/** * \brief A fast path for glReadPixels * * This fast path is taken when the source format is BGRA, RGBA, * A or L and when the texture memory is X- or Y-tiled. It downloads * the source data by directly mapping the memory without a GTT fence. * This then needs to be de-tiled on the CPU before presenting the data to * the user in the linear fasion. * * This is a performance win over the conventional texture download path. * In the conventional texture download path, the texture is either mapped * through the GTT or copied to a linear buffer with the blitter before * handing off to a software path. This allows us to avoid round-tripping * through the GPU (in the case where we would be blitting) and do only a * single copy operation. */ static bool intel_readpixels_tiled_memcpy(struct gl_context * ctx, GLint xoffset, GLint yoffset, GLsizei width, GLsizei height, GLenum format, GLenum type, GLvoid * pixels, const struct gl_pixelstore_attrib *pack) { struct brw_context *brw = brw_context(ctx); struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer; const struct gen_device_info *devinfo = &brw->screen->devinfo; /* This path supports reading from color buffers only */ if (rb == NULL) return false; struct intel_renderbuffer *irb = intel_renderbuffer(rb); int dst_pitch; /* The miptree's buffer. */ struct brw_bo *bo; uint32_t cpp; mem_copy_fn mem_copy = NULL; /* This fastpath is restricted to specific renderbuffer types: * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support * more types. */ if (!devinfo->has_llc || !(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_INT_8_8_8_8_REV) || pixels == NULL || _mesa_is_bufferobj(pack->BufferObj) || pack->Alignment > 4 || pack->SkipPixels > 0 || pack->SkipRows > 0 || (pack->RowLength != 0 && pack->RowLength != width) || pack->SwapBytes || pack->LsbFirst || pack->Invert) return false; /* Only a simple blit, no scale, bias or other mapping. */ if (ctx->_ImageTransferState) return false; /* It is possible that the renderbuffer (or underlying texture) is * multisampled. Since ReadPixels from a multisampled buffer requires a * multisample resolve, we can't handle this here */ if (rb->NumSamples > 1) return false; /* We can't handle copying from RGBX or BGRX because the tiled_memcpy * function doesn't set the last channel to 1. Note this checks BaseFormat * rather than TexFormat in case the RGBX format is being simulated with an * RGBA format. */ if (rb->_BaseFormat == GL_RGB) return false; if (!intel_get_memcpy(rb->Format, format, type, &mem_copy, &cpp)) return false; if (!irb->mt || (irb->mt->surf.tiling != ISL_TILING_X && irb->mt->surf.tiling != ISL_TILING_Y0)) { /* The algorithm is written only for X- or Y-tiled memory. */ return false; } /* tiled_to_linear() assumes that if the object is swizzled, it is using * I915_BIT6_SWIZZLE_9_10 for X and I915_BIT6_SWIZZLE_9 for Y. This is only * true on gen5 and above. * * The killer on top is that some gen4 have an L-shaped swizzle mode, where * parts of the memory aren't swizzled at all. Userspace just can't handle * that. */ if (devinfo->gen < 5 && brw->has_swizzling) return false; /* Since we are going to read raw data to the miptree, we need to resolve * any pending fast color clears before we start. */ intel_miptree_access_raw(brw, irb->mt, irb->mt_level, irb->mt_layer, false); bo = irb->mt->bo; if (brw_batch_references(&brw->batch, bo)) { perf_debug("Flushing before mapping a referenced bo.\n"); intel_batchbuffer_flush(brw); } void *map = brw_bo_map(brw, bo, MAP_READ | MAP_RAW); if (map == NULL) { DBG("%s: failed to map bo\n", __func__); return false; } unsigned slice_offset_x, slice_offset_y; intel_miptree_get_image_offset(irb->mt, irb->mt_level, irb->mt_layer, &slice_offset_x, &slice_offset_y); xoffset += slice_offset_x; yoffset += slice_offset_y; dst_pitch = _mesa_image_row_stride(pack, width, format, type); /* For a window-system renderbuffer, the buffer is actually flipped * vertically, so we need to handle that. Since the detiling function * can only really work in the forwards direction, we have to be a * little creative. First, we compute the Y-offset of the first row of * the renderbuffer (in renderbuffer coordinates). We then match that * with the last row of the client's data. Finally, we give * tiled_to_linear a negative pitch so that it walks through the * client's data backwards as it walks through the renderbufer forwards. */ if (rb->Name == 0) { yoffset = rb->Height - yoffset - height; pixels += (ptrdiff_t) (height - 1) * dst_pitch; dst_pitch = -dst_pitch; } /* We postponed printing this message until having committed to executing * the function. */ DBG("%s: x,y=(%d,%d) (w,h)=(%d,%d) format=0x%x type=0x%x " "mesa_format=0x%x tiling=%d " "pack=(alignment=%d row_length=%d skip_pixels=%d skip_rows=%d)\n", __func__, xoffset, yoffset, width, height, format, type, rb->Format, irb->mt->surf.tiling, pack->Alignment, pack->RowLength, pack->SkipPixels, pack->SkipRows); tiled_to_linear( xoffset * cpp, (xoffset + width) * cpp, yoffset, yoffset + height, pixels - (ptrdiff_t) yoffset * dst_pitch - (ptrdiff_t) xoffset * cpp, map + irb->mt->offset, dst_pitch, irb->mt->surf.row_pitch, brw->has_swizzling, irb->mt->surf.tiling, mem_copy ); brw_bo_unmap(bo); return true; }
