Exemple #1
0
static void kalman_correct(kalman_t *kf, float p, float v)
{
   /* K = P * HT * inv(H * P * HT + R) */
   m_mlt(kf->H, kf->P, kf->T0);
   mmtr_mlt(kf->T0, kf->H, kf->T1);
   m_add(kf->T1, kf->R, kf->T0);
   m_inverse(kf->T0, kf->T1);
   mmtr_mlt(kf->P, kf->H, kf->T0);
   m_mlt(kf->T0, kf->T1, kf->K);

   /* x = x + K * (z - H * x) */
   mv_mlt(kf->H, kf->x, kf->t0);
   v_set_val(kf->z, 0, p);
   v_set_val(kf->z, 1, v);
   v_sub(kf->z, kf->t0, kf->t1);
   mv_mlt(kf->K, kf->t1, kf->t0);
   v_add(kf->x, kf->t0, kf->t1);
   v_copy(kf->t1, kf->x);
   
   /* P = (I - K * H) * P */
   m_mlt(kf->K, kf->H, kf->T0);
   m_sub(kf->I, kf->T0, kf->T1);
   m_mlt(kf->T1, kf->P, kf->T0);
   m_copy(kf->T0, kf->P);
}
// kernelRegression
// x:data
// dimention: x's dimention
// y: label of x 
// num: number of data
// result: coeffience
double *kernelRegression(double **x,int dimention,double *y,int num,double gamma,double regilarization){
	VEC *label;
	MAT *gram,*ident,*inv;
	int i,j;
	double *result;

	ident = m_get(num,num);
	label = v_get(num);
	memcpy(label->ve,y,sizeof(double)*num);
	gram = m_get(num,num);
	ident = m_get(num,num);
	for(i=0;i<num;i++){
		for(j=0;j<num;j++){
			gram->me[i][j]=kernel(x[i],x[j],dimention,gamma);
		}
	}
	inv=m_add(gram,sm_mlt(regilarization,m_ident(ident),NULL),NULL);
	inv=m_inverse(inv,NULL); //memory leak.
	VEC *coefficient=v_get(num);
	mv_mlt(inv,label,coefficient);
	result=malloc(sizeof(double)*num);
	memcpy(result,coefficient->ve,sizeof(double)*num);

	m_free(ident);
	m_free(gram);
	m_free(inv);
	v_free(label);
	v_free(coefficient);
	return result;
}
Exemple #3
0
//nearest points between two segments given by pi+veci, results given in ratio of vec [0 1]
int Reaching::FindSegmentsNearestPoints(cart_vec_t& p1,cart_vec_t& vec1,cart_vec_t& p2,cart_vec_t& vec2, float *nearest_point1, float *nearest_point2, float *dist){
  CMatrix3_t mat;
  CMatrix3_t invmat;
  cart_vec_t& vec3,tmp,tmp1,tmp2,k,v2;
  int i; 
  m_identity(mat);
  v_cross(vec1,vec2,vec3);// check if vec1 and vec2 are not //
  if(v_squ_length(vec3)<0.00001){
    return 0;
  }

  v_scale(vec2,-1,v2);
  m_set_v3_column(vec1,0,mat);
  m_set_v3_column(v2,1,mat);
  m_set_v3_column(vec3,2,mat);
  m_inverse(mat,invmat);
  v_sub(p2,p1,tmp);
  v_transform_normal(tmp,invmat,k);
  for(i=0;i<2;i++){
    k[i] = max(min(1,k[i]),0);
  }
  v_scale(vec1,k[0],tmp);
  v_add(p1,tmp,tmp1);
  v_scale(vec2,k[1],tmp);
  v_add(p2,tmp,tmp2);
  v_sub(tmp2,tmp1,tmp);
  *dist=v_length(tmp);
  *nearest_point1 = k[0];
  *nearest_point2 = k[1];
  return 1;
}
/**
 * Test matrix inverse.
 */
void test_m_inverse()
{
	precision_t data[][3] = {
		{  1,  0,  2 },
		{ -1,  5,  0 },
		{  0,  3, -9 }
	};

	matrix_t *X = m_initialize(3, 3);
	fill_matrix_data(X, data);

	matrix_t *Y = m_inverse(X);
	matrix_t *Z = m_product(Y, X);

	printf("X = \n");
	m_fprint(stdout, X);
	printf("Y = inv(X) = \n");
	m_fprint(stdout, Y);
	printf("Y * X = \n");
	m_fprint(stdout, Z);

	m_free(X);
	m_free(Y);
	m_free(Z);
}
Exemple #5
0
static MAT *calc_VinvIminAw(MAT *Vw, MAT *X, MAT *VinvIminAw, int calc_Aw) {
/*
 * calculate V_w^-1(I-A_w) (==VinvIminAw),
 * A = X(X'X)^-1 X' (AY = XBeta; Beta = (X'X)^-1 X'Y)
 *
 * on second thought (Nov 1998 -- more than 4 years later :-))
 * calc (I-Aw) only once and keep this constant during iteration.
 */
 	MAT *tmp = MNULL, *V = MNULL;
 	VEC *b = VNULL, *rhs = VNULL;
 	int i, j;

	if (X->m != Vw->n || VinvIminAw->m != X->m)
		ErrMsg(ER_IMPOSVAL, "calc_VinvIminAw: sizes don't match");
	
	if (calc_Aw) {
		IminAw = m_resize(IminAw, X->m, X->m);
		tmp = m_resize(tmp, X->n, X->n);
		tmp = mtrm_mlt(X, X, tmp); /* X'X */
		m_inverse(tmp, tmp); /* (X'X)-1 */
		/* X(X'X)-1 -> X(X'X)-1 X') */
		IminAw = XVXt_mlt(X, tmp, IminAw);
		for (i = 0; i < IminAw->m; i++) /* I - Aw */
			for (j = 0; j <= i; j++)
				if (i == j)
					IminAw->me[i][j] = 1.0 - IminAw->me[i][j];
				else
					IminAw->me[i][j] = IminAw->me[j][i] = -IminAw->me[i][j];
	}

	V = m_copy(Vw, V);
	LDLfactor(V);

	rhs = v_resize(rhs, X->m);
	b = v_resize(b, X->m);

	for (i = 0; i < X->m; i++) { /* solve Vw X = (I-A) for X -> V-1(I-A) */
		rhs = get_col(IminAw, i, rhs);
		LDLsolve(V, rhs, b);
		set_col(VinvIminAw, i, b);
	}
	v_free(rhs);
	v_free(b);
	m_free(V);

	if (tmp) 
		m_free(tmp);

	return VinvIminAw;
}
Exemple #6
0
/**
 * Compute the whitening matrix W_z for a matrix X.
 *
 * The whitening matrix, when applied to X, removes
 * the first- and second-order statistics; that is,
 * the mean and covariances are set to zero and the
 * variances are equalized.
 *
 * @param X  mean-subtracted input matrix
 * @return whitening matrix W_z
 */
matrix_t * sphere(matrix_t *X)
{
    // compute W_z = 2 * Cov(X)^(-1/2)
    matrix_t *W_z_temp1 = m_covariance(X);
    matrix_t *W_z_temp2 = m_sqrtm(W_z_temp1);
    matrix_t *W_z = m_inverse(W_z_temp2);
    m_elem_mult(W_z, 2);

    // cleanup
    m_free(W_z_temp1);
    m_free(W_z_temp2);

    return W_z;
}
Exemple #7
0
void render(void) {
	float m[16],im[16];
	
	create_shadow();
	
	glClearColor(0,0,0,0);
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
	gluPerspective(45,4.0 / 3.0,0.5,100);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
	gluLookAt(camera[0],camera[1],camera[2], mesh[0],mesh[1],mesh[2], 0,0,1);
    glLightfv(GL_LIGHT0,GL_POSITION,light);
	
	/* light */
	glBegin(GL_POINTS);
	glVertex3fv(light);
	glEnd();
	
	/* meshes */
	glEnable(GL_LIGHTING);
	glPushMatrix();
	glTranslatef(mesh[0],mesh[1],mesh[2]);
	glRotatef(angle,0,0,1);
	glRotatef(angle / 3,1,0,0);
	glCallList(mesh_id);
	glPopMatrix();
	glEnable(GL_TEXTURE_2D);
	glBindTexture(GL_TEXTURE_2D,texture_id);
	glCallList(ground_id);
	glDisable(GL_TEXTURE_2D);
	glDisable(GL_LIGHTING);
	
