Exemple #1
0
void ba81AggregateDistributions(std::vector<struct omxExpectation *> &expectation,
				int *version, omxMatrix *meanMat, omxMatrix *covMat)
{
	int allVer = 0;
	for (size_t ex=0; ex < expectation.size(); ++ex) {
		BA81Expect *ba81 = (BA81Expect *) expectation[ex]->argStruct;
		allVer += ba81->ElatentVersion;
	}
	if (*version == allVer) return;
	*version = allVer;

	BA81Expect *exemplar = (BA81Expect *) expectation[0]->argStruct;
	ba81NormalQuad &quad = exemplar->getQuad();
	ba81NormalQuad combined(quad);

	int got = 0;
	for (size_t ex=0; ex < expectation.size(); ++ex) {
		BA81Expect *ba81 = (BA81Expect *) expectation[ex]->argStruct;
		// double weight = 1/ba81->weightSum; ?
		combined.addSummary(ba81->grp.quad);
		++got;
	}
	if (got == 0) return;

	int dim = quad.abilities();
	int numLatents = dim + triangleLoc1(dim);
	Eigen::ArrayXd latentDist(numLatents);
	combined.EAP(got, latentDist);
	for (int d1=quad.abilities(); d1 < numLatents; d1++) {
		latentDist[d1] *= got / (got - 1.0);
	}
	exportLatentDistToOMX(quad, latentDist.data(), meanMat, covMat);
}
Exemple #2
0
double
UtcTime::difference( const UtcTime &other_time ) const
{
	double other = other_time.combined();
	double me = combined();

	return me - other;
}
Exemple #3
0
ItemSet* Parser::generate_itemset(std::set<Item> head) {
	std::cout << "=== Generating head:" << std::endl;
	for (auto& x : head) {
		std::cout << "\t";
		Parser::debug_item(x);
	}
	std::cout << "=== done head ";
	std::map<std::set<Item>, ItemSet*>::iterator it = this->itemsets.find(head);
	if (it != this->itemsets.end()) {
		std::cout << "(exists)" << std::endl;
		return it->second;
	}
	std::cout << "(new)" << std::endl;
	std::unique_ptr<ItemSet> is(new ItemSet);
	is->head = head;
	is->index = this->states.size();
	ItemSet* ret = is.get();
	this->itemsets[head] = ret;
	this->states.push_back(std::move(is));
	std::set<std::string> encountered_terminals;
	for (auto& item : head) {
		if (Parser::is_item_done(item)) {
			continue;
		}
		std::string next_symbol = item.first->symbols.at(item.second);
		this->expand_symbol_into_itemset(ret, next_symbol, &encountered_terminals);
	}

	std::set<Item> combined(ret->head);
	combined.insert(ret->additionals.begin(), ret->additionals.end());
	assert(combined.size() == ret->head.size() + ret->additionals.size());
	for (auto& item : combined) {
		if (Parser::is_item_done(item)) {
			continue;
		}
		std::string next_symbol = item.first->symbols.at(item.second);
		if (ret->next.find(next_symbol) == ret->next.end()) {
			std::set<Item> h2;
			for (auto& i2 : combined) {
				if (Parser::is_item_done(i2)) {
					continue;
				}
				std::string ns2 = i2.first->symbols.at(i2.second);
				if (ns2 == next_symbol) {
					h2.insert(Item(i2.first, i2.second + 1));
				}
			}
			ret->next[next_symbol] = this->generate_itemset(h2);
		}
	}
	return ret;
}
 //------------------------------------------------------------------------------------
 //------------------------------------------------------------------------------------
 Resource::ResourceId ResourcePool::GenerateResourceId(StorageLocation in_location, const std::string& in_filePath, const IResourceOptionsBaseCSPtr& in_options) const
 {
     std::string combined(ToString((u32)in_location) + in_filePath);
     u32 fileHash = HashCRC32::GenerateHashCode(combined);
     
     if(in_options == nullptr)
     {
         return fileHash;
     }
     
     u32 optionsHash = in_options->GenerateHash();
     
     u64 combinedHash = fileHash + ((u64)(optionsHash) << 32);
     return HashCRC32::GenerateHashCode((const s8*)&combinedHash, sizeof(u64));
 }
Exemple #5
0
ListOptions::ListOptions(const std::string& userDefined,
                         const std::string& forced) :
  all(false),
  longFormat(false),
  slashDirs(false),
  reverse(false),
  recursive(false),
  sizeSort(false),
  modTimeSort(false)
{
  std::string combined(forced);
  combined += userDefined;

  for (char ch : combined) ParseOption(ch);
}
Exemple #6
0
std::vector<Genome*> MuPlusLambdaES::doReplacement(
	std::vector<Genome*> parents,
	std::vector<Genome*> offspring,
	std::vector<Fitness>& populationFitnesses,
	std::vector<ObjectiveFunction*> objectives
) {
	std::vector<Genome*> result, combined(parents);
	std::vector<Fitness> combinedFitnesses(populationFitnesses);
	combined.insert(combined.end(), offspring.begin(), offspring.end());
	for (unsigned int i = 0; i < offspring.size(); i++)
		combinedFitnesses.push_back(this->evaluateFitness(
			offspring[i],
			objectives
		));
	this->sortPopulation(combined, combinedFitnesses);
	for (unsigned int i = 0; i < parents.size(); i++) {
		result.push_back(combined[i]);
		populationFitnesses[i] = combinedFitnesses[i];
	}

