK(lp, 1); ctl = SMC_GET_CTL(lp); SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE); SMC_SET_CTL(lp, ctl); SMC_SELECT_BANK(lp, 2); }
/* . Function: smc_halt . Purpose: closes down the SMC91xxx chip. . Method: . 1. zero the interrupt mask . 2. clear the enable receive flag . 3. clear the enable xmit flags . . TODO: . (1) maybe utilize power down mode. . Why not yet? Because while the chip will go into power down mode, . the manual says that it will wake up in response to any I/O requests . in the register space. Empirical results do not show this working. */ static void smc_halt(struct eth_device *dev) { PRINTK2("%s: smc_halt\n", SMC_DEV_NAME); /* no more interrupts for me */ SMC_SELECT_BANK( dev, 2 ); SMC_outb( dev, 0, IM_REG ); /* and tell the card to stay away from that nasty outside world */ SMC_SELECT_BANK( dev, 0 ); SMC_outb( dev, RCR_CLEAR, RCR_REG ); SMC_outb( dev, TCR_CLEAR, TCR_REG ); swap_to(FLASH); }
/* . Function: smc_shutdown . Purpose: closes down the SMC91xxx chip. . Method: . 1. zero the interrupt mask . 2. clear the enable receive flag . 3. clear the enable xmit flags . . TODO: . (1) maybe utilize power down mode. . Why not yet? Because while the chip will go into power down mode, . the manual says that it will wake up in response to any I/O requests . in the register space. Empirical results do not show this working. */ static void smc_shutdown() { PRINTK2(CARDNAME ": smc_shutdown\n"); /* no more interrupts for me */ SMC_SELECT_BANK( 2 ); SMC_outb( 0, IM_REG ); /* and tell the card to stay away from that nasty outside world */ SMC_SELECT_BANK( 0 ); SMC_outb( RCR_CLEAR, RCR_REG ); SMC_outb( TCR_CLEAR, TCR_REG ); #ifdef SHARED_RESOURCES swap_to(FLASH); #endif }
static int write_eeprom_reg(struct eth_device *dev, u16 value, u16 reg) { int timeout; SMC_SELECT_BANK(dev, 2); SMC_outw(dev, reg, PTR_REG); SMC_SELECT_BANK(dev, 1); SMC_outw(dev, value, GP_REG); SMC_outw(dev, SMC_inw (dev, CTL_REG) | CTL_EEPROM_SELECT | CTL_STORE, CTL_REG); timeout = 100; while ((SMC_inw(dev, CTL_REG) & CTL_STORE) && --timeout) udelay (100); if (timeout == 0) { printf("Timeout Writing EEPROM register %02x\n", reg); return 0; } return 1; }
static u16 read_eeprom_reg(struct eth_device *dev, u16 reg) { int timeout; SMC_SELECT_BANK(dev, 2); SMC_outw(dev, reg, PTR_REG); SMC_SELECT_BANK(dev, 1); SMC_outw(dev, SMC_inw (dev, CTL_REG) | CTL_EEPROM_SELECT | CTL_RELOAD, CTL_REG); timeout = 100; while((SMC_inw (dev, CTL_REG) & CTL_RELOAD) && --timeout) udelay(100); if (timeout == 0) { printf("Timeout Reading EEPROM register %02x\n", reg); return 0; } return SMC_inw (dev, GP_REG); }
/* . Function: smc_enable . Purpose: let the chip talk to the outside work . Method: . 1. Enable the transmitter . 2. Enable the receiver . 3. Enable interrupts */ static void smc_enable(struct eth_device *dev) { PRINTK2("%s: smc_enable\n", SMC_DEV_NAME); SMC_SELECT_BANK( dev, 0 ); /* see the header file for options in TCR/RCR DEFAULT*/ SMC_outw( dev, TCR_DEFAULT, TCR_REG ); SMC_outw( dev, RCR_DEFAULT, RCR_REG ); /* clear MII_DIS */ /* smc_write_phy_register(PHY_CNTL_REG, 0x0000); */ }
static void smc_reset(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int ctl, cfg; struct sk_buff *pending_skb; DBG(2, "%s: %s\n", dev->name, __func__); spin_lock_irq(&lp->lock); SMC_SELECT_BANK(lp, 2); SMC_SET_INT_MASK(lp, 0); pending_skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; spin_unlock_irq(&lp->lock); if (pending_skb) { dev_kfree_skb(pending_skb); dev->stats.tx_errors++; dev->stats.tx_aborted_errors++; } SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_SOFTRST); SMC_SELECT_BANK(lp, 1); cfg = CONFIG_DEFAULT; if (lp->cfg.flags & SMC91X_NOWAIT) cfg |= CONFIG_NO_WAIT; cfg |= CONFIG_EPH_POWER_EN; SMC_SET_CONFIG(lp, cfg); udelay(1); SMC_SELECT_BANK(lp, 0); SMC_SET_RCR(lp, RCR_CLEAR); SMC_SET_TCR(lp, TCR_CLEAR); SMC_SELECT_BANK(lp, 1); ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE; if(!THROTTLE_TX_PKTS) ctl |= CTL_AUTO_RELEASE; else ctl &= ~CTL_AUTO_RELEASE; SMC_SET_CTL(lp, ctl); SMC_SELECT_BANK(lp, 2); SMC_SET_MMU_CMD(lp, MC_RESET); SMC_WAIT_MMU_BUSY(lp); }