bool intel_miptree_copy(struct brw_context *brw, struct intel_mipmap_tree *src_mt, int src_level, int src_slice, uint32_t src_x, uint32_t src_y, struct intel_mipmap_tree *dst_mt, int dst_level, int dst_slice, uint32_t dst_x, uint32_t dst_y, uint32_t src_width, uint32_t src_height) { /* The blitter doesn't understand multisampling at all. */ if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1) return false; if (src_mt->format == MESA_FORMAT_S_UINT8) return false; /* The blitter has no idea about HiZ or fast color clears, so we need to * resolve the miptrees before we do anything. */ intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false); intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true); uint32_t src_image_x, src_image_y; intel_miptree_get_image_offset(src_mt, src_level, src_slice, &src_image_x, &src_image_y); if (_mesa_is_format_compressed(src_mt->format)) { GLuint bw, bh; _mesa_get_format_block_size(src_mt->format, &bw, &bh); /* Compressed textures need not have dimensions that are a multiple of * the block size. Rectangles in compressed textures do need to be a * multiple of the block size. The one exception is that the right and * bottom edges may be at the right or bottom edge of the miplevel even * if it's not aligned. */ assert(src_x % bw == 0); assert(src_y % bh == 0); assert(src_width % bw == 0 || src_x + src_width == minify(src_mt->surf.logical_level0_px.width, src_level)); assert(src_height % bh == 0 || src_y + src_height == minify(src_mt->surf.logical_level0_px.height, src_level)); src_x /= (int)bw; src_y /= (int)bh; src_width = DIV_ROUND_UP(src_width, (int)bw); src_height = DIV_ROUND_UP(src_height, (int)bh); } src_x += src_image_x; src_y += src_image_y; uint32_t dst_image_x, dst_image_y; intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice, &dst_image_x, &dst_image_y); if (_mesa_is_format_compressed(dst_mt->format)) { GLuint bw, bh; _mesa_get_format_block_size(dst_mt->format, &bw, &bh); assert(dst_x % bw == 0); assert(dst_y % bh == 0); dst_x /= (int)bw; dst_y /= (int)bh; } dst_x += dst_image_x; dst_y += dst_image_y; return emit_miptree_blit(brw, src_mt, src_x, src_y, dst_mt, dst_x, dst_y, src_width, src_height, false, COLOR_LOGICOP_COPY); }
/* * Render a bitmap. */ static bool do_blit_bitmap( struct gl_context *ctx, GLint dstx, GLint dsty, GLsizei width, GLsizei height, const struct gl_pixelstore_attrib *unpack, const GLubyte *bitmap ) { struct brw_context *brw = brw_context(ctx); struct gl_framebuffer *fb = ctx->DrawBuffer; struct intel_renderbuffer *irb; GLfloat tmpColor[4]; GLubyte ubcolor[4]; GLuint color; GLsizei bitmap_width = width; GLsizei bitmap_height = height; GLint px, py; GLuint stipple[32]; GLint orig_dstx = dstx; GLint orig_dsty = dsty; /* Update draw buffer bounds */ _mesa_update_state(ctx); if (ctx->Depth.Test) { /* The blit path produces incorrect results when depth testing is on. * It seems the blit Z coord is always 1.0 (the far plane) so fragments * will likely be obscured by other, closer geometry. */ return false; } intel_prepare_render(brw); if (fb->_NumColorDrawBuffers != 1) { perf_debug("accelerated glBitmap() only supports rendering to a " "single color buffer\n"); return false; } irb = intel_renderbuffer(fb->_ColorDrawBuffers[0]); if (_mesa_is_bufferobj(unpack->BufferObj)) { bitmap = map_pbo(ctx, width, height, unpack, bitmap); if (bitmap == NULL) return true; /* even though this is an error, we're done */ } COPY_4V(tmpColor, ctx->Current.RasterColor); if (_mesa_need_secondary_color(ctx)) { ADD_3V(tmpColor, tmpColor, ctx->Current.RasterSecondaryColor); } UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[0], tmpColor[0]); UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[1], tmpColor[1]); UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[2], tmpColor[2]); UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[3], tmpColor[3]); switch (_mesa_get_render_format(ctx, intel_rb_format(irb))) { case MESA_FORMAT_B8G8R8A8_UNORM: case MESA_FORMAT_B8G8R8X8_UNORM: color = PACK_COLOR_8888(ubcolor[3], ubcolor[0], ubcolor[1], ubcolor[2]); break; case MESA_FORMAT_B5G6R5_UNORM: color = PACK_COLOR_565(ubcolor[0], ubcolor[1], ubcolor[2]); break; default: perf_debug("Unsupported format %s in accelerated glBitmap()\n", _mesa_get_format_name(irb->mt->format)); return false; } if (!intel_check_blit_fragment_ops(ctx, tmpColor[3] == 1.0F)) return false; /* Clip to buffer bounds and scissor. */ if (!