	/* shadow */
	glEnable(GL_TEXTURE_GEN_S);
	glEnable(GL_TEXTURE_GEN_T);
	glEnable(GL_TEXTURE_GEN_R);
	glEnable(GL_TEXTURE_GEN_Q);
	glGetFloatv(GL_MODELVIEW_MATRIX,m);
	m_inverse(m,im);
	glMatrixMode(GL_TEXTURE);
	glLoadIdentity();
	glTranslatef(0.5,0.5,0);
	glScalef(0.5,0.5,1.0);
	glOrtho(-1,1,-1,1,-1,1);
	gluLookAt(light[0],light[1],light[2], mesh[0],mesh[1],mesh[2], 0,0,1);
    glMultMatrixf(im);
	
    glEnable(GL_TEXTURE_2D);
	glBindTexture(GL_TEXTURE_2D,shadow_id);
	glEnable(GL_BLEND);
	glBlendFunc(GL_DST_COLOR,GL_SRC_COLOR);
    glCallList(ground_id);
	glDisable(GL_BLEND);
	glDisable(GL_TEXTURE_2D);
	
	glLoadIdentity();
	glMatrixMode(GL_MODELVIEW);
	glDisable(GL_TEXTURE_GEN_S);
	glDisable(GL_TEXTURE_GEN_T);
	glDisable(GL_TEXTURE_GEN_R);
	glDisable(GL_TEXTURE_GEN_Q);
	
	SDL_GL_SwapBuffers();
}
Exemple #8
0
static int reml(VEC *Y, MAT *X, MAT **Vk, int n_k, int max_iter,
	double fit_limit, VEC *teta) {
 	volatile int n_iter = 0;
 	int i;
	volatile double rel_step = DBL_MAX;
	VEC *rhs = VNULL;
	VEC *dteta = VNULL;
	MAT *Vw = MNULL, *Tr_m = MNULL, *VinvIminAw = MNULL;

	Vw = m_resize(Vw, X->m, X->m);
	VinvIminAw = m_resize(VinvIminAw, X->m, X->m);
	rhs = v_resize(rhs, n_k);
	Tr_m = m_resize(Tr_m, n_k, n_k);
	dteta = v_resize(dteta, n_k);
	while (n_iter < max_iter && rel_step > fit_limit) {
		print_progress(n_iter, max_iter);
		n_iter++;
		dteta = v_copy(teta, dteta);
		/* fill Vw, calc VinvIminAw, rhs; */
		for (i = 0, m_zero(Vw); i < n_k; i++)
			ms_mltadd(Vw, Vk[i], teta->ve[i], Vw); /* Vw = Sum_i teta[i]*V[i] */
		VinvIminAw = calc_VinvIminAw(Vw, X, VinvIminAw, n_iter == 1);
		calc_rhs_Tr_m(n_k, Vk, VinvIminAw, Y, rhs, Tr_m);
		/* Tr_m * teta = Rhs; symmetric, solve for teta: */
		LDLfactor(Tr_m);
		LDLsolve(Tr_m, rhs, teta);
		if (DEBUG_VGMFIT) {
			printlog("teta_%d [", n_iter);
			for (i = 0; i < teta->dim; i++)
				printlog(" %g", teta->ve[i]);
			printlog("] -(log.likelyhood): %g\n",
				calc_ll(Vw, X, Y, n_k));
		}
		v_sub(teta, dteta, dteta); /* dteta = teta_prev - teta_curr */
		if (v_norm2(teta) == 0.0)
			rel_step = 0.0;
		else
			rel_step = v_norm2(dteta) / v_norm2(teta);
	} /* while (n_iter < gl_iter && rel_step > fit_limit) */

	print_progress(max_iter, max_iter);
	if (n_iter == gl_iter)
		pr_warning("No convergence after %d iterations", n_iter);

	if (DEBUG_VGMFIT) { /* calculate and report covariance matrix */
		/* first, update to current est */
		for (i = 0, m_zero(Vw); i < n_k; i++)
			ms_mltadd(Vw, Vk[i], teta->ve[i], Vw); /* Vw = Sum_i teta[i]*V[i] */
		VinvIminAw = calc_VinvIminAw(Vw, X, VinvIminAw, 0);
		calc_rhs_Tr_m(n_k, Vk, VinvIminAw, Y, rhs, Tr_m);
		m_inverse(Tr_m, Tr_m);
		sm_mlt(2.0, Tr_m, Tr_m); /* Var(YAY)=2tr(AVAV) */
		printlog("Lower bound of parameter covariance matrix:\n");
		m_logoutput(Tr_m);
		printlog("# Negative log-likelyhood: %g\n", calc_ll(Vw, X, Y, n_k));
	}
	m_free(Vw);
	m_free(VinvIminAw);
	m_free(Tr_m);
	v_free(rhs);
	v_free(dteta);
	return (n_iter < max_iter && rel_step < fit_limit); /* converged? */
}
Exemple #9
0
void Ukf(VEC *omega, VEC *mag_vec, VEC *mag_vec_I, VEC *sun_vec, VEC *sun_vec_I, VEC *Torq_ext, double t, double h, int eclipse, VEC *state, VEC *st_error, VEC *residual, int *P_flag, double sim_time)
{
    static VEC *omega_prev = VNULL, *mag_vec_prev = VNULL, *sun_vec_prev = VNULL, *q_s_c = VNULL, *x_prev = VNULL, *Torq_prev, *x_m_o;
    static MAT *Q = {MNULL}, *R = {MNULL}, *Pprev = {MNULL};
    static double alpha, kappa, lambda, sqrt_lambda, w_m_0, w_c_0, w_i, beta;
    static int n_states, n_sig_pts, n_err_states, iter_num, initialize=0;
    
    VEC *x = VNULL, *x_priori = VNULL,  *x_err_priori = VNULL,  *single_sig_pt = VNULL, *v_temp = VNULL, *q_err_quat = VNULL,
            *err_vec = VNULL, *v_temp2 = VNULL, *x_ang_vel = VNULL, *meas = VNULL, *meas_priori = VNULL,
            *v_temp3 = VNULL, *x_posteriori_err = VNULL, *x_b_m = VNULL, *x_b_g = VNULL;
    MAT *sqrt_P = {MNULL}, *P = {MNULL}, *P_priori = {MNULL}, *sig_pt = {MNULL}, *sig_vec_mat = {MNULL},
            *err_sig_pt_mat = {MNULL}, *result = {MNULL}, *result_larger = {MNULL}, *result1 = {MNULL}, *Meas_err_mat = {MNULL},
            *P_zz = {MNULL}, *iP_vv = {MNULL}, *P_xz = {MNULL}, *K = {MNULL}, *result2 = {MNULL}, *result3 = {MNULL}, *C = {MNULL};
    
    int update_mag_vec, update_sun_vec, update_omega, i, j;
    double d_res;

    if (inertia == MNULL)
	{
		inertia = m_get(3,3);
		m_ident(inertia);
		inertia->me[0][0] = 0.007;
		inertia->me[1][1] = 0.014;
		inertia->me[2][2] = 0.015;
	}

    if (initialize == 0){
        iter_num = 1;
		n_states = (7+6);
        n_err_states = (6+6);
        n_sig_pts = 2*n_err_states+1;
        alpha = sqrt(3);
        kappa = 3 - n_states;
        lambda = alpha*alpha * (n_err_states+kappa) - n_err_states;
        beta = -(1-(alpha*alpha)); 
        w_m_0 = (lambda)/(n_err_states + lambda);
        w_c_0 = (lambda/(n_err_states + lambda)) + (1 - (alpha*alpha) + beta);
        w_i = 0.5/(n_err_states +lambda);
        initialize = 1;
        sqrt_lambda = (lambda+n_err_states);
        if(q_s_c == VNULL)
        {
            q_s_c = v_get(4);
            
            q_s_c->ve[0] = -0.020656;
            q_s_c->ve[1] = 0.71468;
            q_s_c->ve[2] = -0.007319;
            q_s_c->ve[3] = 0.6991;
        }
        if(Torq_prev == VNULL)
        {
            Torq_prev = v_get(3);
            v_zero(Torq_prev);
        }
        
        quat_normalize(q_s_c);
		