/* * Writes a register to the MII Management serial interface */ static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, int phydata) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; SMC_SELECT_BANK(lp, 3); /* Idle - 32 ones */ smc_mii_out(dev, 0xffffffff, 32); /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */ smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); /* Return to idle state */ SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); }
static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg, int phydata) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; SMC_SELECT_BANK(lp, 3); smc_mii_out(dev, 0xffffffff, 32); smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32); SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO)); DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __func__, phyaddr, phyreg, phydata); SMC_SELECT_BANK(lp, 2); }
static void smc_10bt_check_media(struct net_device *dev, int init) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; unsigned int old_carrier, new_carrier; old_carrier = netif_carrier_ok(dev) ? 1 : 0; SMC_SELECT_BANK(lp, 0); new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0; SMC_SELECT_BANK(lp, 2); if (init || (old_carrier != new_carrier)) { if (!new_carrier) { netif_carrier_off(dev); } else { netif_carrier_on(dev); } if (netif_msg_link(lp)) printk(KERN_INFO "%s: link %s\n", dev->name, new_carrier ? "up" : "down"); } }
static int poll4int (byte mask, int timeout) { int tmo = get_timer (0) + timeout * CFG_HZ; int is_timeout = 0; word old_bank = SMC_inw (BSR_REG); PRINTK2 ("Polling...\n"); SMC_SELECT_BANK (2); while ((SMC_inw (SMC91111_INT_REG) & mask) == 0) { if (get_timer (0) >= tmo) { is_timeout = 1; break; } } /* restore old bank selection */ SMC_SELECT_BANK (old_bank); if (is_timeout) return 1; else return 0; }
static int poll4int (struct eth_device *dev, byte mask, int timeout) { int tmo = get_timer (0) + timeout * CONFIG_SYS_HZ; int is_timeout = 0; word old_bank = SMC_inw (dev, BSR_REG); PRINTK2 ("Polling...\n"); SMC_SELECT_BANK (dev, 2); while ((SMC_inw (dev, SMC91111_INT_REG) & mask) == 0) { if (get_timer (0) >= tmo) { is_timeout = 1; break; } } /* restore old bank selection */ SMC_SELECT_BANK (dev, old_bank); if (is_timeout) return 1; else return 0; }
/* * Sets the PHY to a configuration as determined by the user */ static int smc_phy_fixed(struct net_device *dev) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int phyaddr = lp->mii.phy_id; int bmcr, cfg1; DBG(3, "%s: %s\n", dev->name, __func__); /* Enter Link Disable state */ cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG); cfg1 |= PHY_CFG1_LNKDIS; smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1); /* * Set our fixed capabilities * Disable auto-negotiation */ bmcr = 0; if (lp->ctl_rfduplx) bmcr |= BMCR_FULLDPLX; if (lp->ctl_rspeed == 100) bmcr |= BMCR_SPEED100; /* Write our capabilities to the phy control register */ smc_phy_write(dev, phyaddr, MII_BMCR, bmcr); /* Re-Configure the Receive/Phy Control register */ SMC_SELECT_BANK(lp, 0); SMC_SET_RPC(lp, lp->rpc_cur_mode); SMC_SELECT_BANK(lp, 2); return 1; }
