示例#1
0
/**
 * \brief A fast path for glReadPixels
 *
 * This fast path is taken when the source format is BGRA, RGBA,
 * A or L and when the texture memory is X- or Y-tiled.  It downloads
 * the source data by directly mapping the memory without a GTT fence.
 * This then needs to be de-tiled on the CPU before presenting the data to
 * the user in the linear fasion.
 *
 * This is a performance win over the conventional texture download path.
 * In the conventional texture download path, the texture is either mapped
 * through the GTT or copied to a linear buffer with the blitter before
 * handing off to a software path.  This allows us to avoid round-tripping
 * through the GPU (in the case where we would be blitting) and do only a
 * single copy operation.
 */
static bool
intel_readpixels_tiled_memcpy(struct gl_context * ctx,
                              GLint xoffset, GLint yoffset,
                              GLsizei width, GLsizei height,
                              GLenum format, GLenum type,
                              GLvoid * pixels,
                              const struct gl_pixelstore_attrib *pack)
{
   struct brw_context *brw = brw_context(ctx);
   struct gl_renderbuffer *rb = ctx->ReadBuffer->_ColorReadBuffer;
   const struct gen_device_info *devinfo = &brw->screen->devinfo;

   /* This path supports reading from color buffers only */
   if (rb == NULL)
      return false;

   struct intel_renderbuffer *irb = intel_renderbuffer(rb);
   int dst_pitch;

   /* The miptree's buffer. */
   struct brw_bo *bo;

   uint32_t cpp;
   mem_copy_fn mem_copy = NULL;

   /* This fastpath is restricted to specific renderbuffer types:
    * a 2D BGRA, RGBA, L8 or A8 texture. It could be generalized to support
    * more types.
    */
   if (!devinfo->has_llc ||
       !(type == GL_UNSIGNED_BYTE || type == GL_UNSIGNED_INT_8_8_8_8_REV) ||
       pixels == NULL ||
       _mesa_is_bufferobj(pack->BufferObj) ||
       pack->Alignment > 4 ||
       pack->SkipPixels > 0 ||
       pack->SkipRows > 0 ||
       (pack->RowLength != 0 && pack->RowLength != width) ||
       pack->SwapBytes ||
       pack->LsbFirst ||
       pack->Invert)
      return false;

   /* Only a simple blit, no scale, bias or other mapping. */
   if (ctx->_ImageTransferState)
      return false;

   /* It is possible that the renderbuffer (or underlying texture) is
    * multisampled.  Since ReadPixels from a multisampled buffer requires a
    * multisample resolve, we can't handle this here
    */
   if (rb->NumSamples > 1)
      return false;

   /* We can't handle copying from RGBX or BGRX because the tiled_memcpy
    * function doesn't set the last channel to 1. Note this checks BaseFormat
    * rather than TexFormat in case the RGBX format is being simulated with an
    * RGBA format.
    */
   if (rb->_BaseFormat == GL_RGB)
      return false;

   if (!intel_get_memcpy(rb->Format, format, type, &mem_copy, &cpp))
      return false;

   if (!irb->mt ||
       (irb->mt->surf.tiling != ISL_TILING_X &&
        irb->mt->surf.tiling != ISL_TILING_Y0)) {
      /* The algorithm is written only for X- or Y-tiled memory. */
      return false;
   }

   /* tiled_to_linear() assumes that if the object is swizzled, it is using
    * I915_BIT6_SWIZZLE_9_10 for X and I915_BIT6_SWIZZLE_9 for Y.  This is only
    * true on gen5 and above.
    *
    * The killer on top is that some gen4 have an L-shaped swizzle mode, where
    * parts of the memory aren't swizzled at all. Userspace just can't handle
    * that.
    */
   if (devinfo->gen < 5 && brw->has_swizzling)
      return false;

   /* Since we are going to read raw data to the miptree, we need to resolve
    * any pending fast color clears before we start.
    */
   intel_miptree_access_raw(brw, irb->mt, irb->mt_level, irb->mt_layer, false);

   bo = irb->mt->bo;

   if (brw_batch_references(&brw->batch, bo)) {
      perf_debug("Flushing before mapping a referenced bo.\n");
      intel_batchbuffer_flush(brw);
   }

   void *map = brw_bo_map(brw, bo, MAP_READ | MAP_RAW);
   if (map == NULL) {
      DBG("%s: failed to map bo\n", __func__);
      return false;
   }

   unsigned slice_offset_x, slice_offset_y;
   intel_miptree_get_image_offset(irb->mt, irb->mt_level, irb->mt_layer,
                                  &slice_offset_x, &slice_offset_y);
   xoffset += slice_offset_x;
   yoffset += slice_offset_y;

   dst_pitch = _mesa_image_row_stride(pack, width, format, type);