    }
      

    result = m_get(9,9);
    m_zero(result);
        
    result1 = m_get(n_err_states, n_err_states);
    m_zero(result1);
        
    if(x_m_o == VNULL)
	{
		x_m_o = v_get(n_states);
		v_zero(x_m_o);     
	}
	
	x = v_get(n_states);
    v_zero(x);
    
    
    x_err_priori = v_get(n_err_states);
    v_zero(x_err_priori);
    
    x_ang_vel = v_get(3);
    v_zero(x_ang_vel);
    
    sig_pt = m_get(n_states, n_err_states);
    m_zero(sig_pt);
    
    
	if (C == MNULL)
    {
        C = m_get(9, 12);
        m_zero(C);
    }    

    
    if (P_priori == MNULL)
    {
        P_priori = m_get(n_err_states, n_err_states);
        m_zero(P_priori);
    }
    
	
    if (Q == MNULL)
    {
        Q = m_get(n_err_states, n_err_states); 
        m_ident(Q);
        //
        Q->me[0][0] = 0.0001;
        Q->me[1][1] = 0.0001;
        Q->me[2][2] = 0.0001;
		
        Q->me[3][3] = 0.0001;
        Q->me[4][4] = 0.0001;
        Q->me[5][5] = 0.0001;

        Q->me[6][6] = 0.000001;
        Q->me[7][7] = 0.000001;
        Q->me[8][8] = 0.000001;

        Q->me[9][9]   = 0.000001;
        Q->me[10][10] = 0.000001;
        Q->me[11][11] = 0.000001;
	}

    

    if( Pprev == MNULL)
    {
        Pprev = m_get(n_err_states, n_err_states); 
        m_ident(Pprev);
		
        Pprev->me[0][0] = 1e-3;
        Pprev->me[1][1] = 1e-3;
        Pprev->me[2][2] = 1e-3;
        Pprev->me[3][3] = 1e-3;
        Pprev->me[4][4] = 1e-3;
        Pprev->me[5][5] = 1e-3;
        Pprev->me[6][6] = 1e-4;
        Pprev->me[7][7] = 1e-4;
        Pprev->me[8][8] = 1e-4;
        Pprev->me[9][9] =	1e-3;
        Pprev->me[10][10] = 1e-3;
        Pprev->me[11][11] = 1e-3;
    }



    if (R == MNULL)
    {
        R = m_get(9,9);
        m_ident(R);
    
        R->me[0][0] = 0.034;
        R->me[1][1] = 0.034;
        R->me[2][2] = 0.034;
        
        R->me[3][3] = 0.00027;
        R->me[4][4] = 0.00027;
        R->me[5][5] = 0.00027;
        
        R->me[6][6] = 0.000012;
        R->me[7][7] = 0.000012;
        R->me[8][8] = 0.000012;
    }

	if(eclipse==0)
	{
		R->me[0][0] = 0.00034;
        R->me[1][1] = 0.00034;
        R->me[2][2] = 0.00034;
        
        R->me[3][3] = 0.00027;
        R->me[4][4] = 0.00027;
        R->me[5][5] = 0.00027;
        
        R->me[6][6] = 0.0000012;
        R->me[7][7] = 0.0000012;
        R->me[8][8] = 0.0000012;


		Q->me[0][0] =	0.00001;
        Q->me[1][1] =	0.00001;
        Q->me[2][2] =	0.00001;

        Q->me[3][3] =	0.0001;//0.000012;//0.0175;//1e-3; 
        Q->me[4][4] =	0.0001;//0.0175;//1e-3;
        Q->me[5][5] =	0.0001;//0.0175;//1e-3;

        Q->me[6][6] =	0.0000000001;//1e-6;
        Q->me[7][7] =	0.0000000001;
        Q->me[8][8] =	0.0000000001;

        Q->me[9][9]   =	0.0000000001;
        Q->me[10][10] = 0.0000000001;
        Q->me[11][11] = 0.0000000001;
	}    
	else
	{
		R->me[0][0] = 0.34;
        R->me[1][1] = 0.34;
        R->me[2][2] = 0.34;

        R->me[3][3] =	0.0027;
        R->me[4][4] =	0.0027;
        R->me[5][5] =	0.0027;
        
        R->me[6][6] =	0.0000012;
        R->me[7][7] =	0.0000012;
        R->me[8][8] =	0.0000012;


		Q->me[0][0] =	0.00001;
        Q->me[1][1] =	0.00001;
        Q->me[2][2] =	0.00001;
		
        Q->me[3][3] =	0.0001;
        Q->me[4][4] =	0.0001;
        Q->me[5][5] =	0.0001;

        Q->me[6][6] =	0.0000000001;
        Q->me[7][7] =	0.0000000001;
        Q->me[8][8] =	0.0000000001;

        Q->me[9][9]   = 0.0000000001;
        Q->me[10][10] = 0.0000000001;
        Q->me[11][11] = 0.0000000001;
	}
    
    if(omega_prev == VNULL)
    {
        omega_prev = v_get(3);
        v_zero(omega_prev);
        
    }
    
    if(mag_vec_prev == VNULL)
    {
        mag_vec_prev = v_get(3);
        v_zero(mag_vec_prev);     
    }
    
    if(sun_vec_prev == VNULL)
    {
        sun_vec_prev = v_get(3);
        v_zero(sun_vec_prev);
    }
    
   
    if (err_sig_pt_mat == MNULL)
    {
        err_sig_pt_mat = m_get(n_err_states, n_sig_pts); 
        m_zero(err_sig_pt_mat);        
    }
    
    
    if(q_err_quat == VNULL)
    {
        q_err_quat = v_get(4);
//         q_err_quat = v_resize(q_err_quat,4);
        v_zero(q_err_quat);
    }
    
    if(err_vec == VNULL)
    {
        err_vec = v_get(3);
        v_zero(err_vec);
    }
    
    
    v_temp = v_get(9);
    
    v_resize(v_temp,3);

     
    if(x_prev == VNULL)
    {
        x_prev = v_get(n_states);
        v_zero(x_prev);
        x_prev->ve[3] = 1;
        
        quat_mul(x_prev,q_s_c,x_prev);
        
        x_prev->ve[4] = 0.0;
        x_prev->ve[5] = 0.0;
        x_prev->ve[6] = 0.0;
        
        x_prev->ve[7] = 0.0;
        x_prev->ve[8] = 0.0;
        x_prev->ve[9] = 0.0;
        
        x_prev->ve[10] = 0.0;
        x_prev->ve[11] = 0.0;
        x_prev->ve[12] = 0.0;
    }


    
    sqrt_P = m_get(n_err_states, n_err_states);
    m_zero(sqrt_P);


    //result = m_resize(result, n_err_states, n_err_states);
    result_larger = m_get(n_err_states, n_err_states);
    int n, m;
    for(n = 0; n < result->n; n++)
    {
    	for(m = 0; m < result->m; m++)
		{
			result_larger->me[m][n] = result->me[m][n];
		}
    }
    


	
	
 	//v_resize(v_temp, n_err_states);
 	V_FREE(v_temp);
 	v_temp = v_get(n_err_states);

	symmeig(Pprev, result_larger, v_temp);

	i = 0;
	for (j=0;j<n_err_states;j++){
		if(v_temp->ve[j]>=0);
		else{
			i = 1;
		}
		
	}
		
	m_copy(Pprev, result1);
	sm_mlt(sqrt_lambda, result1, result_larger);
	catchall(CHfactor(result_larger), printerr(sim_time));
	
	
	for(i=0; i<n_err_states; i++){
		for(j=i+1; j<n_err_states; j++){
			result_larger->me[i][j] = 0;
		}
	}

	expandstate(result_larger, x_prev, sig_pt);

    sig_vec_mat = m_get(n_states, n_sig_pts);
    m_zero(sig_vec_mat);
    
    
    for(j = 0; j<(n_err_states+1); j++)
    {
        
        for(i = 0; i<n_states; i++)
        {
			if(j==0)
			{
				sig_vec_mat->me[i][j] = x_prev->ve[i];
			}
            else if(j>0) 
			{
				sig_vec_mat->me[i][j] = sig_pt->me[i][j-1];
			}
		}
	}
	
	sm_mlt(-1,result_larger,result_larger);
    
    expandstate(result_larger, x_prev, sig_pt);
    
	for(j = (n_err_states+1); j<n_sig_pts; j++)
    {
        for(i = 0; i<n_states; i++)
        {
			sig_vec_mat->me[i][j] = sig_pt->me[i][j-(n_err_states+1)];
	    }
    }

    single_sig_pt = v_get(n_states); 

    
    quat_rot_vec(q_s_c, Torq_ext);
    
               
    for(j=0; j<(n_sig_pts); j++)
    {   
        //v_temp = v_resize(v_temp,n_states);
        V_FREE(v_temp);
        v_temp = v_get(n_states);
        get_col(sig_vec_mat, j, single_sig_pt);
        v_copy(single_sig_pt, v_temp);
        rk4(t, v_temp, h, Torq_prev);
        set_col(sig_vec_mat, j, v_temp);