static void smc_phy_check_media(struct net_device *dev, int init) { struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { if (lp->mii.full_duplex) { lp->tcr_cur_mode |= TCR_SWFDUP; } else { lp->tcr_cur_mode &= ~TCR_SWFDUP; } SMC_SELECT_BANK(lp, 0); SMC_SET_TCR(lp, lp->tcr_cur_mode); } }
static void smc_phy_configure(struct work_struct *work) { struct smc_local *lp = container_of(work, struct smc_local, phy_configure); struct net_device *dev = lp->dev; void __iomem *ioaddr = lp->base; int phyaddr = lp->mii.phy_id; int my_phy_caps; int my_ad_caps; int status; DBG(3, "%s:smc_program_phy()\n", dev->name); spin_lock_irq(&lp->lock); if (lp->phy_type == 0) goto smc_phy_configure_exit; if (smc_phy_reset(dev, phyaddr)) { printk("%s: PHY reset timed out\n", dev->name); goto smc_phy_configure_exit; } smc_phy_write(dev, phyaddr, PHY_MASK_REG, PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD | PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB | PHY_INT_SPDDET | PHY_INT_DPLXDET); SMC_SELECT_BANK(lp, 0); SMC_SET_RPC(lp, lp->rpc_cur_mode); if (lp->mii.force_media) { smc_phy_fixed(dev); goto smc_phy_configure_exit; } my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR); if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { printk(KERN_INFO "Auto negotiation NOT supported\n"); smc_phy_fixed(dev); goto smc_phy_configure_exit; } my_ad_caps = ADVERTISE_CSMA; if (my_phy_caps & BMSR_100BASE4) my_ad_caps |= ADVERTISE_100BASE4; if (my_phy_caps & BMSR_100FULL) my_ad_caps |= ADVERTISE_100FULL; if (my_phy_caps & BMSR_100HALF) my_ad_caps |= ADVERTISE_100HALF; if (my_phy_caps & BMSR_10FULL) my_ad_caps |= ADVERTISE_10FULL; if (my_phy_caps & BMSR_10HALF) my_ad_caps |= ADVERTISE_10HALF; if (lp->ctl_rspeed != 100) my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); if (!lp->ctl_rfduplx) my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps); lp->mii.advertising = my_ad_caps; status = smc_phy_read(dev, phyaddr, MII_ADVERTISE); DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps); DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps); smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); smc_phy_check_media(dev, 1); smc_phy_configure_exit: SMC_SELECT_BANK(lp, 2); spin_unlock_irq(&lp->lock); }
void snstart(struct ifnet *ifp, struct ifaltq_subque *ifsq) { struct sn_softc *sc = ifp->if_softc; u_int len; struct mbuf *m; struct mbuf *top; int pad; int mask; u_short length; u_short numPages; u_char packet_no; int time_out; ASSERT_ALTQ_SQ_DEFAULT(ifp, ifsq); if ((ifp->if_flags & IFF_RUNNING) == 0 || ifq_is_oactive(&ifp->if_snd)) return; if (sc->pages_wanted != -1) { /* XXX should never happen */ kprintf("%s: snstart() while memory allocation pending\n", ifp->if_xname); ifq_set_oactive(&ifp->if_snd); return; } startagain: /* * Sneak a peek at the next packet */ m = ifq_dequeue(&ifp->if_snd); if (m == NULL) return; /* * Compute the frame length and set pad to give an overall even * number of bytes. Below we assume that the packet length is even. */ for (len = 0, top = m; m; m = m->m_next) len += m->m_len; pad = (len & 1); /* * We drop packets that are too large. Perhaps we should truncate * them instead? */ if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) { kprintf("%s: large packet discarded (A)\n", ifp->if_xname); IFNET_STAT_INC(&sc->arpcom.ac_if, oerrors, 1); m_freem(top); goto readcheck; } #ifdef SW_PAD /* * If HW padding is not turned on, then pad to ETHER_MIN_LEN. */ if (len < ETHER_MIN_LEN - ETHER_CRC_LEN) pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len; #endif /* SW_PAD */ length = pad + len; /* * The MMU wants the number of pages to be the number of 256 byte * 'pages', minus 1 (A packet can't ever have 0 pages. We also * include space for the status word, byte count and control bytes in * the allocation request. */ numPages = (length + 6) >> 8; /* * Now, try to allocate the memory */ SMC_SELECT_BANK(2); outw(BASE + MMU_CMD_REG_W, MMUCR_ALLOC | numPages); /* * Wait a short amount of time to see if the allocation request * completes. Otherwise, I enable the interrupt and wait for * completion asyncronously. */ time_out = MEMORY_WAIT_TIME; do { if (inb(BASE + INTR_STAT_REG_B) & IM_ALLOC_INT) break; } while (--time_out); if (!time_out) { /* * No memory now. Oh well, wait until the chip finds memory * later. Remember how many pages we were asking for and * enable the allocation completion interrupt. Also set a * watchdog in case we miss the interrupt. We mark the * interface active since there is no point in attempting an * snstart() until after the memory is available. */ mask = inb(BASE + INTR_MASK_REG_B) | IM_ALLOC_INT; outb(BASE + INTR_MASK_REG_B, mask); sc->intr_mask = mask; ifp->if_timer = 1; ifq_set_oactive(&ifp->if_snd); sc->pages_wanted = numPages; ifq_prepend(&ifp->if_snd, top); return; } /* * The memory allocation completed. Check the results. */ packet_no = inb(BASE + ALLOC_RESULT_REG_B); if (packet_no & ARR_FAILED) { kprintf("%s: Memory allocation failed\n", ifp->if_xname); ifq_prepend(&ifp->if_snd, top); goto startagain; } /* * We have a packet number, so tell the card to use it. */ outb(BASE + PACKET_NUM_REG_B, packet_no); /* * Point to the beginning of the packet */ outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000); /* * Send the packet length (+6 for status, length and control byte) * and the status word (set to zeros) */ outw(BASE + DATA_REG_W, 0); outb(BASE + DATA_REG_B, (length + 6) & 0xFF); outb(BASE + DATA_REG_B, (length + 6) >> 8); /* * Push out the data to the card. */ for (m = top; m != NULL; m = m->m_next) { /* * Push out words. */ outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2); /* * Push out remaining byte. */ if (m->m_len & 1) outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1)); } /* * Push out padding. */ while (pad > 1) { outw(BASE + DATA_REG_W, 0); pad -= 2; } if (pad) outb(BASE + DATA_REG_B, 0); /* * Push out control byte and unused packet byte The control byte is 0 * meaning the packet is even lengthed and no special CRC handling is * desired. */ outw(BASE + DATA_REG_W, 0); /* * Enable the interrupts and let the chipset deal with it Also set a * watchdog in case we miss the interrupt. */ mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT); outb(BASE + INTR_MASK_REG_B, mask); sc->intr_mask = mask; outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE); ifq_set_oactive(&ifp->if_snd); ifp->if_timer = 1; BPF_MTAP(ifp, top); IFNET_STAT_INC(ifp, opackets, 1); m_freem(top); readcheck: /* * Is another packet coming in? We don't want to overflow the tiny * RX FIFO. If nothing has arrived then attempt to queue another * transmit packet. */ if (inw(BASE + FIFO_PORTS_REG_W) & FIFO_REMPTY) goto startagain; }
/* Resume a packet transmit operation after a memory allocation * has completed. * * This is basically a hacked up copy of snstart() which handles * a completed memory allocation the same way snstart() does. * It then passes control to snstart to handle any other queued * packets. */ static void snresume(struct ifnet *ifp) { struct sn_softc *sc = ifp->if_softc; u_int len; struct mbuf *m; struct mbuf *top; int pad; int mask; u_short length; u_short numPages; u_short pages_wanted; u_char packet_no; if (sc->pages_wanted < 0) return; pages_wanted = sc->pages_wanted; sc->pages_wanted = -1; /* * Sneak a peek at the next packet */ m = ifq_dequeue(&ifp->if_snd); if (m == NULL) { kprintf("%s: snresume() with nothing to send\n", ifp->if_xname); return; } /* * Compute the frame length and set pad to give an overall even * number of bytes. Below we assume that the packet length is even. */ for (len = 0, top = m; m; m = m->m_next) len += m->m_len; pad = (len & 1); /* * We drop packets that are too large. Perhaps we should truncate * them instead? */ if (len + pad > ETHER_MAX_LEN - ETHER_CRC_LEN) { kprintf("%s: large packet discarded (B)\n", ifp->if_xname); IFNET_STAT_INC(ifp, oerrors, 1); m_freem(top); return; } #ifdef SW_PAD /* * If HW padding is not turned on, then pad to ETHER_MIN_LEN. */ if (len < ETHER_MIN_LEN - ETHER_CRC_LEN) pad = ETHER_MIN_LEN - ETHER_CRC_LEN - len; #endif /* SW_PAD */ length = pad + len; /* * The MMU wants the number of pages to be the number of 256 byte * 'pages', minus 1 (A packet can't ever have 0 pages. We also * include space for the status word, byte count and control bytes in * the allocation request. */ numPages = (length + 6) >> 8; SMC_SELECT_BANK(2); /* * The memory allocation completed. Check the results. If it failed, * we simply set a watchdog timer and hope for the best. */ packet_no = inb(BASE + ALLOC_RESULT_REG_B); if (packet_no & ARR_FAILED) { kprintf("%s: Memory allocation failed. Weird.\n", ifp->if_xname); ifp->if_timer = 1; ifq_prepend(&ifp->if_snd, top); goto try_start; } /* * We have a packet number, so tell the card to use it. */ outb(BASE + PACKET_NUM_REG_B, packet_no); /* * Now, numPages should match the pages_wanted recorded when the * memory allocation was initiated. */ if (pages_wanted != numPages) { kprintf("%s: memory allocation wrong size. Weird.\n", ifp->if_xname); /* * If the allocation was the wrong size we simply release the * memory once it is granted. Wait for the MMU to be un-busy. */ while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */ ; outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT); ifq_prepend(&ifp->if_snd, top); return; } /* * Point to the beginning of the packet */ outw(BASE + POINTER_REG_W, PTR_AUTOINC | 0x0000); /* * Send the packet length (+6 for status, length and control byte) * and the status word (set to zeros) */ outw(BASE + DATA_REG_W, 0); outb(BASE + DATA_REG_B, (length + 6) & 0xFF); outb(BASE + DATA_REG_B, (length + 6) >> 8); /* * Push out the data to the card. */ for (m = top; m != NULL; m = m->m_next) { /* * Push out words. */ outsw(BASE + DATA_REG_W, mtod(m, caddr_t), m->m_len / 2); /* * Push out remaining byte. */ if (m->m_len & 1) outb(BASE + DATA_REG_B, *(mtod(m, caddr_t) + m->m_len - 1)); } /* * Push out padding. */ while (pad > 1) { outw(BASE + DATA_REG_W, 0); pad -= 2; } if (pad) outb(BASE + DATA_REG_B, 0); /* * Push out control byte and unused packet byte The control byte is 0 * meaning the packet is even lengthed and no special CRC handling is * desired. */ outw(BASE + DATA_REG_W, 0); /* * Enable the interrupts and let the chipset deal with it Also set a * watchdog in case we miss the interrupt. */ mask = inb(BASE + INTR_MASK_REG_B) | (IM_TX_INT | IM_TX_EMPTY_INT); outb(BASE + INTR_MASK_REG_B, mask); sc->intr_mask = mask; outw(BASE + MMU_CMD_REG_W, MMUCR_ENQUEUE); BPF_MTAP(ifp, top); IFNET_STAT_INC(ifp, opackets, 1); m_freem(top); try_start: /* * Now pass control to snstart() to queue any additional packets */ ifq_clr_oactive(&ifp->if_snd); if_devstart(ifp); /* * We've sent something, so we're active. Set a watchdog in case the * TX_EMPTY interrupt is lost. */ ifq_set_oactive(&ifp->if_snd); ifp->if_timer = 1; }
