void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm, Register recv, Register method_temp, Register temp2, bool for_compiler_entry) { BLOCK_COMMENT("jump_to_lambda_form {"); // This is the initial entry point of a lazy method handle. // After type checking, it picks up the invoker from the LambdaForm. assert_different_registers(recv, method_temp, temp2); assert(recv != noreg, "required register"); assert(method_temp == rmethod, "required register for loading method"); //NOT_PRODUCT({ FlagSetting fs(TraceMethodHandles, true); trace_method_handle(_masm, "LZMH"); }); // Load the invoker, as MH -> MH.form -> LF.vmentry __ verify_oop(recv); __ load_heap_oop(method_temp, Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes()))); __ verify_oop(method_temp); __ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes()))); __ verify_oop(method_temp); // the following assumes that a Method* is normally compressed in the vmtarget field: __ ldr(method_temp, Address(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes()))); if (VerifyMethodHandles && !for_compiler_entry) { // make sure recv is already on stack __ ldr(temp2, Address(method_temp, Method::const_offset())); __ load_sized_value(temp2, Address(temp2, ConstMethod::size_of_parameters_offset()), sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(Method::_size_of_parameters), ""); Label L; __ ldr(rscratch1, __ argument_address(temp2, -1)); __ cmp(recv, rscratch1); __ br(Assembler::EQ, L); __ ldr(r0, __ argument_address(temp2, -1)); __ hlt(0); __ BIND(L); } jump_from_method_handle(_masm, method_temp, temp2, for_compiler_entry); BLOCK_COMMENT("} jump_to_lambda_form"); }
void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) { Label L; BLOCK_COMMENT("verify_ref_kind {"); __ load_sized_value(temp, NONZERO(java_lang_invoke_MemberName::flags_offset_in_bytes()), member_reg, sizeof(u4), /*is_signed*/ false); // assert(sizeof(u4) == sizeof(java.lang.invoke.MemberName.flags), ""); __ srwi( temp, temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_SHIFT); __ andi(temp, temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_MASK); __ cmpwi(CCR1, temp, ref_kind); __ beq(CCR1, L); { char* buf = NEW_C_HEAP_ARRAY(char, 100, mtInternal); jio_snprintf(buf, 100, "verify_ref_kind expected %x", ref_kind); if (ref_kind == JVM_REF_invokeVirtual || ref_kind == JVM_REF_invokeSpecial) // could do this for all ref_kinds, but would explode assembly code size trace_method_handle(_masm, buf); __ stop(buf); } BLOCK_COMMENT("} verify_ref_kind"); __ BIND(L); }
void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm, Register recv, Register method_temp, Register temp2, Register temp3, bool for_compiler_entry) { BLOCK_COMMENT("jump_to_lambda_form {"); // This is the initial entry point of a lazy method handle. // After type checking, it picks up the invoker from the LambdaForm. assert_different_registers(recv, method_temp, temp2); // temp3 is only passed on assert(method_temp == R19_method, "required register for loading method"); // Load the invoker, as MH -> MH.form -> LF.vmentry __ verify_oop(recv); __ load_heap_oop_not_null(method_temp, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes()), recv, temp2); __ verify_oop(method_temp); __ load_heap_oop_not_null(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes()), method_temp, temp2); __ verify_oop(method_temp); // The following assumes that a Method* is normally compressed in the vmtarget field: __ ld(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes()), method_temp); if (VerifyMethodHandles && !for_compiler_entry) { // Make sure recv is already on stack. __ ld(temp2, in_bytes(Method::const_offset()), method_temp); __ load_sized_value(temp2, in_bytes(ConstMethod::size_of_parameters_offset()), temp2, sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(ConstMethod::_size_of_parameters), ""); Label L; __ ld(temp2, __ argument_offset(temp2, temp2, 0), CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); __ cmpd(CCR1, temp2, recv); __ beq(CCR1, L); __ stop("receiver not on stack"); __ BIND(L); } jump_from_method_handle(_masm, method_temp, temp2, temp3, for_compiler_entry); BLOCK_COMMENT("} jump_to_lambda_form"); }
// Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm, vmIntrinsics::ID iid) { const bool not_for_compiler_entry = false; // this is the interpreter entry assert(is_signature_polymorphic(iid), "expected invoke iid"); if (iid == vmIntrinsics::_invokeGeneric || iid == vmIntrinsics::_compiledLambdaForm) { // Perhaps surprisingly, the symbolic references visible to Java are not directly used. // They are linked to Java-generated adapters via MethodHandleNatives.linkMethod. // They all allow an appendix argument. __ stop("Should not reach here"); // empty stubs make SG sick return NULL; } Register argbase = CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp); // parameter (preserved) Register argslot = R3; Register temp1 = R6; Register param_size = R7; // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); if (VerifyMethodHandles) { Label L; BLOCK_COMMENT("verify_intrinsic_id {"); __ load_sized_value(temp1, Method::intrinsic_id_offset_in_bytes(), R19_method, sizeof(u1), /*is_signed*/ false); // assert(sizeof(u1) == sizeof(Method::_intrinsic_id), ""); __ cmpwi(CCR1, temp1, (int) iid); __ beq(CCR1, L); if (iid == vmIntrinsics::_linkToVirtual || iid == vmIntrinsics::_linkToSpecial) { // could do this for all kinds, but would explode assembly code size trace_method_handle(_masm, "bad Method*:intrinsic_id"); } __ stop("bad Method*::intrinsic_id"); __ BIND(L); BLOCK_COMMENT("} verify_intrinsic_id"); } // First task: Find out how big the argument list is. int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid); assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic"); if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) { __ ld(param_size, in_bytes(Method::const_offset()), R19_method); __ load_sized_value(param_size, in_bytes(ConstMethod::size_of_parameters_offset()), param_size, sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(ConstMethod::_size_of_parameters), ""); } else { DEBUG_ONLY(param_size = noreg); } Register tmp_mh = noreg; if (!is_signature_polymorphic_static(iid)) { __ ld(tmp_mh = temp1, __ argument_offset(param_size, param_size, 0), argbase); DEBUG_ONLY(param_size = noreg); } if (TraceMethodHandles) { if (tmp_mh != noreg) { __ mr(R23_method_handle, tmp_mh); // make stub happy } trace_method_handle_interpreter_entry(_masm, iid); } if (iid == vmIntrinsics::_invokeBasic) { generate_method_handle_dispatch(_masm, iid, tmp_mh, noreg, not_for_compiler_entry); } else { // Adjust argument list by popping the trailing MemberName argument. Register tmp_recv = noreg; if (MethodHandles::ref_kind_has_receiver(ref_kind)) { // Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack. __ ld(tmp_recv = temp1, __ argument_offset(param_size, param_size, 0), argbase); DEBUG_ONLY(param_size = noreg); } Register R19_member = R19_method; // MemberName ptr; incoming method ptr is dead now __ ld(R19_member, RegisterOrConstant((intptr_t)8), argbase); __ add(argbase, Interpreter::stackElementSize, argbase); generate_method_handle_dispatch(_masm, iid, tmp_recv, R19_member, not_for_compiler_entry); } return entry_point; }
// Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm, vmIntrinsics::ID iid) { const bool not_for_compiler_entry = false; // this is the interpreter entry assert(is_signature_polymorphic(iid), "expected invoke iid"); if (iid == vmIntrinsics::_invokeGeneric || iid == vmIntrinsics::_compiledLambdaForm) { // Perhaps surprisingly, the symbolic references visible to Java are not directly used. // They are linked to Java-generated adapters via MethodHandleNatives.linkMethod. // They all allow an appendix argument. __ hlt(0); // empty stubs make SG sick return NULL; } // r13: sender SP (must preserve; see prepare_to_jump_from_interpreted) // rmethod: Method* // r3: argument locator (parameter slot count, added to rsp) // r1: used as temp to hold mh or receiver // r0, r11: garbage temps, blown away Register argp = r3; // argument list ptr, live on error paths Register temp = r0; Register mh = r1; // MH receiver; dies quickly and is recycled // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); if (VerifyMethodHandles) { assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); Label L; BLOCK_COMMENT("verify_intrinsic_id {"); __ ldrh(rscratch1, Address(rmethod, Method::intrinsic_id_offset_in_bytes())); __ cmp(rscratch1, (int) iid); __ br(Assembler::EQ, L); if (iid == vmIntrinsics::_linkToVirtual || iid == vmIntrinsics::_linkToSpecial) { // could do this for all kinds, but would explode assembly code size trace_method_handle(_masm, "bad Method*::intrinsic_id"); } __ hlt(0); __ bind(L); BLOCK_COMMENT("} verify_intrinsic_id"); } // First task: Find out how big the argument list is. Address r3_first_arg_addr; int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid); assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic"); if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) { __ ldr(argp, Address(rmethod, Method::const_offset())); __ load_sized_value(argp, Address(argp, ConstMethod::size_of_parameters_offset()), sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(Method::_size_of_parameters), ""); r3_first_arg_addr = __ argument_address(argp, -1); } else { DEBUG_ONLY(argp = noreg); } if (!is_signature_polymorphic_static(iid)) { __ ldr(mh, r3_first_arg_addr); DEBUG_ONLY(argp = noreg); } // r3_first_arg_addr is live! trace_method_handle_interpreter_entry(_masm, iid); if (iid == vmIntrinsics::_invokeBasic) { generate_method_handle_dispatch(_masm, iid, mh, noreg, not_for_compiler_entry); } else { // Adjust argument list by popping the trailing MemberName argument. Register recv = noreg; if (MethodHandles::ref_kind_has_receiver(ref_kind)) { // Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack. __ ldr(recv = r2, r3_first_arg_addr); } DEBUG_ONLY(argp = noreg); Register rmember = rmethod; // MemberName ptr; incoming method ptr is dead now __ pop(rmember); // extract last argument generate_method_handle_dispatch(_masm, iid, recv, rmember, not_for_compiler_entry); } return entry_point; }
//------------------------------------------------------------------------------ // MethodHandles::generate_method_handle_stub // // Generate an "entry" field for a method handle. // This determines how the method handle will respond to calls. void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) { // Here is the register state during an interpreted call, // as set up by generate_method_handle_interpreter_entry(): // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused) // - rcx: receiver method handle // - rax: method handle type (only used by the check_mtype entry point) // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted) // - rdx: garbage temp, can blow away const Register rcx_recv = rcx; const Register rax_argslot = rax; const Register rbx_temp = rbx; const Register rdx_temp = rdx; // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls) // and gen_c2i_adapter (from compiled calls): const Register saved_last_sp = LP64_ONLY(r13) NOT_LP64(rsi); // Argument registers for _raise_exception. // 32-bit: Pass first two oop/int args in registers ECX and EDX. const Register rarg0_code = LP64_ONLY(j_rarg0) NOT_LP64(rcx); const Register rarg1_actual = LP64_ONLY(j_rarg1) NOT_LP64(rdx); const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi); assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp); guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets"); // some handy addresses Address rbx_method_fie( rbx, methodOopDesc::from_interpreted_offset() ); Address rbx_method_fce( rbx, methodOopDesc::from_compiled_offset() ); Address rcx_mh_vmtarget( rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() ); Address rcx_dmh_vmindex( rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() ); Address rcx_bmh_vmargslot( rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() ); Address rcx_bmh_argument( rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() ); Address rcx_amh_vmargslot( rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() ); Address rcx_amh_argument( rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() ); Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() ); Address vmarg; // __ argument_address(vmargslot) const int java_mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes(); if (have_entry(ek)) { __ nop(); // empty stubs make SG sick return; } address interp_entry = __ pc(); trace_method_handle(_masm, entry_name(ek)); BLOCK_COMMENT(entry_name(ek)); switch ((int) ek) { case _raise_exception: { // Not a real MH entry, but rather shared code for raising an // exception. Since we use the compiled entry, arguments are // expected in compiler argument registers. assert(raise_exception_method(), "must be