	return result;
}
Exemple #7
0
bool redblade_laser::findPole(geometry_msgs::Point& point,
			      pcl::PointCloud<pcl::PointXYZ>::Ptr cluster,
			      double tolerance){
  boost::shared_ptr<pcl::PointCloud<pcl::PointXYZ> > 
    combined(new pcl::PointCloud<pcl::PointXYZ>());
  // boost::shared_ptr<pcl::PointCloud<pcl::PointXYZ> > 
  //   cluster(new pcl::PointCloud<pcl::PointXYZ>());
  this->getClouds(combined);
  //ROS_INFO("Size of combined %d",combined->points.size());
  if(combined->points.size()==0){
    return false;
  }
  this->cluster(combined,cluster,tolerance);
  //ROS_INFO("Size of cluster %d",cluster->points.size());
  if(cluster->points.size() < this->maxSize){
    return false;
  }
  this->cloud2point(cluster,point);
  //this->cloud2point(combined,point);
  if(isnan(point.x) or isnan(point.y) or isnan(point.x)){
    return false;
  }
  return true;
}
Exemple #8
0
  // Gets the hue/sat/val for areas that we believe are license plate characters
  // Then uses that to filter the whole image and provide a mask.
  void ColorFilter::findCharColors()
  {
    int MINIMUM_SATURATION = 45;

    if (this->debug)
      cout << "ColorFilter::findCharColors" << endl;

    //charMask.copyTo(this->colorMask);
    this->colorMask = Mat::zeros(charMask.size(), CV_8U);
    bitwise_not(this->colorMask, this->colorMask);

    Mat erodedCharMask(charMask.size(), CV_8U);
    Mat element = getStructuringElement( 1,
                                         Size( 2 + 1, 2+1 ),
                                         Point( 1, 1 ) );
    erode(charMask, erodedCharMask, element);

    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    findContours(erodedCharMask, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE);

    vector<float> hMeans, sMeans, vMeans;
    vector<float> hStdDevs, sStdDevs, vStdDevs;

    for (unsigned int i = 0; i < contours.size(); i++)
    {
      if (hierarchy[i][3] != -1)
        continue;

      Mat singleCharMask = Mat::zeros(hsv.size(), CV_8U);

      drawContours(singleCharMask, contours,
                   i, // draw this contour
                   cv::Scalar(255,255,255), // in
                   CV_FILLED,
                   8,
                   hierarchy
                  );

      // get rid of the outline by drawing a 1 pixel width black line
      drawContours(singleCharMask, contours,
                   i, // draw this contour
                   cv::Scalar(0,0,0), // in
                   1,
                   8,
                   hierarchy
                  );

      //drawAndWait(&singleCharMask);

      Scalar mean;
      Scalar stddev;
      meanStdDev(hsv, mean, stddev, singleCharMask);

      if (this->debug)
      {
        cout << "ColorFilter " << setw(3) << i << ". Mean:  h: " << setw(7) << mean[0] << " s: " << setw(7) <<mean[1] << " v: " << setw(7) << mean[2]
             << " | Std: h: " << setw(7) <<stddev[0] << " s: " << setw(7) <<stddev[1] << " v: " << stddev[2] << endl;
      }

      if (mean[0] == 0 && mean[1] == 0 && mean[2] == 0)
        continue;

      hMeans.push_back(mean[0]);
      sMeans.push_back(mean[1]);
      vMeans.push_back(mean[2]);
      hStdDevs.push_back(stddev[0]);
      sStdDevs.push_back(stddev[1]);
      vStdDevs.push_back(stddev[2]);
    }

    if (hMeans.size() == 0)
      return;

    int bestHueIndex = this->getMajorityOpinion(hMeans, .65, 30);
    int bestSatIndex = this->getMajorityOpinion(sMeans, .65, 35);
    int bestValIndex = this->getMajorityOpinion(vMeans, .65, 30);

    if (sMeans[bestSatIndex] < MINIMUM_SATURATION)
      return;

    bool doHueFilter = false, doSatFilter = false, doValFilter = false;
    float hueMin, hueMax;
    float satMin, satMax;
    float valMin, valMax;

    if (this->debug)
      cout << "ColorFilter Winning indices:" << endl;
    if (bestHueIndex != -1)
    {
      doHueFilter = true;
      hueMin = hMeans[bestHueIndex] - (2 * hStdDevs[bestHueIndex]);
      hueMax = hMeans[bestHueIndex] + (2 * hStdDevs[bestHueIndex]);

      if (abs(hueMin - hueMax) < 20)
      {
        hueMin = hMeans[bestHueIndex] - 20;
        hueMax = hMeans[bestHueIndex] + 20;
      }

      if (hueMin < 0)
        hueMin = 0;
      if (hueMax > 180)
        hueMax = 180;

      if (this->debug)
        cout << "ColorFilter Hue: " << bestHueIndex << " : " << setw(7) << hMeans[bestHueIndex] << " -- " << hueMin << "-" << hueMax << endl;
    }
    if (bestSatIndex != -1)
    {
      doSatFilter = true;

      satMin = sMeans[bestSatIndex] - (2 * sStdDevs[bestSatIndex]);
      satMax = sMeans[bestSatIndex] + (2 * sStdDevs[bestSatIndex]);

      if (abs(satMin - satMax) < 20)
      {
        satMin = sMeans[bestSatIndex] - 20;
        satMax = sMeans[bestSatIndex] + 20;
      }

      if (satMin < 0)
        satMin = 0;
      if (satMax > 255)
        satMax = 255;

      if (this->debug)
        cout << "ColorFilter Sat: " << bestSatIndex << " : " << setw(7) << sMeans[bestSatIndex] << " -- " << satMin << "-" << satMax << endl;
    }
    if (bestValIndex != -1)
    {
      doValFilter = true;

      valMin = vMeans[bestValIndex] - (1.5 * vStdDevs[bestValIndex]);
      valMax = vMeans[bestValIndex] + (1.5 * vStdDevs[bestValIndex]);

      if (abs(valMin - valMax) < 20)
      {
        valMin = vMeans[bestValIndex] - 20;
        valMax = vMeans[bestValIndex] + 20;
      }

      if (valMin < 0)
        valMin = 0;
      if (valMax > 255)
        valMax = 255;

      if (this->debug)
        cout << "ColorFilter Val: " << bestValIndex << " : " << setw(7) << vMeans[bestValIndex] << " -- " << valMin << "-" << valMax  << endl;
    }