void sn_intr(void *arg) { int status, interrupts; struct sn_softc *sc = (struct sn_softc *) arg; struct ifnet *ifp = &sc->arpcom.ac_if; /* * Chip state registers */ u_char mask; u_char packet_no; u_short tx_status; u_short card_stats; /* * Clear the watchdog. */ ifp->if_timer = 0; SMC_SELECT_BANK(2); /* * Obtain the current interrupt mask and clear the hardware mask * while servicing interrupts. */ mask = inb(BASE + INTR_MASK_REG_B); outb(BASE + INTR_MASK_REG_B, 0x00); /* * Get the set of interrupts which occurred and eliminate any which * are masked. */ interrupts = inb(BASE + INTR_STAT_REG_B); status = interrupts & mask; /* * Now, process each of the interrupt types. */ /* * Receive Overrun. */ if (status & IM_RX_OVRN_INT) { /* * Acknowlege Interrupt */ SMC_SELECT_BANK(2); outb(BASE + INTR_ACK_REG_B, IM_RX_OVRN_INT); IFNET_STAT_INC(&sc->arpcom.ac_if, ierrors, 1); } /* * Got a packet. */ if (status & IM_RCV_INT) { #if 1 int packet_number; SMC_SELECT_BANK(2); packet_number = inw(BASE + FIFO_PORTS_REG_W); if (packet_number & FIFO_REMPTY) { /* * we got called , but nothing was on the FIFO */ kprintf("sn: Receive interrupt with nothing on FIFO\n"); goto out; } #endif snread(ifp); } /* * An on-card memory allocation came through. */ if (status & IM_ALLOC_INT) { /* * Disable this interrupt. */ mask &= ~IM_ALLOC_INT; ifq_clr_oactive(&sc->arpcom.ac_if.if_snd); snresume(&sc->arpcom.ac_if); } /* * TX Completion. Handle a transmit error message. This will only be * called when there is an error, because of the AUTO_RELEASE mode. */ if (status & IM_TX_INT) { /* * Acknowlege Interrupt */ SMC_SELECT_BANK(2); outb(BASE + INTR_ACK_REG_B, IM_TX_INT); packet_no = inw(BASE + FIFO_PORTS_REG_W); packet_no &= FIFO_TX_MASK; /* * select this as the packet to read from */ outb(BASE + PACKET_NUM_REG_B, packet_no); /* * Position the pointer to the first word from this packet */ outw(BASE + POINTER_REG_W, PTR_AUTOINC | PTR_READ | 0x0000); /* * Fetch the TX status word. The value found here will be a * copy of the EPH_STATUS_REG_W at the time the transmit * failed. */ tx_status = inw(BASE + DATA_REG_W); if (tx_status & EPHSR_TX_SUC) { device_printf(sc->dev, "Successful packet caused interrupt\n"); } else { IFNET_STAT_INC(&sc->arpcom.ac_if, oerrors, 1); } if (tx_status & EPHSR_LATCOL) IFNET_STAT_INC(&sc->arpcom.ac_if, collisions, 1); /* * Some of these errors will have disabled transmit. * Re-enable transmit now. */ SMC_SELECT_BANK(0); #ifdef SW_PAD outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE); #else outw(BASE + TXMIT_CONTROL_REG_W, TCR_ENABLE | TCR_PAD_ENABLE); #endif /* SW_PAD */ /* * kill the failed packet. Wait for the MMU to be un-busy. */ SMC_SELECT_BANK(2); while (inw(BASE + MMU_CMD_REG_W) & MMUCR_BUSY) /* NOTHING */ ; outw(BASE + MMU_CMD_REG_W, MMUCR_FREEPKT); /* * Attempt to queue more transmits. */ ifq_clr_oactive(&sc->arpcom.ac_if.if_snd); if_devstart(&sc->arpcom.ac_if); } /* * Transmit underrun. We use this opportunity to update transmit * statistics from the card. */ if (status & IM_TX_EMPTY_INT) { /* * Acknowlege Interrupt */ SMC_SELECT_BANK(2); outb(BASE + INTR_ACK_REG_B, IM_TX_EMPTY_INT); /* * Disable this interrupt. */ mask &= ~IM_TX_EMPTY_INT; SMC_SELECT_BANK(0); card_stats = inw(BASE + COUNTER_REG_W); /* * Single collisions */ IFNET_STAT_INC(&sc->arpcom.ac_if, collisions, card_stats & ECR_COLN_MASK); /* * Multiple collisions */ IFNET_STAT_INC(&sc->arpcom.ac_if, collisions, (card_stats & ECR_MCOLN_MASK) >> 4); SMC_SELECT_BANK(2); /* * Attempt to enqueue some more stuff. */ ifq_clr_oactive(&sc->arpcom.ac_if.if_snd); if_devstart(&sc->arpcom.ac_if); }