    }
    
    v_copy(Torq_ext, Torq_prev);
    
    x_priori = v_get(n_states);
    v_zero(x_priori);
    
    
    v_resize(v_temp,n_states);
    v_zero(v_temp);
    
    for(j=0; j<n_sig_pts; j++)
    {
        get_col( sig_vec_mat, j, v_temp);
        if(j == 0)
        {
            v_mltadd(x_priori, v_temp, w_m_0, x_priori);
        }
        else 
        {
            v_mltadd(x_priori, v_temp, w_i, x_priori);
        }
        
    }

    
    v_copy(x_priori, v_temp);

    v_resize(v_temp,4);
    quat_normalize(v_temp);//zaroori hai ye
	
	
    for(i=0; i<4; i++)
    {
        x_priori->ve[i] = v_temp->ve[i];
    }
   

    v_resize(v_temp, n_states);
    v_copy(x_priori, v_temp);
    
    v_resize(v_temp, 4);
    
    quat_inv(v_temp, v_temp);
        
    
    for(i=0; i<3; i++)
    {
        x_ang_vel->ve[i] = x_priori->ve[i+4];
    }
     
    
   
    x_b_m = v_get(3);
    v_zero(x_b_m);
    x_b_g = v_get(3);
    v_zero(x_b_g);
    /////////////////////////check it!!!!!!!! checked... doesnt change much the estimate
    for(i=0; i<3; i++)
    {
        x_b_m->ve[i] = x_priori->ve[i+7];
        x_b_g->ve[i] = x_priori->ve[i+10];
    }
    
    v_temp2 = v_get(n_states);
    v_zero(v_temp2);


    
    for(j=0; j<n_sig_pts; j++)
    {
        v_resize(v_temp2, n_states);
        get_col( sig_vec_mat, j, v_temp2);

        for(i=0; i<3; i++)
        {
            err_vec->ve[i] = v_temp2->ve[i+4];
        }
        
        v_resize(v_temp2, 4);
        quat_mul(v_temp2, v_temp, q_err_quat);

        v_resize(q_err_quat, n_err_states);
        
        v_sub(err_vec, x_ang_vel, err_vec);
        for(i=3; i<6; i++)
        {
            q_err_quat->ve[i] = err_vec->ve[i-3];
        }
        
        for(i=0; i<3; i++)
        {
            err_vec->ve[i] = v_temp2->ve[i+7];
        }
        v_sub(err_vec, x_b_m, err_vec);
        for(i=6; i<9; i++)
        {
            q_err_quat->ve[i] = err_vec->ve[i-6];
        }
        
        for(i=0; i<3; i++)
        {
            err_vec->ve[i] = v_temp2->ve[i+10];
        }
        v_sub(err_vec, x_b_g, err_vec);
        for(i=9; i<12; i++)
        {
            q_err_quat->ve[i] = err_vec->ve[i-9];
        }
        
                
        set_col(err_sig_pt_mat, j, q_err_quat); 

        if(j==0){
            v_mltadd(x_err_priori, q_err_quat, w_m_0, x_err_priori);  
        }
        else{
            v_mltadd(x_err_priori, q_err_quat, w_i, x_err_priori);     
        }

    }
    
    v_resize(v_temp,n_err_states);
    for (j=0;j<13;j++)
    {
        get_col(err_sig_pt_mat, j, v_temp);
        v_sub(v_temp, x_err_priori, v_temp);
        get_dyad(v_temp, v_temp, result_larger);
        
        if(j==0){
            sm_mlt(w_c_0, result_larger, result_larger);
        }
        else{
            sm_mlt(w_i, result_larger, result_larger);
        }
        m_add(P_priori, result_larger, P_priori);
    }
    

	symmeig(P_priori, result_larger, v_temp);

	i = 0;
	for (j=0;j<n_err_states;j++){
		if(v_temp->ve[j]>=0);
		else{
			i = 1;
		}
		
	}


	m_add(P_priori, Q, P_priori);
	
	

   v_resize(v_temp,3);    
  
   meas = v_get(9);
   if (!(is_vec_equal(sun_vec, sun_vec_prev)) /*&& (eclipse==0)*/ ){
        update_sun_vec =1;
        v_copy(sun_vec, sun_vec_prev);
        v_copy(sun_vec, v_temp);
    
        normalize_vec(v_temp);
        quat_rot_vec(q_s_c, v_temp);  
        normalize_vec(v_temp);
        
        
        for(i = 0; i<3;i++){
            meas->ve[i] = v_temp->ve[i];
        }
    }
   else{
       update_sun_vec =0;
       for(i = 0; i<3;i++){
            meas->ve[i] = 0;
        }
    }
   
    
    if (!(is_vec_equal(mag_vec, mag_vec_prev)) ){
        update_mag_vec =1;
        v_copy(mag_vec, mag_vec_prev);
        v_copy(mag_vec, v_temp);
              
        normalize_vec(v_temp);
        quat_rot_vec(q_s_c, v_temp);
        normalize_vec(v_temp); 
        for(i=3; i<6; i++){
            meas->ve[i] = v_temp->ve[i-3];
        }
    }
    else{
        update_mag_vec =0;
        for(i=3; i<6; i++){
            meas->ve[i] = 0;//mag_vec_prev->ve[i-3];
        }
    }
     
    if (!(is_vec_equal(omega, omega_prev) ) ){
        update_omega =1;
        v_copy(omega, omega_prev);
        v_copy(omega, v_temp);
        
      
        quat_rot_vec(q_s_c, v_temp);
        for(i=6; i<9; i++){
            meas->ve[i] = v_temp->ve[i-6];
        }
    }
    else{
        update_omega =0;
        for(i=6; i<9; i++){
            meas->ve[i] = 0;
        }
    }    
    

    v_resize(v_temp, 9);
    v_resize(v_temp2, n_states);
    v_temp3 = v_get(3);
    
    Meas_err_mat = m_get(9, n_sig_pts);
    m_zero(Meas_err_mat);
    
    meas_priori = v_get(9);
    v_zero(meas_priori);
    
	
	    
    for(j=0; j<n_sig_pts; j++)
    {
        get_col( sig_vec_mat, j, v_temp2);
        
        if(update_omega){
           
            for(i=6;i<9;i++){
                v_temp->ve[i] = v_temp2->ve[i-2] + x_b_g->ve[i-6];
                
            }
        }
        else{
            for(i=6;i<9;i++){
                v_temp->ve[i] = 0;
            }
        }

        v_resize(v_temp2, 4); 

        if(update_sun_vec){
            for(i=0;i<3;i++){
                v_temp3->ve[i] = sun_vec_I->ve[i];
            }
            quat_rot_vec(v_temp2, v_temp3);
            normalize_vec(v_temp3);
            
            for(i=0;i<3;i++){
                v_temp->ve[i] = v_temp3->ve[i]; 
            }
			
			
        }
        else{
            for(i=0;i<3;i++){
                v_temp->ve[i] = 0;
            }
        }
        if(update_mag_vec){
            for(i=0;i<3;i++){
                v_temp3->ve[i] = mag_vec_I->ve[i];
            }
            normalize_vec(v_temp3);
            for(i=0;i<3;i++){
                v_temp3->ve[i] = v_temp3->ve[i] + x_b_m->ve[i];
            } 
            quat_rot_vec(v_temp2, v_temp3);
            normalize_vec(v_temp3);
           
            for(i=3;i<6;i++){
                v_temp->ve[i] = v_temp3->ve[i-3];
            }