    Mat imgDebugHueOnly = Mat::zeros(hsv.size(), hsv.type());
    Mat imgDebug = Mat::zeros(hsv.size(), hsv.type());
    Mat imgDistanceFromCenter = Mat::zeros(hsv.size(), CV_8U);
    Mat debugMask = Mat::zeros(hsv.size(), CV_8U);
    bitwise_not(debugMask, debugMask);

    for (int row = 0; row < charMask.rows; row++)
    {
      for (int col = 0; col < charMask.cols; col++)
      {
        int h = (int) hsv.at<Vec3b>(row, col)[0];
        int s = (int) hsv.at<Vec3b>(row, col)[1];
        int v = (int) hsv.at<Vec3b>(row, col)[2];

        bool hPasses = true;
        bool sPasses = true;
        bool vPasses = true;

        int vDistance = abs(v - vMeans[bestValIndex]);

        imgDebugHueOnly.at<Vec3b>(row, col)[0] = h;
        imgDebugHueOnly.at<Vec3b>(row, col)[1] = 255;
        imgDebugHueOnly.at<Vec3b>(row, col)[2] = 255;

        imgDebug.at<Vec3b>(row, col)[0] = 255;
        imgDebug.at<Vec3b>(row, col)[1] = 255;
        imgDebug.at<Vec3b>(row, col)[2] = 255;

        if (doHueFilter && (h < hueMin || h > hueMax))
        {
          hPasses = false;
          imgDebug.at<Vec3b>(row, col)[0] = 0;
          debugMask.at<uchar>(row, col) = 0;
        }
        if (doSatFilter && (s < satMin || s > satMax))
        {
          sPasses = false;
          imgDebug.at<Vec3b>(row, col)[1] = 0;
        }
        if (doValFilter && (v < valMin || v > valMax))
        {
          vPasses = false;
          imgDebug.at<Vec3b>(row, col)[2] = 0;
        }

        //if (pixelPasses)
        //  colorMask.at<uchar>(row, col) = 255;
        //else
        //imgDebug.at<Vec3b>(row, col)[0] = hPasses & 255;
        //imgDebug.at<Vec3b>(row, col)[1] = sPasses & 255;
        //imgDebug.at<Vec3b>(row, col)[2] = vPasses & 255;

        if ((hPasses) ||  (hPasses && sPasses))//(hPasses && vPasses) || (sPasses && vPasses) ||
          this->colorMask.at<uchar>(row, col) = 255;
        else
          this->colorMask.at<uchar>(row, col) = 0;

        if ((hPasses && sPasses) || (hPasses && vPasses) || (sPasses && vPasses))
        {
          vDistance = pow(vDistance, 0.9);
        }
        else
        {
          vDistance = pow(vDistance, 1.1);
        }
        if (vDistance > 255)
          vDistance = 255;
        imgDistanceFromCenter.at<uchar>(row, col) = vDistance;
      }
    }

    vector<Mat> debugImagesSet;

    if (this->debug)
    {
      debugImagesSet.push_back(addLabel(charMask, "Charecter mask"));
      //debugImagesSet1.push_back(erodedCharMask);
      Mat maskCopy(colorMask.size(), colorMask.type());
      colorMask.copyTo(maskCopy);
      debugImagesSet.push_back(addLabel(maskCopy, "color Mask Before"));
    }

    Mat bigElement = getStructuringElement( 1,
                                            Size( 3 + 1, 3+1 ),
                                            Point( 1, 1 ) );

    Mat smallElement = getStructuringElement( 1,
                       Size( 1 + 1, 1+1 ),
                       Point( 1, 1 ) );

    morphologyEx(this->colorMask, this->colorMask, MORPH_CLOSE, bigElement);
    //dilate(this->colorMask, this->colorMask, bigElement);

    Mat combined(charMask.size(), charMask.type());
    bitwise_and(charMask, colorMask, combined);

    if (this->debug)
    {
      debugImagesSet.push_back(addLabel(colorMask, "Color Mask After"));

      debugImagesSet.push_back(addLabel(combined, "Combined"));

      //displayImage(config, "COLOR filter Mask", colorMask);
      debugImagesSet.push_back(addLabel(imgDebug, "Color filter Debug"));

      cvtColor(imgDebugHueOnly, imgDebugHueOnly, CV_HSV2BGR);
      debugImagesSet.push_back(addLabel(imgDebugHueOnly, "Color Filter Hue"));

      equalizeHist(imgDistanceFromCenter, imgDistanceFromCenter);
      debugImagesSet.push_back(addLabel(imgDistanceFromCenter, "COLOR filter Distance"));

      debugImagesSet.push_back(addLabel(debugMask, "COLOR Hues off"));

      Mat dashboard = drawImageDashboard(debugImagesSet, imgDebugHueOnly.type(), 3);
      displayImage(config, "Color Filter Images", dashboard);
    }
  }
Exemple #9
0
int main() {

    // Load images
    cv::Mat img1 = cv::imread("./output/ps0-1-a-1.png");
    std::cout << img1.type() << std::endl;
    cv::Mat img2 = cv::imread("./output/ps0-1-a-2.png");

    if (!img1.data) {
        std::cerr << "Could not open or find image 1" << std::endl;
        return -1;
    } else if (!img2.data){
        std::cerr << "Could not open or find image 2" << std::endl;
        return -1;
    }

    // Extract color channels from image 1
    std::vector<cv::Mat> channels(3);
    cv::split(img1, channels);

    // Swap channels
    cv::Mat temp(channels[0]);   // Store blue
    channels[0] = channels[2];  // Swap blue with red
    channels[2] = temp;  // Swap red with blue;