   /* For a window-system renderbuffer, the buffer is actually flipped
    * vertically, so we need to handle that.  Since the detiling function
    * can only really work in the forwards direction, we have to be a
    * little creative.  First, we compute the Y-offset of the first row of
    * the renderbuffer (in renderbuffer coordinates).  We then match that
    * with the last row of the client's data.  Finally, we give
    * tiled_to_linear a negative pitch so that it walks through the
    * client's data backwards as it walks through the renderbufer forwards.
    */
   if (rb->Name == 0) {
      yoffset = rb->Height - yoffset - height;
      pixels += (ptrdiff_t) (height - 1) * dst_pitch;
      dst_pitch = -dst_pitch;
   }

   /* We postponed printing this message until having committed to executing
    * the function.
    */
   DBG("%s: x,y=(%d,%d) (w,h)=(%d,%d) format=0x%x type=0x%x "
       "mesa_format=0x%x tiling=%d "
       "pack=(alignment=%d row_length=%d skip_pixels=%d skip_rows=%d)\n",
       __func__, xoffset, yoffset, width, height,
       format, type, rb->Format, irb->mt->surf.tiling,
       pack->Alignment, pack->RowLength, pack->SkipPixels,
       pack->SkipRows);

   tiled_to_linear(
      xoffset * cpp, (xoffset + width) * cpp,
      yoffset, yoffset + height,
      pixels - (ptrdiff_t) yoffset * dst_pitch - (ptrdiff_t) xoffset * cpp,
      map + irb->mt->offset,
      dst_pitch, irb->mt->surf.row_pitch,
      brw->has_swizzling,
      irb->mt->surf.tiling,
      mem_copy
   );

   brw_bo_unmap(bo);
   return true;
}
示例#2
0
bool
intel_miptree_copy(struct brw_context *brw,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y,
                   uint32_t src_width, uint32_t src_height)
{
   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
      return false;

   if (src_mt->format == MESA_FORMAT_S_UINT8)
      return false;

   /* The blitter has no idea about HiZ or fast color clears, so we need to
    * resolve the miptrees before we do anything.
    */
   intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
   intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);

   uint32_t src_image_x, src_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);

   if (_mesa_is_format_compressed(src_mt->format)) {
      GLuint bw, bh;
      _mesa_get_format_block_size(src_mt->format, &bw, &bh);

      /* Compressed textures need not have dimensions that are a multiple of
       * the block size.  Rectangles in compressed textures do need to be a
       * multiple of the block size.  The one exception is that the right and
       * bottom edges may be at the right or bottom edge of the miplevel even
       * if it's not aligned.
       */
      assert(src_x % bw == 0);
      assert(src_y % bh == 0);

      assert(src_width % bw == 0 ||
             src_x + src_width ==
             minify(src_mt->surf.logical_level0_px.width, src_level));
      assert(src_height % bh == 0 ||
             src_y + src_height ==
             minify(src_mt->surf.logical_level0_px.height, src_level));

      src_x /= (int)bw;
      src_y /= (int)bh;
      src_width = DIV_ROUND_UP(src_width, (int)bw);
      src_height = DIV_ROUND_UP(src_height, (int)bh);
   }
   src_x += src_image_x;
   src_y += src_image_y;

   uint32_t dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);

   if (_mesa_is_format_compressed(dst_mt->format)) {
      GLuint bw, bh;
      _mesa_get_format_block_size(dst_mt->format, &bw, &bh);

      assert(dst_x % bw == 0);
      assert(dst_y % bh == 0);