			           
        }
        else{
            for(i=3;i<6;i++){
                v_temp->ve[i] = 0;
            }
        }
        
   
        set_col(Meas_err_mat, j, v_temp); 
        
        if(j==0){
            v_mltadd(meas_priori, v_temp, w_m_0, meas_priori);
        }
        else{
            v_mltadd(meas_priori, v_temp, w_i, meas_priori);  
        }
    }
	
	

	
	v_resize(v_temp, 9);

    m_resize(result_larger, 9, 9);
    m_zero(result_larger);
    
    P_zz = m_get(9, 9);
    m_zero(P_zz);
    
    iP_vv = m_get(9, 9);
    m_zero(iP_vv);
    
   
    P_xz = m_get(n_err_states, 9);
    m_zero(P_xz);
    
    v_resize(v_temp2, n_err_states);
    
    result1 = m_resize(result1,n_err_states,9);    
    
	for (j=0; j<n_sig_pts; j++)
    {
        get_col( Meas_err_mat, j, v_temp);
        
        get_col( err_sig_pt_mat, j, v_temp2);
        
	
        v_sub(v_temp, meas_priori, v_temp); 
        
        get_dyad(v_temp, v_temp, result_larger);
        
        get_dyad(v_temp2, v_temp, result1);
               
        if(j==0){
            sm_mlt(w_c_0, result_larger, result_larger);
            sm_mlt(w_c_0, result1, result1);
        }
        else{
            sm_mlt(w_i, result_larger, result_larger);
            sm_mlt(w_i, result1, result1);
        }
      
			
		m_add(P_zz, result_larger, P_zz);
        m_add(P_xz, result1, P_xz);
        
    }
	




	symmeig(P_zz, result_larger, v_temp);

	i = 0;
	for (j=0; j<9; j++){
		if(v_temp->ve[j]>=0);
		else{
			i = 1;
		}
	}


	m_add(P_zz, R, P_zz);
	
	m_inverse(P_zz, iP_vv);

	
    K = m_get(n_err_states, 9);
    m_zero(K);

    m_mlt(P_xz, iP_vv, K); 
	
	

    
    if(x_posteriori_err == VNULL)
    {
        x_posteriori_err = v_get(n_err_states);
        v_zero(x_posteriori_err);
    }
    v_resize(v_temp,9);
    
    v_sub(meas, meas_priori, v_temp);
    
    v_copy(v_temp, residual);
    mv_mlt(K, v_temp, x_posteriori_err);
     
    v_resize(v_temp2,3);
    for(i=0;i<3;i++){
        v_temp2->ve[i] = x_posteriori_err->ve[i];
    }
    
    
    for(i=4; i<n_states; i++){
       
        x_prev->ve[i] = (x_posteriori_err->ve[i-1] + x_priori->ve[i]);
    }
    
     
    
    d_res = v_norm2(v_temp2);
    v_resize(v_temp2,4);
	

	
    if(d_res<=1 /*&& d_res!=0*/){


        v_temp2->ve[0] = v_temp2->ve[0];
        v_temp2->ve[1] = v_temp2->ve[1];
        v_temp2->ve[2] = v_temp2->ve[2];
        v_temp2->ve[3] = sqrt(1-d_res); 

    }
	else//baad main daala hai
	{
		v_temp2->ve[0] = (v_temp2->ve[0])/(sqrt(1+d_res));
        v_temp2->ve[1] = (v_temp2->ve[1])/(sqrt(1+d_res));
        v_temp2->ve[2] = (v_temp2->ve[2])/(sqrt(1+d_res));
        v_temp2->ve[3] = 1/sqrt(1 + d_res);
	}
    
    v_resize(x_posteriori_err, n_states);

    for(i=(n_states-1); i>3; i--){
        x_posteriori_err->ve[i] = x_posteriori_err->ve[i-1];
    }
    for(i=0; i<4; i++){
        x_posteriori_err->ve[i] = v_temp2->ve[i];
    }

    
    quat_mul(v_temp2, x_priori, v_temp2);
   
    for(i=0;i<4;i++){
        x_prev->ve[i] = v_temp2->ve[i];
    }
   
     m_resize(result_larger, n_err_states, 9);
       
     m_mlt(K, P_zz, result_larger);
     result2 = m_get(9, n_err_states);
     
	m_transp(K,result2);
  
		
     m_resize(result1, n_err_states, n_err_states);
     m_mlt(result_larger, result2,  result1);
     v_resize(v_temp, n_err_states);
	
	 
	 m_sub(P_priori, result1, Pprev);

	 symmeig(Pprev, result1 , v_temp);

	 i = 0;
	 
     for (j=0;j<n_err_states;j++){
		 if(v_temp->ve[j]>=0);
		 else{
			 i = 1;
		 }
     }


    
	v_copy(x_prev, v_temp);
	v_resize(v_temp,4);
	v_copy(x_prev, v_temp2);
	v_resize(v_temp2,4);

	
	v_copy(x_prev, x_m_o);
	//v_resize(x_m_o, 4);

     v_resize(v_temp,3);
     quat_inv(q_s_c, v_temp2);
     v_copy( x_prev, state); 
     quat_mul(state, v_temp2, state);
		


     for(i=0; i<3; i++){
         v_temp->ve[i] = state->ve[i+4];
     }
     quat_rot_vec(v_temp2, v_temp);
     
     for(i=0; i<3; i++){
         state->ve[i+4] = v_temp->ve[i];
     }
     
    v_copy( x_posteriori_err, st_error);
    

		

    iter_num++;
    
	V_FREE(x);
	V_FREE(x_priori);
	V_FREE(x_err_priori);
	V_FREE(single_sig_pt);
	V_FREE(v_temp);
	V_FREE(q_err_quat);
	V_FREE(err_vec);
	V_FREE(v_temp2);
	V_FREE(x_ang_vel);
	V_FREE(meas);
	V_FREE(meas_priori);
	V_FREE(v_temp3);
	V_FREE(x_posteriori_err);
	V_FREE(x_b_m);
	V_FREE(x_b_g);
	
 
	M_FREE(sqrt_P);
	M_FREE(P);
	M_FREE(P_priori);
	M_FREE(sig_pt);
	M_FREE(sig_vec_mat);
	M_FREE(err_sig_pt_mat);
	M_FREE(result);
	M_FREE(result_larger);
	M_FREE(result1);
	M_FREE(Meas_err_mat);
	M_FREE(P_zz);
	M_FREE(iP_vv);
	M_FREE(P_xz);
	M_FREE(K);
	M_FREE(result2);
	M_FREE(result3);
     
}
Exemple #10
0
void Sy_m( VEC *x, VEC *Torq_ext, VEC *out)
{
    static MAT *iI = {MNULL};
	MAT *sk_om = {MNULL};
    VEC *q, *w, *q_dot, *w_dot, *v_res1, *v_res2; 
    int i;

    if ( x == VNULL || out == VNULL ){
        error(E_NULL,"f");
	}
    if ( x->dim != 13 || out->dim != 13){
        error(E_SIZES,"f");
	}

 
    q = v_get(4);
    for (i=0; i<4; i++)
    {
        q->ve[i] = x->ve[i];
    }
    
    w = v_get(3);
    for (i=4; i<7; i++)
    {
        w->ve[i-4] = x->ve[i];
    }
               
    v_res1 = v_get(3);
    v_zero(v_res1);
    
    v_res2 = v_get(3);
    v_zero(v_res2);
    
    q_dot = v_get(4);
    v_zero(q_dot);
    
    w_dot = v_get(3);
    v_zero(w_dot);
    
    if(iI == MNULL){
        iI = m_get(3,3);
        m_zero(iI);
    }
    sk_om = m_get(4,4);
    skew_mat(sk_om, w);
           
    mv_mlt(sk_om, q, q_dot);
    sv_mlt(0.5, q_dot, q);
    
        
    for (i=0; i<4; i++)
    {
        out->ve[i] = q->ve[i];
    }
       
    /*****wd********/
    m_resize(sk_om, 3, 3);
    mv_mlt(inertia, w, v_res1);
    mv_mlt(sk_om, v_res1, v_res2);
    v_sub(Torq_ext, v_res2, v_res1);
    m_inverse(inertia,iI);
    mv_mlt(iI, v_res1, w_dot);    
        
    for (i=4; i<7; i++)
    {
        out->ve[i] = w_dot->ve[i-4];
    }
   
    
    for (i=7; i<13; i++)
    {
        out->ve[i] = 0;
    }
    
    
    M_FREE(sk_om);
    //M_FREE(iI);
    V_FREE(q);
    V_FREE(w);
    V_FREE(q_dot);
    V_FREE(w_dot);
    V_FREE(v_res1);
    V_FREE(v_res2);
    