_mesa_clip_to_region(fb->_Xmin, fb->_Ymin, fb->_Xmax, fb->_Ymax, &dstx, &dsty, &width, &height)) goto out; dsty = y_flip(fb, dsty, height); #define DY 32 #define DX 32 /* The blitter has no idea about fast color clears, so we need to resolve * the miptree before we do anything. */ intel_miptree_access_raw(brw, irb->mt, irb->mt_level, irb->mt_layer, true); /* Chop it all into chunks that can be digested by hardware: */ for (py = 0; py < height; py += DY) { for (px = 0; px < width; px += DX) { int h = MIN2(DY, height - py); int w = MIN2(DX, width - px); GLuint sz = ALIGN(ALIGN(w,8) * h, 64)/8; GLenum logic_op = ctx->Color.ColorLogicOpEnabled ? ctx->Color.LogicOp : GL_COPY; assert(sz <= sizeof(stipple)); memset(stipple, 0, sz); /* May need to adjust this when padding has been introduced in * sz above: * * Have to translate destination coordinates back into source * coordinates. */ int count = get_bitmap_rect(bitmap_width, bitmap_height, unpack, bitmap, -orig_dstx + (dstx + px), -orig_dsty + y_flip(fb, dsty + py, h), w, h, (GLubyte *)stipple, 8, _mesa_is_winsys_fbo(fb)); if (count == 0) continue; if (!intelEmitImmediateColorExpandBlit(brw, irb->mt->cpp, (GLubyte *)stipple, sz, color, irb->mt->surf.row_pitch, irb->mt->bo, 0, irb->mt->surf.tiling, dstx + px, dsty + py, w, h, logic_op)) { return false; } if (ctx->Query.CurrentOcclusionObject) ctx->Query.CurrentOcclusionObject->Result += count; } } out: if (unlikely(INTEL_DEBUG & DEBUG_SYNC)) intel_batchbuffer_flush(brw); if (_mesa_is_bufferobj(unpack->BufferObj)) { /* done with PBO so unmap it now */ ctx->Driver.UnmapBuffer(ctx, unpack->BufferObj, MAP_INTERNAL); } return true; }
/** * Implements a rectangular block transfer (blit) of pixels between two * miptrees. * * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous, * but limited, pitches and sizes allowed. * * The src/dst coordinates are relative to the given level/slice of the * miptree. * * If @src_flip or @dst_flip is set, then the rectangle within that miptree * will be inverted (including scanline order) when copying. This is common * in GL when copying between window system and user-created * renderbuffers/textures. */ bool intel_miptree_blit(struct brw_context *brw, struct intel_mipmap_tree *src_mt, int src_level, int src_slice, uint32_t src_x, uint32_t src_y, bool src_flip, struct intel_mipmap_tree *dst_mt, int dst_level, int dst_slice, uint32_t dst_x, uint32_t dst_y, bool dst_flip, uint32_t width, uint32_t height, enum gl_logicop_mode logicop) { /* The blitter doesn't understand multisampling at all. */ if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1) return false; /* No sRGB decode or encode is done by the hardware blitter, which is * consistent with what we want in many callers (glCopyTexSubImage(), * texture validation, etc.). */ mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format); mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format); /* The blitter doesn't support doing any format conversions. We do also * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A * channel to 1.0 at the end. Also trivially ARGB2101010 to XRGB2101010, * but not XRGB2101010 to ARGB2101010 yet. */ if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) { perf_debug("%s: Can't use hardware blitter from %s to %s, " "falling back.\n", __func__, _mesa_get_format_name(src_format), _mesa_get_format_name(dst_format)); return false; } /* The blitter has no idea about HiZ or fast color clears, so we need to * resolve the miptrees before we do anything. */ intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false); intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true); if (src_flip) { const unsigned h0 = src_mt->surf.phys_level0_sa.height; src_y = minify(h0, src_level - src_mt->first_level) - src_y - height; } if (dst_flip) { const unsigned h0 = dst_mt->surf.phys_level0_sa.height; dst_y = minify(h0, dst_level - dst_mt->first_level) - dst_y - height; } uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y; intel_miptree_get_image_offset(src_mt, src_level, src_slice, &src_image_x, &src_image_y); intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice, &dst_image_x, &dst_image_y); src_x += src_image_x; src_y += src_image_y; dst_x += dst_image_x; dst_y += dst_image_y; if (!emit_miptree_blit(brw, src_mt, src_x, src_y, dst_mt, dst_x, dst_y, width, height, src_flip != dst_flip, logicop)) { return false; } /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */ if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 && _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) { intel_miptree_set_alpha_to_one(brw, dst_mt, dst_x, dst_y, width, height); } return true; }