    // Save swapped image
    cv::Mat swapped1;
    cv::merge(channels, swapped1);
    cv::imwrite("./output/ps0-2-a-1.png", swapped1);

    cv::split(img1, channels);
    // Save red and img1_green channels of image 1
    cv::Mat img1_green(channels[1]);
    cv::Mat img1_red(channels[2]);
    cv::imwrite("./output/ps0-2-b-1.png", img1_green);
    cv::imwrite("./output/ps0-2-c-1.png", img1_red);

    //Take the center square region of 100x100 pixels of img1_green
    // and insert them into the center of red
    cv::Rect r(img1_green.cols / 2 - 50, img1_green.rows / 2 - 50, 100, 100);
    cv::Mat combined = img1_red, green_roi = img1_green(r);
    green_roi.copyTo(combined(cv::Rect(combined.cols/2 - 50, combined.rows/2 - 50, 100, 100)));
    cv::imwrite("./output/ps0-3-a-1.png", combined);

    // Subtract the mean from all pixels, then divide by standard deviation,
    // then multiply by 10 and add the mean back in
    cv::Mat modified, mean, stdDev;
    cv::meanStdDev(img1_green, mean, stdDev);
    cv::subtract(img1_green, mean, modified);
    cv::divide(modified, stdDev, modified);
    cv::multiply(modified, 10, modified);
    cv::add(modified, mean, modified);
    cv::imwrite("./output/ps0-4-b-1.png", modified);

    // Shift img1_green to the left by 2 pixels
    cv::Mat shifted = cv::Mat::zeros(img1_green.size(), img1_green.type());
    img1_green(cv::Rect(2, 0, img1_green.cols - 2, img1_green.rows)).copyTo(
            shifted(cv::Rect(0, 0, img1_green.cols - 2, img1_green.rows)));
    cv::imwrite("./output/ps0-4-c-1.png", shifted);

    // Subtract shifted from img1_green
    cv::Mat subtracted;
    cv::subtract(img1_green, shifted, subtracted);
    cv::imwrite("./output/ps0-4-d-1.png", subtracted);

    // Add Gaussian noise to img1's green channel
    cv::split(channels, img1);
    cv::Mat noise(img1.cols, img1.rows, img1.type());
    cv::randn(noise, 0, 5);
    cv::normalize(noise, noise, 0, 255, CV_MINMAX, img1.type());
    channels[1] += noise;
    cv::Mat green_noise;
    cv::merge(channels, green_noise);





    // display images
//    cv::imshow("Original Image 1", img1);
//    cv::imshow("Swapped Image 1", swapped1);
    cv::imshow("Green Image 1", img1_green);
//    cv::imshow("Red Image 1", img1_red);
//    cv::imshow("Combined", combined);
//    cv::imshow("Modified", modified);
//    cv::imshow("Shifted", shifted);
//    cv::imshow("Subtracted", subtracted);
    cv::imshow("Green Noise", green_noise);

//    std::string window2 = "Image 2";
//    cv::namedWindow(window2);
//    cv::imshow(window2, img2);

    cv::waitKey(0);
    return 0;
}
/*
Any key combination is released.
*/
bool Controls::release(const int& pressedKey, const int& downedKey) const
{
	return !combined(pressedKey, downedKey);
}
	void Traverse(State* state, ASTNode* node)
	{
		bool recurse = true;
		
		StructureScope scope;
		StructureScope* backup;
		// PRE
		switch (node->GetType())
		{
		case ASTNode::Type::Root:
			*state->Data += string_format("namespace reflector {\n");
			backup = state->StructScope;
			state->StructScope = &scope;
			state->StructScope->Name = "~ROOT~";

			break;
		case ASTNode::Type::File:
			*state->Data += string_format("// FILE: \"%s\"\n", node->ToString().c_str());
			break;
		case ASTNode::Type::Namespace:
			*state->Data += string_format("// NAMESPACE: \"%s\"\n", node->ToString().c_str());
			break;
		case ASTNode::Type::Public:
			state->StructScope->VisibilityType = "Public";
			break;
		case ASTNode::Type::Protected:
			state->StructScope->VisibilityType = "Protected";
			break;
		case ASTNode::Type::Private:
			state->StructScope->VisibilityType = "Private";
			break;
		case ASTNode::Type::Class:
		case ASTNode::Type::Struct:
			backup = state->StructScope;
			state->StructScope = &scope;
			state->StructScope->Name = node->ToString();
			break;
		case ASTNode::Type::DclHead:    // recurse these
			break;
		case ASTNode::Type::AntFwd:		// ignore these
		case ASTNode::Type::AntBack:
		case ASTNode::Type::DclSub:
			recurse = false;
			break;

		default: 
			*state->Data += string_format("// UNKNOWN: %s \"%s\"\n", node->GetTypeString(), node->ToString().c_str());
			recurse = false;
		};


		// recurse

		if (recurse)
		{
			auto& children = node->Children();
			for (size_t i = 0; i < children.size(); i++)
			{
				Traverse(state, children[i]);
			}
		}

			
		// POST
		switch (node->GetType())
		{
		case ASTNode::Type::DclSub:
		{
			ASTType* typeNode = (ASTType*)node;
			ASTType combined(typeNode->tokenSource);
			if (typeNode->head != 0)
				combined = typeNode->CombineWithHead();
			else
				combined.MergeData(typeNode);
			state->StructScope->Members[Types::Member].push_back(vCount);
			*state->Data += string_format("StructureMember m_%d = { VisibilityEnum::%s, \"%s\", \"%s\", reflector_offsetof(%s, %s), reflector_sizeof(%s, %s), 1 };\n", 
				vCount++, state->StructScope->VisibilityType, combined.ToIdentifierString().c_str(), combined.ToString(false).c_str(),
				state->StructScope->Name.c_str(), combined.ToIdentifierString().c_str(), state->StructScope->Name.c_str(), combined.ToIdentifierString().c_str());
			recurse = false;
			break;
		}
		case ASTNode::Type::Root:
			*state->Data += string_format("} // end namespace reflector\n\n");
			state->StructScope = backup;
			break;
		case ASTNode::Type::File:
			*state->Data += string_format("// END FILE: \"%s\"\n", node->ToString().c_str());
			break;
		case ASTNode::Type::Class:
		case ASTNode::Type::Struct:
			// collect members
			std::string memberLocation = "0";
			if (state->StructScope->Members[Types::Member].size() > 0)
			{
				std::string members;
				for (auto it : state->StructScope->Members[Types::Member])
				{
					members += string_format("&m_%d,", it);
				}
				if (members.size() > 0)
					members.pop_back();
				*state->Data += string_format("StructureMember* sm_%d[] = { %s };\n", vCount, members.c_str());
				
				memberLocation = "sm_" + intToString(vCount);
			}
			
			const char* type = "Class";
			if (node->GetType() == ASTNode::Type::Struct)
				type = "Struct";

