// calculate pilot input to nudge speed up or down // target_speed should be in meters/sec // cruise_speed is vehicle's cruising speed, cruise_throttle is the throttle (from -1 to +1) that achieves the cruising speed // return value is a new speed (in m/s) which up to the projected maximum speed based on the cruise speed and cruise throttle float Mode::calc_speed_nudge(float target_speed, float cruise_speed, float cruise_throttle) { // return immediately if pilot is not attempting to nudge speed // pilot can nudge up speed if throttle (in range -100 to +100) is above 50% of center in direction of travel const int16_t pilot_throttle = constrain_int16(rover.channel_throttle->get_control_in(), -100, 100); if (((pilot_throttle <= 50) && (target_speed >= 0.0f)) || ((pilot_throttle >= -50) && (target_speed <= 0.0f))) { return target_speed; } // sanity checks if (cruise_throttle > 1.0f || cruise_throttle < 0.05f) { return target_speed; } // project vehicle's maximum speed const float vehicle_speed_max = calc_speed_max(cruise_speed, cruise_throttle); // return unadjusted target if already over vehicle's projected maximum speed if (fabsf(target_speed) >= vehicle_speed_max) { return target_speed; } const float speed_increase_max = vehicle_speed_max - fabsf(target_speed); float speed_nudge = ((static_cast<float>(abs(pilot_throttle)) - 50.0f) * 0.02f) * speed_increase_max; if (pilot_throttle < 0) { speed_nudge = -speed_nudge; } return target_speed + speed_nudge; }
void ModeSteering::update() { float desired_steering, desired_throttle; get_pilot_desired_steering_and_throttle(desired_steering, desired_throttle); // convert pilot throttle input to desired speed (up to twice the cruise speed) const float target_speed = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); // get speed forward float speed; if (!attitude_control.get_forward_speed(speed)) { // no valid speed so stop g2.motors.set_throttle(0.0f); g2.motors.set_steering(0.0f); _desired_lat_accel = 0.0f; return; } // determine if pilot is requesting pivot turn bool is_pivot_turning = g2.motors.have_skid_steering() && is_zero(target_speed) && (!is_zero(desired_steering)); // In steering mode we control lateral acceleration directly. // For pivot steering vehicles we use the TURN_MAX_G parameter // For regular steering vehicles we use the maximum lateral acceleration at full steering lock for this speed: V^2/R where R is the radius of turn. float max_g_force; if (is_pivot_turning) { max_g_force = g.turn_max_g * GRAVITY_MSS; } else { max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f); } // constrain to user set TURN_MAX_G max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); // convert pilot steering input to desired lateral acceleration _desired_lat_accel = max_g_force * (desired_steering / 4500.0f); // reverse target lateral acceleration if backing up bool reversed = false; if (is_negative(target_speed)) { reversed = true; _desired_lat_accel = -_desired_lat_accel; } // mark us as in_reverse when using a negative throttle rover.set_reverse(reversed); // run speed to throttle output controller if (is_zero(target_speed) && !is_pivot_turning) { stop_vehicle(); } else { // run lateral acceleration to steering controller calc_steering_from_lateral_acceleration(false); calc_throttle(target_speed, false); } }
// decode pilot's input and return heading_out (in cd) and speed_out (in m/s) void Mode::get_pilot_desired_heading_and_speed(float &heading_out, float &speed_out) { // get steering and throttle in the -1 to +1 range const float desired_steering = constrain_float(rover.channel_steer->norm_input_dz(), -1.0f, 1.0f); const float desired_throttle = constrain_float(rover.channel_throttle->norm_input_dz(), -1.0f, 1.0f); // calculate angle of input stick vector heading_out = wrap_360_cd(atan2f(desired_steering, desired_throttle) * DEGX100); // calculate throttle using magnitude of input stick vector const float throttle = MIN(safe_sqrt(sq(desired_throttle) + sq(desired_steering)), 1.0f); speed_out = throttle * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); }
// decode pilot steering and return steering_out and speed_out (in m/s) void Mode::get_pilot_desired_steering_and_speed(float &steering_out, float &speed_out) { float desired_throttle; get_pilot_input(steering_out, desired_throttle); speed_out = desired_throttle * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); // check for special case of input and output throttle being in opposite directions float speed_out_limited = g2.attitude_control.get_desired_speed_accel_limited(speed_out, rover.G_Dt); if ((is_negative(speed_out) != is_negative(speed_out_limited)) && ((g.pilot_steer_type == PILOT_STEER_TYPE_DEFAULT) || (g.pilot_steer_type == PILOT_STEER_TYPE_DIR_REVERSED_WHEN_REVERSING))) { steering_out *= -1; } speed_out = speed_out_limited; }
void ModeSteering::update() { // convert pilot throttle input to desired speed (up to twice the cruise speed) float target_speed = channel_throttle->get_control_in() * 0.01f * calc_speed_max(g.speed_cruise, g.throttle_cruise * 0.01f); // get speed forward float speed; if (!attitude_control.get_forward_speed(speed)) { // no valid speed so stop g2.motors.set_throttle(0.0f); g2.motors.set_steering(0.0f); lateral_acceleration = 0.0f; return; } // in steering mode we control lateral acceleration directly. We first calculate the maximum lateral // acceleration at full steering lock for this speed. That is V^2/R where R is the radius of turn. float max_g_force = speed * speed / MAX(g2.turn_radius, 0.1f); // constrain to user set TURN_MAX_G max_g_force = constrain_float(max_g_force, 0.1f, g.turn_max_g * GRAVITY_MSS); // convert pilot steering input to desired lateral acceleration lateral_acceleration = max_g_force * (channel_steer->get_control_in() / 4500.0f); // reverse target lateral acceleration if backing up bool reversed = false; if (is_negative(target_speed)) { reversed = true; lateral_acceleration = -lateral_acceleration; } // mark us as in_reverse when using a negative throttle rover.set_reverse(reversed); // run speed to throttle output controller if (is_zero(target_speed)) { stop_vehicle(); } else { // run steering controller calc_nav_steer(reversed); calc_throttle(target_speed, false); } }