static irqreturn_t smc_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct smc_local *lp = netdev_priv(dev); void __iomem *ioaddr = lp->base; int status, mask, timeout, card_stats; int saved_pointer; DBG(3, "%s: %s\n", dev->name, __func__); spin_lock(&lp->lock); SMC_INTERRUPT_PREAMBLE; saved_pointer = SMC_GET_PTR(lp); mask = SMC_GET_INT_MASK(lp); SMC_SET_INT_MASK(lp, 0); timeout = MAX_IRQ_LOOPS; do { status = SMC_GET_INT(lp); DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n", dev->name, status, mask, ({ int meminfo; SMC_SELECT_BANK(lp, 0); meminfo = SMC_GET_MIR(lp); SMC_SELECT_BANK(lp, 2); meminfo; }), SMC_GET_FIFO(lp)); status &= mask; if (!status) break; if (status & IM_TX_INT) { DBG(3, "%s: TX int\n", dev->name); smc_tx(dev); SMC_ACK_INT(lp, IM_TX_INT); if (THROTTLE_TX_PKTS) netif_wake_queue(dev); } else if (status & IM_RCV_INT) { DBG(3, "%s: RX irq\n", dev->name); smc_rcv(dev); } else if (status & IM_ALLOC_INT) { DBG(3, "%s: Allocation irq\n", dev->name); tasklet_hi_schedule(&lp->tx_task); mask &= ~IM_ALLOC_INT; } else if (status & IM_TX_EMPTY_INT) { DBG(3, "%s: TX empty\n", dev->name); mask &= ~IM_TX_EMPTY_INT; SMC_SELECT_BANK(lp, 0); card_stats = SMC_GET_COUNTER(lp); SMC_SELECT_BANK(lp, 2); dev->stats.collisions += card_stats & 0xF; card_stats >>= 4; dev->stats.collisions += card_stats & 0xF; } else if (status & IM_RX_OVRN_INT) {
/* . Function: smc_send(struct net_device * ) . Purpose: . This sends the actual packet to the SMC9xxx chip. . . Algorithm: . First, see if a saved_skb is available. . ( this should NOT be called if there is no 'saved_skb' . Now, find the packet number that the chip allocated . Point the data pointers at it in memory . Set the length word in the chip's memory . Dump the packet to chip memory . Check if a last byte is needed ( odd length packet ) . if so, set the control flag right . Tell the card to send it . Enable the transmit interrupt, so I know if it failed . Free the kernel data if I actually sent it. */ static int smc_send(struct eth_device *dev, void *packet, int packet_length) { byte packet_no; byte *buf; int length; int numPages; int try = 0; int time_out; byte status; byte saved_pnr; word saved_ptr; /* save PTR and PNR registers before manipulation */ SMC_SELECT_BANK (dev, 2); saved_pnr = SMC_inb( dev, PN_REG ); saved_ptr = SMC_inw( dev, PTR_REG ); PRINTK3 ("%s: smc_hardware_send_packet\n", SMC_DEV_NAME); length = ETH_ZLEN < packet_length ? packet_length : ETH_ZLEN; /* allocate memory ** The MMU wants the number of pages to be the number of 256 bytes ** 'pages', minus 1 ( since a packet can't ever have 0 pages :) ) ** ** The 91C111 ignores the size bits, but the code is left intact ** for backwards and future compatibility. ** ** Pkt size for allocating is data length +6 (for additional status ** words, length and ctl!) ** ** If odd size then last byte is included in this header. */ numPages = ((length & 0xfffe) + 6); numPages >>= 8; /* Divide by 256 */ if (numPages > 7) { printf ("%s: Far too big packet error. \n", SMC_DEV_NAME); return 0; } /* now, try to allocate the memory */ SMC_SELECT_BANK (dev, 2); SMC_outw (dev, MC_ALLOC | numPages, MMU_CMD_REG); /* FIXME: the ALLOC_INT bit never gets set * * so the following will always give a * * memory allocation error. * * same code works in armboot though * * -ro */ again: try++; time_out = MEMORY_WAIT_TIME; do { status = SMC_inb (dev, SMC91111_INT_REG); if (status & IM_ALLOC_INT) { /* acknowledge the interrupt */ SMC_outb (dev, IM_ALLOC_INT, SMC91111_INT_REG); break; } } while (--time_out); if (!time_out) { PRINTK2 ("%s: memory allocation, try %d failed ...\n", SMC_DEV_NAME, try); if (try < SMC_ALLOC_MAX_TRY) goto again; else return 0; }