      
}
Exemple #11
0
Var* ff_warp(vfuncptr func, Var* arg)
{
	Var *obj = NULL, *xm = NULL, *oval;
	float ignore = FLT_MIN;
	int i, j;
	float* out;
	int x, y, n;
	int grow = 0;
	float m[9];
	float* minverse;
	float xmax, xmin, ymax, ymin;
	float v[3];
	int dsize;
	const char* options[] = {"nearest", "bilinear", 0};
	char* interp          = NULL;

	float (*interp_f)(float, float, Var*, float);

	Alist alist[6];

	alist[0]      = make_alist("object", ID_VAL, NULL, &obj);
	alist[1]      = make_alist("matrix", ID_VAL, NULL, &xm);
	alist[2]      = make_alist("ignore", DV_FLOAT, NULL, &ignore);
	alist[3]      = make_alist("grow", DV_INT32, NULL, &grow);
	alist[4]      = make_alist("interp", ID_ENUM, options, &interp);
	alist[5].name = NULL;

	if (parse_args(func, arg, alist) == 0) return (NULL);

	if (obj == NULL) {
		parse_error("%s: No object specified\n", func->name);
		return (NULL);
	}
	if (ignore == FLT_MIN) ignore = -32768;

	x = GetX(obj);
	y = GetY(obj);
	n = V_SIZE(xm)[2];

	for (j = 0; j < 3; j++) {
		for (i = 0; i < 3; i++) {
			m[i + j * 3] = extract_float(xm, cpos(i, j, 0, xm));
		}
	}

	xmin = ymin = 0;
	xmax        = x;
	ymax        = y;

	if (grow) {
		/* figure out the size of the output array */
		float* out;
		minverse = m_inverse(m);

		out  = vxm(new_v(0, 0), minverse);
		xmin = out[0];
		xmax = out[0];
		ymin = out[1];
		ymax = out[1];
		free(out);

		out  = vxm(new_v(x, 0), minverse);
		xmin = min(xmin, out[0]);
		xmax = max(xmax, out[0]);
		ymin = min(ymin, out[1]);
		ymax = max(ymax, out[1]);
		free(out);

		out  = vxm(new_v(0, y), minverse);
		xmin = min(xmin, out[0]);
		xmax = max(xmax, out[0]);
		ymin = min(ymin, out[1]);
		ymax = max(ymax, out[1]);
		free(out);

		out  = vxm(new_v(x, y), minverse);
		xmin = min(xmin, out[0]);
		xmax = max(xmax, out[0]);
		ymin = min(ymin, out[1]);
		ymax = max(ymax, out[1]);
		free(out);

		xmax = ceil(xmax);
		xmin = floor(xmin);
		ymax = ceil(ymax);
		ymin = floor(ymin);

		printf("new array corners:\n");
		printf("  %fx%f , %fx%f\n", xmin, ymin, xmax, ymax);
	}

	if (interp == NULL || !strcmp(interp, "nearest")) {
		interp_f = interp_nn;
	} else if (!strcmp(interp, "bilinear")) {
		interp_f = interp_bilinear;
	} else {
		parse_error("Invalid interpolation function\n");
		return (NULL);
	}

	dsize = (xmax - xmin) * (ymax - ymin);
	out   = calloc(dsize, sizeof(float));
	oval  = newVal(BSQ, xmax - xmin, ymax - ymin, 1, DV_FLOAT, out);

	for (j = ymin; j < ymax; j++) {
		for (i = xmin; i < xmax; i++) {
			v[0] = i + 0.5;
			v[1] = j + 0.5;
			v[2] = 1;
			vxm(v, m);
			out[cpos((int)(i - xmin), (int)(j - ymin), 0, oval)] = interp_f(v[0], v[1], obj, ignore);
		}
	}
	return (oval);
}
Exemple #12
0
int Reaching::LinkDistanceToObject(int link, EnvironmentObject *obj, float *dist, 
			 float *point, cart_vec_t& contact_vector){
  cart_vec_t& objPos;
  cart_vec_t& lowerLinkExtr;
  cart_vec_t& upperLinkExtr;
  cart_vec_t& v1,v2,linkv,u,vertexPos,v_tmp,tmp3;
  CMatrix4_t ref,tmpmat,tmpmat2;
  cart_vec_t& s1,s2;
  int i,j,k,dir1,dir2,pindex,min_i;
  float alldists[12]; //closest distance to each edge
  float allpoints[24]; // closest pair of points on each edge
  float min_dist;
  int s3[3];

  for (i=0;i<12;i++){
    alldists[i]=FLT_MAX;
  }

  switch(link){
  case 1:
    v_clear(upperLinkExtr);
    ElbowPosition(pos_angle,lowerLinkExtr);
    break;
  case 2:
    ElbowPosition(pos_angle,upperLinkExtr);
    v_copy(pos_cart,lowerLinkExtr);
    break;
  default:
    cout<<"unvalid link number"<< endl;
  }
  if(!obj){
    return 0;
  }
  //  v_sub(obj->solid->m_position, shoulder_abs_pos,objPos);
    Abs2LocalRef(obj->GetPosition(), objPos);
  //  cout<<"ule: ";coutvec(upperLinkExtr);
  //  cout<<"lle: ";coutvec(lowerLinkExtr);
    //  coutvec(objPos);
  v_sub(lowerLinkExtr,objPos,v1);
  v_sub(upperLinkExtr,objPos,v2);
  //m_transpose(obj->solid->m_ref.m_orient,ref); //stupid to do it each time
  m_copy(obj->solid->m_ref.m_orient,ref); //stupid to do it each time
  v_clear(s3);
  
  //checking when two parallel sides must me checked
  for(i=0;i<3;i++){
    s1[i] = v_dot(v1, &ref[i*4]);
    s2[i] = v_dot(v2, &ref[i*4]);
    if (s1[i]*s2[i]>=0){
      s3[i] = sign(s1[i]+s2[i]);
    }
  }
  //    cout << "s3: ";coutvec(s3);
  m_copy(ref,tmpmat);
  for(i=0;i<3;i++){
    if(s3[i]){
      v_sub(lowerLinkExtr,upperLinkExtr,linkv);
      v_scale(obj->solid->m_size,-0.5,u);
      u[i] *=-s3[i];
      v_add(objPos,u,vertexPos);
      //      cout<<"vPos "<<i<<": ";coutvec(vertexPos);
      v_scale(&(ref[i*4]),s3[i],&(tmpmat[i*4]));
      // cout<<"norm "<<i<<": ";coutvec((tmpmat+i*4));
      m_inverse(tmpmat,tmpmat2);
      if(v_dot(&(tmpmat[i*4]),linkv)<0){
	v_sub(lowerLinkExtr,vertexPos,v_tmp);
	*point = 1;
      }
      else{
	v_sub(upperLinkExtr,vertexPos,v_tmp);
	*point = 0;
      }
      //      cout<<"linkv ";coutvec(linkv);
      // cout <<"pt "<<*point<<endl;
	