			*state->Data += string_format("Structure s_%d(VisibilityEnum::%s, Structure::Type::%s, \"%s\", %d, %s, 0, 0);\n", 
				vCount++, state->StructScope->VisibilityType, type, node->ToString().c_str(), state->StructScope->Members[Types::Member].size(), memberLocation.c_str());

			// return structscope
			state->StructScope = backup;
			break;
		};


	}
int main(int argc, char *argv[])
{
    clock_t tStart, tStop;
    argc = 2;
    argv = new char*[argc];
    argv[0] = "D:\\PCDs\\20140817\\0001.pcd";
    argv[1] = "D:\\PCDs\\20140817\\0003.pcd";
    std::vector <CloudPtr> clouds;
    int *returnVal = new int[1];
    tStart = clock();
    (*returnVal) = Utils::readPointClouds(argc, argv, clouds);
    if ((*returnVal) != 0)
        std::cerr << "An error occoured." << (*returnVal) << std::endl;
    tStop = clock();
    std::cout << clouds.size() << " cloud(s) have been loaded." << std::endl << "Duration : " << (double)(tStop - tStart) / CLK_TCK << std::endl;

    CloudPtr cache(new Cloud());
    Matrix4f matrix;
    GrayScaleRegistration gsr;
    gsr.getGrayScaleRegMatrix(clouds[0], clouds[1], matrix);
    Utils::transformPointCloud(clouds[1], cache, matrix);
    cache->swap(*clouds[1]);
    cache.reset();

    pcl::KdTreeFLANN<Point>::Ptr tree(new pcl::KdTreeFLANN<Point>());
    std::vector<int> kIndices;
    std::vector<float> kDistances;

    CloudPtr combined(new Cloud());
    (*combined) = (*clouds[0]);
    (*combined) += (*clouds[1]);

    tree->setInputCloud(combined);
    int sum = 0; double colorRankMean = 0;
    tStart = clock();
    for (int i = 0; i < combined->points.size() / 2; i++)
    {
        if (combined->points[i].z == combined->points[i].z)
        {
            tree->nearestKSearch(combined->points[i], 16, kIndices, kDistances);
            //tree->radiusSearch(combined->points[i], 0.015, kIndices, kDistances);
            int minIndice = -1; double minDistance = 1;
            for (int j = 1; j < kIndices.size(); j++)
            {
                if (kIndices[j] > combined->points.size() / 2 && kDistances[j] < minDistance)
                {
                    minDistance = kDistances[j];
                    minIndice = j;
                }
            }
            if (minIndice != -1)
            {
                colorRankMean += colorRank(&(combined->points[i]), &(combined->points[kIndices[minIndice]]));
                markPair(combined->points[i], combined->points[kIndices[minIndice]]);
                sum++;
            }
        }
    }
    tStop = clock();
    std::cout << "Find neighbors completed." << std::endl <<
                 "Pairs:" << sum << " Color Rank:" << colorRankMean <<
                 " Color Rank Mean:" << colorRankMean / sum << std::endl <<
                 "Duration : " << (double)(tStop - tStart) / CLK_TCK << std::endl;

    clouds.clear();
    clouds.push_back(combined);
    Visualization::showMultiClouds(clouds, 1);
    delete returnVal;
}
void AutoCaptureMechanism::CaptureAll()
{
    // start from the first page
    m_notebook->SetSelection(0);
    wxYield();

#if defined(__INTEL_COMPILER) && 1 /* VDM auto patch */
#   pragma ivdep
#   pragma swp
#   pragma unroll
#   pragma prefetch
#   if 0
#       pragma simd noassert
#   endif
#endif /* VDM auto patch */
    for (ControlList::iterator it = m_controlList.begin();
         it != m_controlList.end();
         ++it)
    {
        Control &ctrl = *it;

        if (ctrl.flag == AJ_TurnPage)    // Turn to next page
        {
            m_notebook->SetSelection(m_notebook->GetSelection() + 1);
            wxYield();
            continue;
        }

        // create the screenshot
        wxBitmap screenshot(1, 1);
        Capture(&screenshot, ctrl);

        if(ctrl.flag & AJ_Union)
        {
            // union screenshots until AJ_UnionEnd
#if defined(__INTEL_COMPILER) && 1 /* VDM auto patch */
#   pragma ivdep
#   pragma swp
#   pragma unroll
#   pragma prefetch
#   if 0
#       pragma simd noassert
#   endif
#endif /* VDM auto patch */
            do
            {
                ++it;
                it->name = ctrl.name; //preserving the name
                wxBitmap screenshot2(1, 1);
                Capture(&screenshot2, *it);
                wxBitmap combined(1, 1);
                Union(&screenshot, &screenshot2, &combined);
                screenshot = combined;
            }
#if defined(__INTEL_COMPILER) && 0 /* VDM auto patch */
#   pragma ivdep
#   pragma swp
#   pragma unroll
#   pragma prefetch
#   if 0
#       pragma simd noassert
#   endif
#endif /* VDM auto patch */
            while(!(it->flag & AJ_UnionEnd));
        }