      dst_x /= (int)bw;
      dst_y /= (int)bh;
   }
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   return emit_miptree_blit(brw, src_mt, src_x, src_y,
                            dst_mt, dst_x, dst_y,
                            src_width, src_height, false, COLOR_LOGICOP_COPY);
}
示例#3
0
/*
 * Render a bitmap.
 */
static bool
do_blit_bitmap( struct gl_context *ctx,
		GLint dstx, GLint dsty,
		GLsizei width, GLsizei height,
		const struct gl_pixelstore_attrib *unpack,
		const GLubyte *bitmap )
{
   struct brw_context *brw = brw_context(ctx);
   struct gl_framebuffer *fb = ctx->DrawBuffer;
   struct intel_renderbuffer *irb;
   GLfloat tmpColor[4];
   GLubyte ubcolor[4];
   GLuint color;
   GLsizei bitmap_width = width;
   GLsizei bitmap_height = height;
   GLint px, py;
   GLuint stipple[32];
   GLint orig_dstx = dstx;
   GLint orig_dsty = dsty;

   /* Update draw buffer bounds */
   _mesa_update_state(ctx);

   if (ctx->Depth.Test) {
      /* The blit path produces incorrect results when depth testing is on.
       * It seems the blit Z coord is always 1.0 (the far plane) so fragments
       * will likely be obscured by other, closer geometry.
       */
      return false;
   }

   intel_prepare_render(brw);

   if (fb->_NumColorDrawBuffers != 1) {
      perf_debug("accelerated glBitmap() only supports rendering to a "
                 "single color buffer\n");
      return false;
   }

   irb = intel_renderbuffer(fb->_ColorDrawBuffers[0]);

   if (_mesa_is_bufferobj(unpack->BufferObj)) {
      bitmap = map_pbo(ctx, width, height, unpack, bitmap);
      if (bitmap == NULL)
	 return true;	/* even though this is an error, we're done */
   }

   COPY_4V(tmpColor, ctx->Current.RasterColor);

   if (_mesa_need_secondary_color(ctx)) {
       ADD_3V(tmpColor, tmpColor, ctx->Current.RasterSecondaryColor);
   }

   UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[0], tmpColor[0]);
   UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[1], tmpColor[1]);
   UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[2], tmpColor[2]);
   UNCLAMPED_FLOAT_TO_UBYTE(ubcolor[3], tmpColor[3]);

   switch (_mesa_get_render_format(ctx, intel_rb_format(irb))) {
   case MESA_FORMAT_B8G8R8A8_UNORM:
   case MESA_FORMAT_B8G8R8X8_UNORM:
      color = PACK_COLOR_8888(ubcolor[3], ubcolor[0], ubcolor[1], ubcolor[2]);
      break;
   case MESA_FORMAT_B5G6R5_UNORM:
      color = PACK_COLOR_565(ubcolor[0], ubcolor[1], ubcolor[2]);
      break;
   default:
      perf_debug("Unsupported format %s in accelerated glBitmap()\n",
                 _mesa_get_format_name(irb->mt->format));
      return false;
   }

   if (!intel_check_blit_fragment_ops(ctx, tmpColor[3] == 1.0F))
      return false;

   /* Clip to buffer bounds and scissor. */
   if (!_mesa_clip_to_region(fb->_Xmin, fb->_Ymin,
			     fb->_Xmax, fb->_Ymax,
			     &dstx, &dsty, &width, &height))
      goto out;

   dsty = y_flip(fb, dsty, height);

#define DY 32
#define DX 32

   /* The blitter has no idea about fast color clears, so we need to resolve
    * the miptree before we do anything.
    */
   intel_miptree_access_raw(brw, irb->mt, irb->mt_level, irb->mt_layer, true);

   /* Chop it all into chunks that can be digested by hardware: */
   for (py = 0; py < height; py += DY) {
      for (px = 0; px < width; px += DX) {
	 int h = MIN2(DY, height - py);
	 int w = MIN2(DX, width - px);
	 GLuint sz = ALIGN(ALIGN(w,8) * h, 64)/8;
	 GLenum logic_op = ctx->Color.ColorLogicOpEnabled ?
	    ctx->Color.LogicOp : GL_COPY;

	 assert(sz <= sizeof(stipple));
	 memset(stipple, 0, sz);