      
// #ifdef OLD_AV
//       v_copy(linkv,(cart_vec_t&)&tmpmat[i*4]);
//       m_inverse(tmpmat,tmpmat2);
//       v_sub(upperLinkExtr,vertexPos,tmp2);
      // tmp3 should contain the intersection coordinates in
      // the referential defined by the edges of the surface 
      v_transform_normal(v_tmp,tmpmat2,tmp3); 
      // cout<<"tmp3 ";coutvec(tmp3);
      if(tmp3[(i+1)%3]>=0 && tmp3[(i+2)%3]>=0 // the link points to the rectangle
	 && tmp3[(i+1)%3]<=obj->solid->m_size[(i+1)%3] && 
	 tmp3[(i+2)%3]<=obj->solid->m_size[(i+2)%3]){
	if(tmp3[i]<0){
	  return 0; // there is a collision
	}
	else{
	  *dist = tmp3[i];
	  v_copy(&(tmpmat[i*4]),contact_vector);
	  v_scale(contact_vector,*dist,contact_vector);
	  return 1;
	}
      }
    }
  }
  // the link does not point to a rectangle -> look for the edges
  v_scale(obj->solid->m_size,-0.5,u);
  for(i=0;i<3;i++){// each kind of edge
      dir1 = s3[(i+1)%3]; 
      dir2 = s3[(i+2)%3];
    for(j=0;j<2;j++){ 
      if(dir1 == 0 || dir1==2*j-1){ //edges of this face must be computed
	for(k=0;k<2;k++){
	  if(dir2 == 0 || dir2==2*k-1){ //edges of this face must be computed
	    v_copy(u,v_tmp);
	    v_tmp[(i+1)%3]*=-(2*j-1);
	    v_tmp[(i+2)%3]*=-(2*k-1);
	    v_add(objPos,v_tmp,vertexPos);
	    v_scale(&(ref[4*i]),obj->solid->m_size[i],v1); // edge with the right length
	    pindex = 4*i+2*j+k;
	    FindSegmentsNearestPoints(vertexPos,v1,upperLinkExtr,linkv,&(allpoints[2*pindex]),&(allpoints[2*pindex+1]),&(alldists[pindex]));
	//     cout<<"i:"<<i<<" j:"<<j<<" k:"<<k<<"dist "<<alldists[pindex]<<endl;
// 	    cout<<"v1:";coutvec(v1);
// 	    cout<<"ref:";coutvec((&(ref[4*i])));
// 	    cout<<"vP:";coutvec(vertexPos);
	  }
	}
      }
    }
  }
  //looking for the min
  min_dist = alldists[0];
  min_i = 0;
  for(i=1;i<12;i++){
    if(alldists[i] < min_dist){
      min_dist = alldists[i];
      min_i = i;
    }
  }
  // returning the min distance
  *dist = min_dist;
  *point = allpoints[2*min_i+1];
  v_scale(linkv,*point,v1);
  v_add(upperLinkExtr,v1,v2); // nearest point on link
  k = min_i%2; //retrieving the right edge
  j = ((min_i-k)%4)/2;
  i = min_i/4; 
  //  cout<<"ijk: "<<i<<" "<<j<<" "<<k<<endl;
  v_copy(u,v_tmp);
  v_tmp[(i+1)%3]*=-(2*j-1);
  v_tmp[(i+2)%3]*=-(2*k-1); 
  v_add(objPos,v_tmp,vertexPos); // starting vertex of the edge
  v_scale(&(ref[3*1]),allpoints[2*min_i]*(obj->solid->m_size[min_i]),v1);
  v_add(vertexPos,v1,v1); // nearest point on solid
  v_sub(v2,v1,contact_vector);
  return 1;
}
Exemple #13
0
/*
 * n_vars is the number of variables to be considered,
 * d is the data array of variables d[0],...,d[n_vars-1],
 * pred determines which estimate is required: BLUE, BLUP, or BLP
 */
void gls(DATA **d /* pointer to DATA array */,
		int n_vars, /* length of DATA array (to consider) */
		enum GLS_WHAT pred, /* what type of prediction is requested */
		DPOINT *where, /* prediction location */
		double *est /* output: array that holds the predicted values and variances */)
{
	GLM *glm = NULL; /* to be copied to/from d */
	static MAT *X0 = MNULL, *C0 = MNULL, *MSPE = MNULL, *CinvC0 = MNULL,
		*Tmp1 = MNULL, *Tmp2 = MNULL, *Tmp3, *R = MNULL;
	static VEC *blup = VNULL, *tmpa = VNULL, *tmpb = VNULL;
	volatile unsigned int i, rows_C;
	unsigned int j, k, l = 0, row, col, start_i, start_j, start_X, global;
	VARIOGRAM *v = NULL;
	static enum GLS_WHAT last_pred = GLS_INIT; /* the initial value */
	double c_value, *X_ori;

	if (d == NULL) { /* clean up */
		if (X0 != MNULL) M_FREE(X0); 
		if (C0 != MNULL) M_FREE(C0);
		if (MSPE != MNULL) M_FREE(MSPE);
		if (CinvC0 != MNULL) M_FREE(CinvC0);
		if (Tmp1 != MNULL) M_FREE(Tmp1);
		if (Tmp2 != MNULL) M_FREE(Tmp2);
		if (Tmp3 != MNULL) M_FREE(Tmp3);
		if (R != MNULL) M_FREE(R);
		if (blup != VNULL) V_FREE(blup);
		if (tmpa != VNULL) V_FREE(tmpa);
		if (tmpb != VNULL) V_FREE(tmpb);
		last_pred = GLS_INIT;
		return;
	}
#ifndef HAVE_SPARSE
	if (gl_sparse) {
		pr_warning("sparse matrices not supported: compile with --with-sparse");
		gl_sparse = 0;
	}
#endif

	if (DEBUG_COV) {
		printlog("we're at %s X: %g Y: %g Z: %g\n",
			IS_BLOCK(where) ? "block" : "point",
			where->x, where->y, where->z);
	}

	if (pred != UPDATE) /* it right away: */
		last_pred = pred;

	assert(last_pred != GLS_INIT);

	if (d[0]->glm == NULL) { /* allocate and initialize: */
		glm = new_glm();
		d[0]->glm = (void *) glm;
	} else
		glm = (GLM *) d[0]->glm;

	glm->mu0 = v_resize(glm->mu0, n_vars);
	MSPE = m_resize(MSPE, n_vars, n_vars);
	if (pred == GLS_BLP || UPDATE_BLP) {
		X_ori = where->X;
		for (i = 0; i < n_vars; i++) { /* mu(0) */
			glm->mu0->ve[i] = calc_mu(d[i], where);
			blup = v_copy(glm->mu0, v_resize(blup, glm->mu0->dim));
			where->X += d[i]->n_X; /* shift to next x0 entry */
		}
		where->X = X_ori; /* ... and set back */
		for (i = 0; i < n_vars; i++) { /* Cij(0,0): */
			for (j = 0; j <= i; j++) {
				v = get_vgm(LTI(d[i]->id,d[j]->id));
				MSPE->me[i][j] = MSPE->me[j][i] = COVARIANCE0(v, where, where, d[j]->pp_norm2);
			}
		}
		fill_est(NULL, blup, MSPE, n_vars, est); /* in case of empty neighbourhood */
	}
	/* xxx */
	/*
	logprint_variogram(v, 1);
	*/

/* 
 * selection dependent problem dimensions: 
 */
	for (i = rows_C = 0; i < n_vars; i++)
		rows_C += d[i]->n_sel;

	if (rows_C == 0) { /* empty selection list(s) */
		if (pred == GLS_BLP || UPDATE_BLP)
			debug_result(blup, MSPE, pred);
		return;
	}

	for (i = 0, global = 1; i < n_vars && global; i++)
		global = (d[i]->sel == d[i]->list && d[i]->n_list == d[i]->n_original);

/*
 * global things: enter whenever (a) first time, (b) local selections or
 * (c) the size of the problem grew since the last call (e.g. simulation)
 */
	if ((glm->C == NULL && glm->spC == NULL) || !global || rows_C > glm->C->m) {
/* 
 * fill y: 
 */
		glm->y = get_y(d, glm->y, n_vars);