        // and save it
        Save(&screenshot, ctrl.name);
    }
}
int main(int argc, char *argv[])
{
  int n = 10;
  int ierr = 0;
  double reltol = 1.0e-14;
  double abstol = 1.0e-14;
  int MyPID = 0;

  try {

    // Initialize MPI
#ifdef HAVE_MPI
    MPI_Init(&argc,&argv);
#endif

    // Create a communicator for Epetra objects
#ifdef HAVE_MPI
    Epetra_MpiComm Comm( MPI_COMM_WORLD );
#else
    Epetra_SerialComm Comm;
#endif

    MyPID = Comm.MyPID();

    // Create the map
    Epetra_Map map(n, 0, Comm);

    bool verbose = false;
    // Check for verbose output
    if (argc>1)
      if (argv[1][0]=='-' && argv[1][1]=='v')
    verbose = true;

    // Seed the random number generator in Teuchos.  We create random
    // bordering matrices and it is possible different processors might generate
    // different matrices.  By setting the seed, this shouldn't happen.
    Teuchos::ScalarTraits<double>::seedrandom(12345);

    // Create and initialize the parameter vector
    LOCA::ParameterVector pVector;
    pVector.addParameter("Param 1",  1.69);
    pVector.addParameter("Param 2", -9.7);
    pVector.addParameter("Param 3",  0.35);
    pVector.addParameter("Param 4", -0.78);
    pVector.addParameter("Param 5",  2.53);

    // Create parameter list
    Teuchos::RCP<Teuchos::ParameterList> paramList =
      Teuchos::rcp(new Teuchos::ParameterList);

    Teuchos::ParameterList& nlParams = paramList->sublist("NOX");
    Teuchos::ParameterList& nlPrintParams = nlParams.sublist("Printing");
    nlPrintParams.set("MyPID", MyPID);
    if (verbose)
       nlPrintParams.set("Output Information",
                  NOX::Utils::Error +
                  NOX::Utils::Details +
                  NOX::Utils::OuterIteration +
                  NOX::Utils::InnerIteration +
                  NOX::Utils::Warning +
                  NOX::Utils::TestDetails +
                  NOX::Utils::StepperIteration +
                  NOX::Utils::StepperDetails);
     else
       nlPrintParams.set("Output Information", NOX::Utils::Error);

    // Create global data object
    Teuchos::RCP<LOCA::GlobalData> globalData =
      LOCA::createGlobalData(paramList);

    Epetra_Vector clone_vec(map);
    NOX::Epetra::Vector nox_clone_vec(clone_vec);

    Teuchos::RCP<NOX::Abstract::Vector> x =
      nox_clone_vec.clone(NOX::ShapeCopy);
    x->random();

    Teuchos::RCP<NOX::Abstract::MultiVector> dx1 =
      nox_clone_vec.createMultiVector(3);
    Teuchos::RCP<NOX::Abstract::MultiVector> dx2 =
      nox_clone_vec.createMultiVector(1);
    Teuchos::RCP<NOX::Abstract::MultiVector> dx3 =
      nox_clone_vec.createMultiVector(2);
    Teuchos::RCP<NOX::Abstract::MultiVector> dx4 =
      nox_clone_vec.createMultiVector(2);
    dx1->random();
    dx2->random();
    dx3->init(0.0);
    dx4->random();

    Teuchos::RCP<NOX::Abstract::MultiVector> dx_all =
      dx1->clone(NOX::DeepCopy);
    dx_all->augment(*dx2);
    dx_all->augment(*dx3);
    dx_all->augment(*dx4);

    NOX::Abstract::MultiVector::DenseMatrix dp1(dx1->numVectors(),
                        pVector.length());
    NOX::Abstract::MultiVector::DenseMatrix dp2(dx2->numVectors(),
                        pVector.length());
    NOX::Abstract::MultiVector::DenseMatrix dp3(dx3->numVectors(),
                        pVector.length());
    NOX::Abstract::MultiVector::DenseMatrix dp4(dx4->numVectors(),
                        pVector.length());
    dp1.random();
    dp2.random();
    dp3.random();
    dp4.random();

    NOX::Abstract::MultiVector::DenseMatrix dp_all(dx_all->numVectors(),
                           pVector.length());
    for (int j=0; j<dp_all.numCols(); j++) {
      for (int i=0; i<dp1.numRows(); i++)
    dp_all(i,j) = dp1(i,j);
      for (int i=0; i<dp2.numRows(); i++)
    dp_all(dp1.numRows()+i,j) = dp2(i,j);
      for (int i=0; i<dp3.numRows(); i++)
    dp_all(dp1.numRows()+dp2.numRows()+i,j) = dp3(i,j);
      for (int i=0; i<dp4.numRows(); i++)
    dp_all(dp1.numRows()+dp2.numRows()+dp3.numRows()+i,j) = dp4(i,j);
    }


    std::vector< Teuchos::RCP<LOCA::MultiContinuation::ConstraintInterface> > constraintObjs(4);
    Teuchos::RCP<LinearConstraint> linear_constraint;

    linear_constraint = Teuchos::rcp(new LinearConstraint(dx1->numVectors(),
                              pVector,
                              nox_clone_vec));
    linear_constraint->setDgDx(*dx1);
    linear_constraint->setDgDp(dp1);
    linear_constraint->setIsZeroDX(false);
    constraintObjs[0] = linear_constraint;

    linear_constraint = Teuchos::rcp(new LinearConstraint(dx2->numVectors(),
                              pVector,
                              nox_clone_vec));
    linear_constraint->setDgDx(*dx2);
    linear_constraint->setDgDp(dp2);
    linear_constraint->setIsZeroDX(false);
    constraintObjs[1] = linear_constraint;

    linear_constraint = Teuchos::rcp(new LinearConstraint(dx3->numVectors(),
                              pVector,
                              nox_clone_vec));
    linear_constraint->setDgDx(*dx3);
    linear_constraint->setDgDp(dp3);
    linear_constraint->setIsZeroDX(true);
    constraintObjs[2] = linear_constraint;

    linear_constraint = Teuchos::rcp(new LinearConstraint(dx4->numVectors(),
                              pVector,
                              nox_clone_vec));
    linear_constraint->setDgDx(*dx4);
    linear_constraint->setDgDp(dp4);
    linear_constraint->setIsZeroDX(false);
    constraintObjs[3] = linear_constraint;