	 /* May need to adjust this when padding has been introduced in
	  * sz above:
	  *
	  * Have to translate destination coordinates back into source
	  * coordinates.
	  */
         int count = get_bitmap_rect(bitmap_width, bitmap_height, unpack,
                                     bitmap,
                                     -orig_dstx + (dstx + px),
                                     -orig_dsty + y_flip(fb, dsty + py, h),
                                     w, h,
                                     (GLubyte *)stipple,
                                     8,
                                     _mesa_is_winsys_fbo(fb));
         if (count == 0)
	    continue;

	 if (!intelEmitImmediateColorExpandBlit(brw,
						irb->mt->cpp,
						(GLubyte *)stipple,
						sz,
						color,
						irb->mt->surf.row_pitch,
						irb->mt->bo,
						0,
						irb->mt->surf.tiling,
						dstx + px,
						dsty + py,
						w, h,
						logic_op)) {
	    return false;
	 }

         if (ctx->Query.CurrentOcclusionObject)
            ctx->Query.CurrentOcclusionObject->Result += count;
      }
   }
out:

   if (unlikely(INTEL_DEBUG & DEBUG_SYNC))
      intel_batchbuffer_flush(brw);

   if (_mesa_is_bufferobj(unpack->BufferObj)) {
      /* done with PBO so unmap it now */
      ctx->Driver.UnmapBuffer(ctx, unpack->BufferObj, MAP_INTERNAL);
   }

   return true;
}
示例#4
0
/**
 * Implements a rectangular block transfer (blit) of pixels between two
 * miptrees.
 *
 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
 * but limited, pitches and sizes allowed.
 *
 * The src/dst coordinates are relative to the given level/slice of the
 * miptree.
 *
 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
 * will be inverted (including scanline order) when copying.  This is common
 * in GL when copying between window system and user-created
 * renderbuffers/textures.
 */
bool
intel_miptree_blit(struct brw_context *brw,
                   struct intel_mipmap_tree *src_mt,
                   int src_level, int src_slice,
                   uint32_t src_x, uint32_t src_y, bool src_flip,
                   struct intel_mipmap_tree *dst_mt,
                   int dst_level, int dst_slice,
                   uint32_t dst_x, uint32_t dst_y, bool dst_flip,
                   uint32_t width, uint32_t height,
                   enum gl_logicop_mode logicop)
{
   /* The blitter doesn't understand multisampling at all. */
   if (src_mt->surf.samples > 1 || dst_mt->surf.samples > 1)
      return false;

   /* No sRGB decode or encode is done by the hardware blitter, which is
    * consistent with what we want in many callers (glCopyTexSubImage(),
    * texture validation, etc.).
    */
   mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
   mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);

   /* The blitter doesn't support doing any format conversions.  We do also
    * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
    * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
    * channel to 1.0 at the end. Also trivially ARGB2101010 to XRGB2101010,
    * but not XRGB2101010 to ARGB2101010 yet.
    */
   if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) {
      perf_debug("%s: Can't use hardware blitter from %s to %s, "
                 "falling back.\n", __func__,
                 _mesa_get_format_name(src_format),
                 _mesa_get_format_name(dst_format));
      return false;
   }

   /* The blitter has no idea about HiZ or fast color clears, so we need to
    * resolve the miptrees before we do anything.
    */
   intel_miptree_access_raw(brw, src_mt, src_level, src_slice, false);
   intel_miptree_access_raw(brw, dst_mt, dst_level, dst_slice, true);

   if (src_flip) {
      const unsigned h0 = src_mt->surf.phys_level0_sa.height;
      src_y = minify(h0, src_level - src_mt->first_level) - src_y - height;
   }

   if (dst_flip) {
      const unsigned h0 = dst_mt->surf.phys_level0_sa.height;
      dst_y = minify(h0, dst_level - dst_mt->first_level) - dst_y - height;
   }

   uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
   intel_miptree_get_image_offset(src_mt, src_level, src_slice,
                                  &src_image_x, &src_image_y);
   intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
                                  &dst_image_x, &dst_image_y);
   src_x += src_image_x;
   src_y += src_image_y;
   dst_x += dst_image_x;
   dst_y += dst_image_y;

   if (!emit_miptree_blit(brw, src_mt, src_x, src_y,
                          dst_mt, dst_x, dst_y, width, height,
                          src_flip != dst_flip, logicop)) {
      return false;
   }

   /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */
   if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 &&
       _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) {
      intel_miptree_set_alpha_to_one(brw, dst_mt,
                                     dst_x, dst_y,
                                     width, height);
   }

   return true;
}