set"); assert(raise_exception_method()->from_compiled_entry(), "method must be linked"); const Register rdi_pc = rax; __ pop(rdi_pc); // caller PC __ mov(rsp, saved_last_sp); // cut the stack back to where the caller started Register rbx_method = rbx_temp; Label L_no_method; // FIXME: fill in _raise_exception_method with a suitable java.lang.invoke method __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method)); __ testptr(rbx_method, rbx_method); __ jccb(Assembler::zero, L_no_method); const int jobject_oop_offset = 0; __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset)); // dereference the jobject __ testptr(rbx_method, rbx_method); __ jccb(Assembler::zero, L_no_method); __ verify_oop(rbx_method); NOT_LP64(__ push(rarg2_required)); __ push(rdi_pc); // restore caller PC __ jmp(rbx_method_fce); // jump to compiled entry // Do something that is at least causes a valid throw from the interpreter. __ bind(L_no_method); __ push(rarg2_required); __ push(rarg1_actual); __ jump(ExternalAddress(Interpreter::throw_WrongMethodType_entry())); } break; case _invokestatic_mh: case _invokespecial_mh: { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop __ verify_oop(rbx_method); // same as TemplateTable::invokestatic or invokespecial, // minus the CP setup and profiling: if (ek == _invokespecial_mh) { // Must load & check the first argument before entering the target method. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv); __ verify_oop(rcx_recv); } __ jmp(rbx_method_fie); } break; case _invokevirtual_mh: { // same as TemplateTable::invokevirtual, // minus the CP setup and profiling: // pick out the vtable index and receiver offset from the MH, // and then we can discard it: __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rbx_index = rbx_temp; __ movl(rbx_index, rcx_dmh_vmindex); // Note: The verifier allows us to ignore rcx_mh_vmtarget. __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); // get target methodOop & entry point const int base = instanceKlass::vtable_start_offset() * wordSize; assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); Address vtable_entry_addr(rax_klass, rbx_index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()); Register rbx_method = rbx_temp; __ movptr(rbx_method, vtable_entry_addr); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); } break; case _invokeinterface_mh: { // same as TemplateTable::invokeinterface, // minus the CP setup and profiling: // pick out the interface and itable index from the MH. __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp); Register rdx_intf = rdx_temp; Register rbx_index = rbx_temp; __ load_heap_oop(rdx_intf, rcx_mh_vmtarget); __ movl(rbx_index, rcx_dmh_vmindex); __ movptr(rcx_recv, __ argument_address(rax_argslot, -1)); __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes()); // get receiver klass Register rax_klass = rax_argslot; __ load_klass(rax_klass, rcx_recv); __ verify_oop(rax_klass); Register rdi_temp = rdi; Register rbx_method = rbx_index; // get interface klass Label no_such_interface; __ verify_oop(rdx_intf); __ lookup_interface_method(rax_klass, rdx_intf, // note: next two args must be the same: rbx_index, rbx_method, rdi_temp, no_such_interface); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); __ hlt(); __ bind(no_such_interface); // Throw an exception. // For historical reasons, it will be IncompatibleClassChangeError. __ mov(rbx_temp, rcx_recv); // rarg2_required might be RCX assert_different_registers(rarg2_required, rbx_temp); __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset)); // required interface __ mov( rarg1_actual, rbx_temp); // bad receiver __ movl( rarg0_code, (int) Bytecodes::_invokeinterface); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); } break; case _bound_ref_mh: case _bound_int_mh: case _bound_long_mh: case _bound_ref_direct_mh: case _bound_int_direct_mh: case _bound_long_direct_mh: { bool direct_to_method = (ek >= _bound_ref_direct_mh); BasicType arg_type = T_ILLEGAL; int arg_mask = _INSERT_NO_MASK; int arg_slots = -1; get_ek_bound_mh_info(ek, arg_type, arg_mask, arg_slots); // make room for the new argument: __ movl(rax_argslot, rcx_bmh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); insert_arg_slots(_masm, arg_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); // store