    // Check some statistics on the solution
    NOX::TestCompare testCompare(globalData->locaUtils->out(),
                 *(globalData->locaUtils));

    LOCA::MultiContinuation::CompositeConstraint composite(globalData,
                               constraintObjs);
    composite.setX(*x);

    LinearConstraint combined(dx_all->numVectors(), pVector, nox_clone_vec);
    combined.setDgDx(*dx_all);
    combined.setDgDp(dp_all);
    combined.setX(*x);

    //
    // test computeConstraints()
    //

    composite.computeConstraints();
    combined.computeConstraints();

    int numConstraints = dx_all->numVectors();
    const NOX::Abstract::MultiVector::DenseMatrix& g_composite =
      composite.getConstraints();
    const NOX::Abstract::MultiVector::DenseMatrix& g_combined =
      combined.getConstraints();

    ierr += testCompare.testMatrix(
                 g_composite, g_combined, reltol, abstol,
                 "CompositeConstraint::computeConstraints()");

    //
    // test computeDP()
    //

    std::vector<int> paramIDs(3);
    paramIDs[0] = 1;
    paramIDs[1] = 2;
    paramIDs[2] = 4;
    NOX::Abstract::MultiVector::DenseMatrix dgdp_composite(
                            numConstraints,
                            paramIDs.size()+1);
    NOX::Abstract::MultiVector::DenseMatrix dgdp_combined(
                            numConstraints,
                            paramIDs.size()+1);
    dgdp_composite.putScalar(0.0);
    dgdp_combined.putScalar(0.0);
    composite.computeDP(paramIDs, dgdp_composite, false);
    combined.computeDP(paramIDs, dgdp_combined, false);

    ierr += testCompare.testMatrix(
                 dgdp_composite, dgdp_combined, reltol, abstol,
                 "CompositeConstraint::computeDP()");

    //
    // test multiplyDX()
    //

    composite.computeDX();
    combined.computeDX();

    int numMultiply = 5;
    Teuchos::RCP<NOX::Abstract::MultiVector> A =
      nox_clone_vec.createMultiVector(numMultiply);
    A->random();
    NOX::Abstract::MultiVector::DenseMatrix composite_multiply(numConstraints,
                                   numMultiply);
    NOX::Abstract::MultiVector::DenseMatrix combined_multiply(numConstraints,
                                  numMultiply);
    composite.multiplyDX(2.65, *A, composite_multiply);
    combined.multiplyDX(2.65, *A, combined_multiply);

    ierr += testCompare.testMatrix(composite_multiply, combined_multiply,
                    reltol, abstol,
                    "CompositeConstraint::multiplyDX()");

    //
    // test addDX() (No Trans)
    //

    int numAdd = 5;
    NOX::Abstract::MultiVector::DenseMatrix B1(numConstraints, numAdd);
    B1.random();
    NOX::Abstract::MultiVector::DenseMatrix B2(numAdd, numConstraints);
    B2.random();

    Teuchos::RCP<NOX::Abstract::MultiVector> composite_add1 =
      nox_clone_vec.createMultiVector(numAdd);
    composite_add1->random();
    Teuchos::RCP<NOX::Abstract::MultiVector> composite_add2 =
      nox_clone_vec.createMultiVector(numAdd);
    composite_add2->random();

    Teuchos::RCP<NOX::Abstract::MultiVector> combined_add1 =
      composite_add1->clone(NOX::DeepCopy);
    Teuchos::RCP<NOX::Abstract::MultiVector> combined_add2 =
      composite_add2->clone(NOX::DeepCopy);

    composite.addDX(Teuchos::NO_TRANS, 1.45, B1, 2.78, *composite_add1);
    combined.addDX(Teuchos::NO_TRANS, 1.45, B1, 2.78, *combined_add1);

    ierr += testCompare.testMultiVector(
                   *composite_add1, *combined_add1,
                   reltol, abstol,
                   "CompositeConstraint::addDX() (No Trans)");

    //
    // test addDX() (Trans)
    //

    composite.addDX(Teuchos::TRANS, 1.45, B2, 2.78, *composite_add2);
    combined.addDX(Teuchos::TRANS, 1.45, B2, 2.78, *combined_add2);

    ierr += testCompare.testMultiVector(
                   *composite_add2, *combined_add2,
                   reltol, abstol,
                   "CompositeConstraint::addDX() (Trans)");

    LOCA::destroyGlobalData(globalData);
  }

  catch (std::exception& e) {
    std::cout << e.what() << std::endl;
    ierr = 1;
  }
  catch (const char *s) {
    std::cout << s << std::endl;
    ierr = 1;
  }
  catch (...) {
    std::cout << "Caught unknown exception!" << std::endl;
    ierr = 1;
  }

  if (MyPID == 0) {
    if (ierr == 0)
      std::cout << "All tests passed!" << std::endl;
    else
      std::cout << ierr << " test(s) failed!" << std::endl;
  }

#ifdef HAVE_MPI
  MPI_Finalize() ;
#endif

  return ierr;
}
Exemple #15
0
    bool WebSocketHandshake(nsTArray<nsCString>& aProtocolString)
    {
        nsresult rv;
        bool isWebSocket = false;
        nsCString version;
        nsCString wsKey;
        nsCString protocol;

        // Validate WebSocket client request.
        if (aProtocolString.Length() == 0)
            return false;