		if (pred != UPDATE) {
			if (! gl_sparse) {
				glm->C = m_resize(glm->C, rows_C, rows_C);
				m_zero(glm->C);
			} 
#ifdef HAVE_SPARSE
			else {
				if (glm->C == NULL) {
					glm->spC = sp_get(rows_C, rows_C, gl_sparse);
					/* d->spLLT = spLLT = sp_get(rows_C, rows_C, gl_sparse); */
				} else {
					glm->spC = sp_resize(glm->spC, rows_C, rows_C);
					/* d->spLLT = spLLT = sp_resize(spLLT, rows_C, rows_C); */
				}
				sp_zero(glm->spC);
			} 
#endif
			glm->X = get_X(d, glm->X, n_vars);
			M_DEBUG(glm->X, "X");
			glm->CinvX = m_resize(glm->CinvX, rows_C, glm->X->n);
			glm->XCinvX = m_resize(glm->XCinvX, glm->X->n, glm->X->n);
			glm->beta = v_resize(glm->beta, glm->X->n);
			for (i = start_X = start_i = 0; i < n_vars; i++) { /* row var */
				/* fill C, mu: */
				for (j = start_j = 0; j <= i; j++) { /* col var */
					v = get_vgm(LTI(d[i]->id,d[j]->id));
					for (k = 0; k < d[i]->n_sel; k++) { /* rows */
						row = start_i + k;
						for (l = 0, col = start_j; col <= row && l < d[j]->n_sel; l++, col++) {
							if (pred == GLS_BLUP)
								c_value = GCV(v, d[i]->sel[k], d[j]->sel[l]);
							else
								c_value = COVARIANCE(v, d[i]->sel[k], d[j]->sel[l]);
							/* on the diagonal, if necessary, add measurement error variance */
							if (d[i]->colnvariance && i == j && k == l)
								c_value += d[i]->sel[k]->variance;
							if (! gl_sparse)
								glm->C->me[row][col] = c_value;
#ifdef HAVE_SPARSE
							else {
								if (c_value != 0.0)
									sp_set_val(glm->spC, row, col, c_value);
							} 
#endif
						} /* for l */
					} /* for k */
					start_j += d[j]->n_sel;
				} /* for j */
				start_i += d[i]->n_sel;
				if (d[i]->n_sel > 0)
					start_X += d[i]->n_X - d[i]->n_merge;
			} /* for i */

			/*
			if (d[0]->colnvmu)
				glm->C = convert_vmuC(glm->C, d[0]);
			*/
			if (d[0]->variance_fn) {
				glm->mu = get_mu(glm->mu, glm->y, d, n_vars);
				convert_C(glm->C, glm->mu, d[0]->variance_fn);
			}

			if (DEBUG_COV && pred == GLS_BLUP)
				printlog("[using generalized covariances: max_val - semivariance()]");
			if (! gl_sparse) {
				M_DEBUG(glm->C, "Covariances (x_i, x_j) matrix C (lower triangle only)");
			}
#ifdef HAVE_SPARSE
			else {
				SM_DEBUG(glm->spC, "Covariances (x_i, x_j) sparse matrix C (lower triangle only)")
			}
#endif
/* check for singular C: */
			if (! gl_sparse && gl_cn_max > 0.0) {
				for (i = 0; i < rows_C; i++) /* row */ 
					for (j = i+1; j < rows_C; j++) /* col > row */
						glm->C->me[i][j] = glm->C->me[j][i]; /* fill symmetric */
				if (is_singular(glm->C, gl_cn_max)) {
					pr_warning("Covariance matrix (nearly) singular at location [%g,%g,%g]: skipping...",
						where->x, where->y, where->z);
					m_free(glm->C); glm->C = MNULL; /* assure re-entrance if global */
					return;
				}
			}
/* 
 * factorize C: 
 */
			if (! gl_sparse)
				LDLfactor(glm->C);
#ifdef HAVE_SPARSE
			else {
				sp_compact(glm->spC, 0.0);
				spCHfactor(glm->spC);
			}
#endif
		} /* if (pred != UPDATE) */
		if (pred != GLS_BLP && !UPDATE_BLP) { /* C-1 X and X'C-1 X, beta */
/* 
 * calculate CinvX: 
 */
    		tmpa = v_resize(tmpa, rows_C);
    		for (i = 0; i < glm->X->n; i++) {
				tmpa = get_col(glm->X, i, tmpa);
				if (! gl_sparse)
					tmpb = LDLsolve(glm->C, tmpa, tmpb);
#ifdef HAVE_SPARSE
				else
					tmpb = spCHsolve(glm->spC, tmpa, tmpb);
#endif
				set_col(glm->CinvX, i, tmpb);
			}
/* 
 * calculate X'C-1 X: 
 */
			glm->XCinvX = mtrm_mlt(glm->X, glm->CinvX, glm->XCinvX); /* X'C-1 X */
			M_DEBUG(glm->XCinvX, "X'C-1 X");
			if (gl_cn_max > 0.0 && is_singular(glm->XCinvX, gl_cn_max)) {
				pr_warning("X'C-1 X matrix (nearly) singular at location [%g,%g,%g]: skipping...",
					where->x, where->y, where->z);
				m_free(glm->C); glm->C = MNULL; /* assure re-entrance if global */
				return;
			}
			m_inverse(glm->XCinvX, glm->XCinvX);
/* 
 * calculate beta: 
 */
			tmpa = vm_mlt(glm->CinvX, glm->y, tmpa); /* X'C-1 y */
			glm->beta = vm_mlt(glm->XCinvX, tmpa, glm->beta); /* (X'C-1 X)-1 X'C-1 y */
			V_DEBUG(glm->beta, "beta");
			M_DEBUG(glm->XCinvX, "Cov(beta), (X'C-1 X)-1");
			M_DEBUG(R = get_corr_mat(glm->XCinvX, R), "Corr(beta)");
		} /* if pred != GLS_BLP */
	} /* if redo the heavy part */
Exemple #14
0
int main( void) {
    FILE *fp;
    MATRIX_T *a, *b, *c, *d, *inverse, *test, *x, *ainv;
    double D;

    /* initialize all MATRIX_T pointers to NULL */
    a = NULL;
    b = NULL;
    c = NULL;
    d = NULL;
    inverse = NULL;
    test = NULL;
    x = NULL;
    ainv = NULL;

    /* it is good practice to reset the error code
       before doing matrix calculations */
    m_reseterr();

    /* open matrix file to initialize matrix variables */
    if ((fp = fopen("mtest1.mat","r"))==NULL) {
        printf("cannot open file mtest1.mat\n");
        exit(0);
    }

    /* use m_printf functions here */

    /* test matrix addition */
    a = m_fnew( fp);
    m_printf( "\n# matrix a from file: mtest1.mat", "%6.2f", a);
    b = m_fnew( fp);
    m_printf( "\n# matrix b from: mtest1.mat", "%6.2f", b);
    c = m_new( 3, 2);
    c = m_add( c, a, b);
    m_printf( "\n# sum of a and b", "%6.2f", c);

    /* test matrix subtraction */
    c = m_sub( c, a, b);
    m_printf( "\n# difference of a and b", "%6.2f", c);

    /* change to using comma separated format output */

    /* multiply matrix by a constant */
    printf( "\ncomma separated format: matrix a\n");
    m_fputcsv(stdout,a);
    printf( "\ncomma separated format: matrix c\n");
    m_fputcsv(stdout,c);
    m_mupconst( c, 2.5, a);
    printf( "\ncsv format: 2.5 times matrix c\n");
    m_fputcsv(stdout,c);

    /* find maximum element in matrix */
    printf( "\nmax element in c is %f\n", m_max_abs_element(c));

    /* test euclidean norm */
    d = m_fnew( fp);
    printf( "\ncsv format: matrix d\n");
    m_fputcsv(stdout,d);
    printf( "\neuclidean norm of d is %f\n", m_e_norm( d));

    /* test assignment of identity matrix to a square matrix */
    inverse = m_new( d->rows, d->cols);
    m_assign_identity( inverse);
    m_printf( "\nidentity matrix", "%6.2f", inverse);

    /* test matrix inversion */
    inverse = m_inverse( inverse, d, &D, 0.0001);
    test = m_new(d->rows,d->cols);
    test = m_mup( test, d, inverse);
    m_printf( "\nmatrix d", "%6.2f", d);
    m_printf( "\nmatrix inverse", "%6.2f", inverse);
    m_printf( "\nproduct of d and d-inverse", "%6.2f", test);

    /* test solution of linear equations */

    /* start by getting new values for matrices a and b
       note: b is a 1 by n vector (as is x) */
    if ((a = m_fnew( fp)) == NULL) exit(0);
    if ((b = m_fnew( fp)) == NULL) exit(0);
    if ((x = m_new(b->rows,b->cols)) == NULL) exit(0);
    printf("\ncsv: a\n");
    m_fputcsv(stdout,a);
    printf("\ncsv: b\n");
    m_fputcsv(stdout,b);
    x = m_solve( x, a, b, 0.0000001);
    printf("\n\nx=ab\ncsv: solution x\n");
    m_fputcsv(stdout,x);

    /* close files and clean up */
    fclose(fp);
    m_free(a);
    m_free(b);
    m_free(c);
    m_free(d);
    m_free(inverse);
    m_free(test);
    m_free(x);
    m_free(ainv);
 }