bound argument into the new stack slot: __ load_heap_oop(rbx_temp, rcx_bmh_argument); if (arg_type == T_OBJECT) { __ movptr(Address(rax_argslot, 0), rbx_temp); } else { Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type)); const int arg_size = type2aelembytes(arg_type); __ load_sized_value(rdx_temp, prim_value_addr, arg_size, is_signed_subword_type(arg_type), rbx_temp); __ store_sized_value(Address(rax_argslot, 0), rdx_temp, arg_size, rbx_temp); } if (direct_to_method) { Register rbx_method = rbx_temp; __ load_heap_oop(rbx_method, rcx_mh_vmtarget); __ verify_oop(rbx_method); __ jmp(rbx_method_fie); } else { __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } } break; case _adapter_retype_only: case _adapter_retype_raw: // immediately jump to the next MH layer: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ verify_oop(rcx_recv); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); // This is OK when all parameter types widen. // It is also OK when a return type narrows. break; case _adapter_check_cast: { // temps: Register rbx_klass = rbx_temp; // interesting AMH data // check a reference argument before jumping to the next layer of MH: __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); // What class are we casting to? __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label done; __ movptr(rdx_temp, vmarg); __ testptr(rdx_temp, rdx_temp); __ jcc(Assembler::zero, done); // no cast if null __ load_klass(rdx_temp, rdx_temp); // live at this point: // - rbx_klass: klass required by the target method // - rdx_temp: argument klass to test // - rcx_recv: adapter method handle __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done); // If we get here, the type check failed! // Call the wrong_method_type stub, passing the failing argument type in rax. Register rax_mtype = rax_argslot; __ movl(rax_argslot, rcx_amh_vmargslot); // reload argslot field __ movptr(rdx_temp, vmarg); assert_different_registers(rarg2_required, rdx_temp); __ load_heap_oop(rarg2_required, rcx_amh_argument); // required class __ mov( rarg1_actual, rdx_temp); // bad object __ movl( rarg0_code, (int) Bytecodes::_checkcast); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(done); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_prim: case _adapter_ref_to_prim: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_i2i: // optimized subcase of adapt_prim_to_prim //case _adapter_opt_f2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_l2i: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxi: // optimized subcase of adapt_ref_to_prim { // perform an in-place conversion to int or an int subword __ movl(rax_argslot, rcx_amh_vmargslot); vmarg = __ argument_address(rax_argslot); switch (ek) { case _adapter_opt_i2i: __ movl(rdx_temp, vmarg); break; case _adapter_opt_l2i: { // just delete the extra slot; on a little-endian machine we keep the first __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); vmarg = Address(rax_argslot, -Interpreter::stackElementSize); __ movl(rdx_temp, vmarg); } break; case _adapter_opt_unboxi: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT); #ifdef ASSERT for (int bt = T_BOOLEAN; bt < T_INT; bt++) { if (is_subword_type(BasicType(bt))) assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), ""); } #endif __ null_check(rdx_temp, value_offset); __ movl(rdx_temp, Address(rdx_temp, value_offset)); // We load this as a word. Because we are little-endian, // the low bits will be correct, but the high bits may need cleaning. // The vminfo will guide us to clean those bits. } break; default: ShouldNotReachHere(); } // Do the requested conversion and store the value. Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); // get the new MH: __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); // (now we are done with the old MH) // original 32-bit vmdata word must be of this form: // | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 | __ xchgptr(rcx, rbx_vminfo); // free rcx for shifts __ shll(rdx_temp /*, rcx*/); Label zero_extend, done; __ testl(rcx, CONV_VMINFO_SIGN_FLAG); __ jccb(Assembler::zero, zero_extend); // this path is taken for int->byte, int->short __ sarl(rdx_temp /*, rcx*/); __ jmpb(done); __ bind(zero_extend); // this is taken for int->char __ shrl(rdx_temp /*, rcx*/); __ bind(done); __ movl(vmarg, rdx_temp); // Store the value. __ xchgptr(rcx, rbx_vminfo); // restore rcx_recv __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_i2l: // optimized subcase of adapt_prim_to_prim case _adapter_opt_unboxl: // optimized subcase of adapt_ref_to_prim { // perform an in-place int-to-long or ref-to-long conversion __ movl(rax_argslot, rcx_amh_vmargslot); // on a little-endian machine we keep the first slot and add another after __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); Address vmarg1(rax_argslot, -Interpreter::stackElementSize); Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize); switch (ek) { case _adapter_opt_i2l: { #ifdef _LP64 __ movslq(rdx_temp, vmarg1); // Load sign-extended __ movq(vmarg1, rdx_temp); // Store into first slot #else __ movl(rdx_temp, vmarg1); __ sarl(rdx_temp, BitsPerInt - 1); // __ extend_sign() __ movl(vmarg2, rdx_temp); // store second word #endif } break; case _adapter_opt_unboxl: { // Load the value up from the heap. __ movptr(rdx_temp, vmarg1); int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG); assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), ""); __ null_check(rdx_temp, value_offset); #ifdef _LP64 __ movq(rbx_temp, Address(rdx_temp, value_offset)); __ movq(vmarg1, rbx_temp); #else __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt)); __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt)); __ movl(vmarg1, rbx_temp); __ movl(vmarg2, rdx_temp); #endif } break; default: ShouldNotReachHere(); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_opt_f2d: // optimized subcase of adapt_prim_to_prim case _adapter_opt_d2f: // optimized subcase of adapt_prim_to_prim { // perform an in-place floating primitive conversion __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot, 1)); if (ek == _adapter_opt_f2d) { insert_arg_slots(_masm, stack_move_unit(), _INSERT_INT_MASK, rax_argslot, rbx_temp, rdx_temp); } Address vmarg(rax_argslot, -Interpreter::stackElementSize); #ifdef _LP64 if (ek == _adapter_opt_f2d) { __ movflt(xmm0, vmarg); __ cvtss2sd(xmm0, xmm0); __ movdbl(vmarg, xmm0); } else { __ movdbl(xmm0, vmarg); __ cvtsd2ss(xmm0, xmm0); __ movflt(vmarg, xmm0); } #else //_LP64 if (ek == _adapter_opt_f2d) { __ fld_s(vmarg); // load float to ST0 __ fstp_s(vmarg); // store single } else { __ fld_d(vmarg); // load double to ST0 __ fstp_s(vmarg); // store single } #endif //_LP64 if (ek == _adapter_opt_d2f) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_prim_to_ref: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_swap_args: case _adapter_rot_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_swap_1: case _adapter_opt_swap_2: case _adapter_opt_rot_1_up: case _adapter_opt_rot_1_down: case _adapter_opt_rot_2_up: case _adapter_opt_rot_2_down: { int swap_bytes = 0, rotate = 0; get_ek_adapter_opt_swap_rot_info(ek, swap_bytes, rotate); // 'argslot' is the position of the first argument to swap __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'vminfo' is the second Register rbx_destslot = rbx_temp; __ movl(rbx_destslot, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_destslot, CONV_VMINFO_MASK); __ lea(rbx_destslot, __ argument_address(rbx_destslot)); DEBUG_ONLY(verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame")); if (!rotate) { for (int i = 0; i < swap_bytes; i += wordSize) { __ movptr(rdx_temp, Address(rax_argslot , i)); __ push(rdx_temp); __ movptr(rdx_temp, Address(rbx_destslot, i)); __ movptr(Address(rax_argslot, i), rdx_temp); __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } else { // push the first chunk, which is going to get overwritten for (int i = swap_bytes; (i -= wordSize) >= 0; ) { __ movptr(rdx_temp, Address(rax_argslot, i)); __ push(rdx_temp); } if (rotate > 0) { // rotate upward __ subptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot > destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, L_ok); __ stop("source must be above destination (upward rotation)"); __ bind(L_ok); } #endif // work argslot down to destslot, copying contiguous data upwards // pseudo-code: // rax = src_addr - swap_bytes // rbx = dest_addr // while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, swap_bytes), rdx_temp); __ addptr(rax_argslot, -wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::aboveEqual, loop); } else { __ addptr(rax_argslot, swap_bytes); #ifdef ASSERT { // Verify that argslot < destslot, by at least swap_bytes. Label L_ok; __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, L_ok); __ stop("source must be below destination (downward rotation)"); __ bind(L_ok); } #endif // work argslot up to destslot, copying contiguous data downwards // pseudo-code: // rax = src_addr + swap_bytes // rbx = dest_addr // while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++; Label loop; __ bind(loop); __ movptr(rdx_temp, Address(rax_argslot, 0)); __ movptr(Address(rax_argslot, -swap_bytes), rdx_temp); __ addptr(rax_argslot, wordSize); __ cmpptr(rax_argslot, rbx_destslot); __ jccb(Assembler::belowEqual, loop); } // pop the original first chunk into the destination slot, now free for (int i = 0; i < swap_bytes; i += wordSize) { __ pop(rdx_temp); __ movptr(Address(rbx_destslot, i), rdx_temp); } } __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_dup_args: { // 'argslot' is the position of the first argument to duplicate __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // 'stack_move' is negative number of words to duplicate Register rdx_stack_move = rdx_temp; __ movl2ptr(rdx_stack_move, rcx_amh_conversion); __ sarptr(rdx_stack_move, CONV_STACK_MOVE_SHIFT); int argslot0_num = 0; Address argslot0 = __ argument_address(RegisterOrConstant(argslot0_num)); assert(argslot0.base() == rsp, ""); int pre_arg_size = argslot0.disp(); assert(pre_arg_size % wordSize == 0, ""); assert(pre_arg_size > 0, "must include PC"); // remember the old rsp+1 (argslot[0]) Register rbx_oldarg = rbx_temp; __ lea(rbx_oldarg, argslot0); // move rsp down to make room for dups __ lea(rsp, Address(rsp, rdx_stack_move, Address::times_ptr)); // compute the new rsp+1 (argslot[0]) Register rdx_newarg = rdx_temp; __ lea(rdx_newarg, argslot0); __ push(rdi); // need a temp // (preceding push must be done after arg addresses are taken!) // pull down the pre_arg_size data (PC) for (int i = -pre_arg_size; i < 0; i += wordSize) { __ movptr(rdi, Address(rbx_oldarg, i)); __ movptr(Address(rdx_newarg, i), rdi); } // copy from rax_argslot[0...] down to new_rsp[1...] // pseudo-code: // rbx = old_rsp+1 // rdx = new_rsp+1 // rax = argslot // while (rdx < rbx) *rdx++ = *rax++ Label loop; __ bind(loop); __ movptr(rdi, Address(rax_argslot, 0)); __ movptr(Address(rdx_newarg, 0), rdi); __ addptr(rax_argslot, wordSize); __ addptr(rdx_newarg, wordSize); __ cmpptr(rdx_newarg, rbx_oldarg); __ jccb(Assembler::less, loop); __ pop(rdi); // restore temp __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_drop_args: { // 'argslot' is the position of the first argument to nuke __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); __ push(rdi); // need a temp // (must do previous push after argslot address is taken) // 'stack_move' is number of words to drop Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); remove_arg_slots(_masm, rdi_stack_move, rax_argslot, rbx_temp, rdx_temp); __ pop(rdi); // restore temp __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); } break; case _adapter_collect_args: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; case _adapter_spread_args: // handled completely by optimized cases __ stop("init_AdapterMethodHandle should not issue this"); break; case _adapter_opt_spread_0: case _adapter_opt_spread_1: case _adapter_opt_spread_more: { // spread an array out into a group of arguments int length_constant = get_ek_adapter_opt_spread_info(ek); // find the address of the array argument __ movl(rax_argslot, rcx_amh_vmargslot); __ lea(rax_argslot, __ argument_address(rax_argslot)); // grab some temps { __ push(rsi); __ push(rdi); } // (preceding pushes must be done after argslot address is taken!) #define UNPUSH_RSI_RDI \ { __ pop(rdi); __ pop(rsi); } // arx_argslot points both to the array and to the first output arg vmarg = Address(rax_argslot, 0); // Get the array value. Register rsi_array = rsi; Register rdx_array_klass = rdx_temp; BasicType elem_type = T_OBJECT; int length_offset = arrayOopDesc::length_offset_in_bytes(); int elem0_offset = arrayOopDesc::base_offset_in_bytes(elem_type); __ movptr(rsi_array, vmarg); Label skip_array_check; if (length_constant == 0) { __ testptr(rsi_array, rsi_array); __ jcc(Assembler::zero, skip_array_check); } __ null_check(rsi_array, oopDesc::klass_offset_in_bytes()); __ load_klass(rdx_array_klass, rsi_array); // Check the array type. Register rbx_klass = rbx_temp; __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object! __ load_heap_oop(rbx_klass, Address(rbx_klass, java_lang_Class::klass_offset_in_bytes())); Label ok_array_klass, bad_array_klass, bad_array_length; __ check_klass_subtype(rdx_array_klass, rbx_klass, rdi, ok_array_klass); // If we get here, the type check failed! __ jmp(bad_array_klass); __ bind(ok_array_klass); // Check length. if (length_constant >= 0) { __ cmpl(Address(rsi_array, length_offset), length_constant); } else { Register rbx_vminfo = rbx_temp; __ movl(rbx_vminfo, rcx_amh_conversion); assert(CONV_VMINFO_SHIFT == 0, "preshifted"); __ andl(rbx_vminfo, CONV_VMINFO_MASK); __ cmpl(rbx_vminfo, Address(rsi_array, length_offset)); } __ jcc(Assembler::notEqual, bad_array_length); Register rdx_argslot_limit = rdx_temp; // Array length checks out. Now insert any required stack slots. if (length_constant == -1) { // Form a pointer to the end of the affected region. __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize)); // 'stack_move' is negative number of words to insert Register rdi_stack_move = rdi; __ movl2ptr(rdi_stack_move, rcx_amh_conversion); __ sarptr(rdi_stack_move, CONV_STACK_MOVE_SHIFT); Register rsi_temp = rsi_array; // spill this insert_arg_slots(_masm, rdi_stack_move, -1, rax_argslot, rbx_temp, rsi_temp); // reload the array (since rsi was killed) __ movptr(rsi_array, vmarg); } else if (length_constant > 1) { int arg_mask = 0; int new_slots = (length_constant - 1); for (int i = 0; i < new_slots; i++) { arg_mask <<= 1; arg_mask |= _INSERT_REF_MASK; } insert_arg_slots(_masm, new_slots * stack_move_unit(), arg_mask, rax_argslot, rbx_temp, rdx_temp); } else if (length_constant == 1) { // no stack resizing required } else if (length_constant == 0) { remove_arg_slots(_masm, -stack_move_unit(), rax_argslot, rbx_temp, rdx_temp); } // Copy from the array to the new slots. // Note: Stack change code preserves integrity of rax_argslot pointer. // So even after slot insertions, rax_argslot still points to first argument. if (length_constant == -1) { // [rax_argslot, rdx_argslot_limit) is the area we are inserting into. Register rsi_source = rsi_array; __ lea(rsi_source, Address(rsi_array, elem0_offset)); Label loop; __ bind(loop); __ movptr(rbx_temp, Address(rsi_source, 0)); __ movptr(Address(rax_argslot, 0), rbx_temp); __ addptr(rsi_source, type2aelembytes(elem_type)); __ addptr(rax_argslot, Interpreter::stackElementSize); __ cmpptr(rax_argslot, rdx_argslot_limit); __ jccb(Assembler::less, loop); } else if (length_constant == 0) { __ bind(skip_array_check); // nothing to copy } else { int elem_offset = elem0_offset; int slot_offset = 0; for (int index = 0; index < length_constant; index++) { __ movptr(rbx_temp, Address(rsi_array, elem_offset)); __ movptr(Address(rax_argslot, slot_offset), rbx_temp); elem_offset += type2aelembytes(elem_type); slot_offset += Interpreter::stackElementSize; } } // Arguments are spread. Move to next method handle. UNPUSH_RSI_RDI; __ load_heap_oop(rcx_recv, rcx_mh_vmtarget); __ jump_to_method_handle_entry(rcx_recv, rdx_temp); __ bind(bad_array_klass); UNPUSH_RSI_RDI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ movptr(rarg2_required, Address(rdx_array_klass, java_mirror_offset)); // required type __ movptr(rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_aaload); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); __ bind(bad_array_length); UNPUSH_RSI_RDI; assert(!vmarg.uses(rarg2_required), "must be different registers"); __ mov (rarg2_required, rcx_recv); // AMH requiring a certain length __ movptr(rarg1_actual, vmarg); // bad array __ movl( rarg0_code, (int) Bytecodes::_arraylength); // who is complaining? __ jump(ExternalAddress(from_interpreted_entry(_raise_exception))); #undef UNPUSH_RSI_RDI } break; case _adapter_flyby: case _adapter_ricochet: __ unimplemented(entry_name(ek)); // %%% FIXME: NYI break; default: ShouldNotReachHere(); } __ hlt(); address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry); __ unimplemented(entry_name(ek)); // %%% FIXME: NYI init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie)); }