        // Check that the HTTP method is GET
        const char* HTTP_METHOD = "GET ";
        if (strncmp(aProtocolString[0].get(), HTTP_METHOD, strlen(HTTP_METHOD)) != 0) {
            return false;
        }

        for (uint32_t i = 1; i < aProtocolString.Length(); ++i) {
            const char* line = aProtocolString[i].get();
            const char* prop_pos = strchr(line, ':');
            if (prop_pos != nullptr) {
                nsCString key(line, prop_pos - line);
                nsCString value(prop_pos + 2);
                if (key.EqualsIgnoreCase("upgrade") &&
                        value.EqualsIgnoreCase("websocket")) {
                    isWebSocket = true;
                } else if (key.EqualsIgnoreCase("sec-websocket-version")) {
                    version = value;
                } else if (key.EqualsIgnoreCase("sec-websocket-key")) {
                    wsKey = value;
                } else if (key.EqualsIgnoreCase("sec-websocket-protocol")) {
                    protocol = value;
                }
            }
        }

        if (!isWebSocket) {
            return false;
        }

        if (!(version.Equals("7") || version.Equals("8") || version.Equals("13"))) {
            return false;
        }

        if (!(protocol.EqualsIgnoreCase("binary"))) {
            return false;
        }

        // Client request is valid. Start to generate and send server response.
        nsAutoCString guid("258EAFA5-E914-47DA-95CA-C5AB0DC85B11");
        nsAutoCString res;
        SHA1Sum sha1;
        nsCString combined(wsKey + guid);
        sha1.update(combined.get(), combined.Length());
        uint8_t digest[SHA1Sum::HashSize]; // SHA1 digests are 20 bytes long.
        sha1.finish(digest);
        nsCString newString(reinterpret_cast<char*>(digest), SHA1Sum::HashSize);
        Base64Encode(newString, res);

        nsCString response("HTTP/1.1 101 Switching Protocols\r\n");
        response.Append("Upgrade: websocket\r\n");
        response.Append("Connection: Upgrade\r\n");
        response.Append(nsCString("Sec-WebSocket-Accept: ") + res + nsCString("\r\n"));
        response.Append("Sec-WebSocket-Protocol: binary\r\n\r\n");
        uint32_t written = 0;
        uint32_t size = response.Length();
        while (written < size) {
            uint32_t cnt;
            rv = mOutputStream->Write(const_cast<char*>(response.get()) + written,
                                      size - written, &cnt);
            if (NS_FAILED(rv))
                return false;

            written += cnt;
        }
        mOutputStream->Flush();

        return true;
    }
int main()
{
	// read the image
	cv::Mat image= cv::imread(IMAGE_FOLDER "/boldt.jpg");
	if (!image.data)
		return 0; 

	// show original image
	cv::namedWindow("Original image");
	cv::imshow("Original image",image);

	// convert into HSV space
	cv::Mat hsv;
	cv::cvtColor(image, hsv, CV_BGR2HSV);

	// split the 3 channels into 3 images
	std::vector<cv::Mat> channels;
	cv::split(hsv,channels);
	// channels[0] is the Hue
	// channels[1] is the Saturation
	// channels[2] is the Value

	// display value
	cv::namedWindow("Value");
	cv::imshow("Value",channels[2]);

	// display saturation
	cv::namedWindow("Saturation");
	cv::imshow("Saturation",channels[1]);

	// display hue
	cv::namedWindow("Hue");
	cv::imshow("Hue",channels[0]);

	// image with fixed value
	cv::Mat newImage;
	cv::Mat tmp(channels[2].clone());
	// Value channel will be 255 for all pixels
	channels[2]= 255;  
	// merge back the channels
	cv::merge(channels,hsv);
	// re-convert to BGR
	cv::cvtColor(hsv,newImage,CV_HSV2BGR);

	cv::namedWindow("Fixed Value Image");
	cv::imshow("Fixed Value Image",newImage);

	// image with fixed saturation
	channels[1]= 255;
	channels[2]= tmp;
	cv::merge(channels,hsv);
	cv::cvtColor(hsv,newImage,CV_HSV2BGR);

	cv::namedWindow("Fixed saturation");
	cv::imshow("Fixed saturation",newImage);

	// image with fixed value and fixed saturation
	channels[1]= 255;
	channels[2]= 255;
	cv::merge(channels,hsv);
	cv::cvtColor(hsv,newImage,CV_HSV2BGR);

	cv::namedWindow("Fixed saturation/value");
	cv::imshow("Fixed saturation/value",newImage);

	// Testing skin detection

	// read the image
	image= cv::imread(IMAGE_FOLDER "/girl.jpg");
	if (!image.data)
		return 0; 

	// show original image
	cv::namedWindow("Original image");
	cv::imshow("Original image",image);

	// detect skin tone
	cv::Mat mask;
	detectHScolor(image, 
		160, 10, // hue from 320 degrees to 20 degrees 
		25, 166, // saturation from ~0.1 to 0.65
		mask);

	// show masked image
	cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 0));
	image.copyTo(detected, mask);
	cv::imshow("Detection result",detected);

	// A test comparing luminance and brightness

	// create linear intensity image
	cv::Mat linear(100,256,CV_8U);
	for (int i=0; i<256; i++) {

		linear.col(i)= i;
	}

	// create a Lab image
	linear.copyTo(channels[0]);
	cv::Mat constante(100,256,CV_8U,cv::Scalar(128));
	constante.copyTo(channels[1]);
	constante.copyTo(channels[2]);
	cv::merge(channels,image);

	// convert back to BGR
	cv::Mat brightness;
	cv::cvtColor(image,brightness, CV_Lab2BGR);
	cv::split(brightness, channels);

	// create combined image
	cv::Mat combined(200,256, CV_8U);
	cv::Mat half1(combined,cv::Rect(0,0,256,100));
	linear.copyTo(half1);
	cv::Mat half2(combined,cv::Rect(0,100,256,100));
	channels[0].copyTo(half2);

	cv::namedWindow("Luminance vs Brightness");
	cv::imshow("Luminance vs Brightness",combined);

	cv::waitKey();
}