/* RP helper function to attach a device to an adaptor. */ void rp_device_attach(Object *adaptor, Object *dev, int rp_nr, int dev_nr, Error **errp) { Error *err = NULL; uint32_t nr_devs; char *name; int i; assert(adaptor); assert(dev); /* Verify that the adaptor is of Remote Port type. */ if (!object_dynamic_cast(adaptor, TYPE_REMOTE_PORT)) { error_setg(errp, "%s is not a Remote-Port adaptor!\n", object_get_canonical_path(adaptor)); return; } name = g_strdup_printf("rp-adaptor%d", rp_nr); object_property_set_link(dev, adaptor, name, &err); g_free(name); if (err != NULL) { error_propagate(errp, err); return; } name = g_strdup_printf("rp-chan%d", rp_nr); object_property_set_int(dev, dev_nr, name, &err); g_free(name); if (err != NULL && !object_dynamic_cast(dev, TYPE_REMOTE_PORT_DEVICE)) { /* * RP devices that only receive requests may not need to * know their channel/dev number. If not, treat this as * an error. */ error_propagate(errp, err); return; } err = NULL; nr_devs = object_property_get_int(dev, "nr-devs", &err); if (err) { nr_devs = 1; err = NULL; } /* Multi-channel devs use consecutive numbering. */ for (i = 0; i < nr_devs; i++) { name = g_strdup_printf("remote-port-dev%d", dev_nr + i); object_property_set_link(adaptor, dev, name, &err); g_free(name); if (err != NULL) { error_propagate(errp, err); return; } } }
static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size) { PL080State *dma = opaque; int i = dma - &mms->dma[0]; SysBusDevice *s; char *mscname = g_strdup_printf("%s-msc", name); TZMSC *msc = &mms->msc[i]; DeviceState *iotkitdev = DEVICE(&mms->iotkit); MemoryRegion *msc_upstream; MemoryRegion *msc_downstream; /* * Each DMA device is a PL081 whose transaction master interface * is guarded by a Master Security Controller. The downstream end of * the MSC connects to the IoTKit AHB Slave Expansion port, so the * DMA devices can see all devices and memory that the CPU does. */ sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC); msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); object_property_set_link(OBJECT(msc), OBJECT(msc_downstream), "downstream", &error_fatal); object_property_set_link(OBJECT(msc), OBJECT(mms), "idau", &error_fatal); object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal); qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, qdev_get_gpio_in_named(iotkitdev, "mscexp_status", i)); qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, qdev_get_gpio_in_named(DEVICE(msc), "irq_clear", 0)); qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, qdev_get_gpio_in_named(DEVICE(msc), "cfg_nonsec", 0)); qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), ARRAY_SIZE(mms->ppc) + i, qdev_get_gpio_in_named(DEVICE(msc), "cfg_sec_resp", 0)); msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081); object_property_set_link(OBJECT(dma), OBJECT(msc_upstream), "downstream", &error_fatal); object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal); s = SYS_BUS_DEVICE(dma); /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3)); sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3)); sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3)); g_free(mscname); return sysbus_mmio_get_region(s, 0); }
static void virtio_gpu_pci_base_realize(VirtIOPCIProxy *vpci_dev, Error **errp) { VirtIOGPUPCIBase *vgpu = VIRTIO_GPU_PCI_BASE(vpci_dev); VirtIOGPUBase *g = vgpu->vgpu; DeviceState *vdev = DEVICE(g); int i; Error *local_error = NULL; qdev_set_parent_bus(vdev, BUS(&vpci_dev->bus)); if (!virtio_pci_force_virtio_1(vpci_dev, errp)) { return; } object_property_set_bool(OBJECT(vdev), true, "realized", &local_error); if (local_error) { error_propagate(errp, local_error); return; } for (i = 0; i < g->conf.max_outputs; i++) { object_property_set_link(OBJECT(g->scanout[i].con), OBJECT(vpci_dev), "device", errp); } }
static void microbit_init(MachineState *machine) { MicrobitMachineState *s = MICROBIT_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *mr; Object *soc = OBJECT(&s->nrf51); Object *i2c = OBJECT(&s->i2c); sysbus_init_child_obj(OBJECT(machine), "nrf51", soc, sizeof(s->nrf51), TYPE_NRF51_SOC); qdev_prop_set_chr(DEVICE(&s->nrf51), "serial0", serial_hd(0)); object_property_set_link(soc, OBJECT(system_memory), "memory", &error_fatal); object_property_set_bool(soc, true, "realized", &error_fatal); /* * Overlap the TWI stub device into the SoC. This is a microbit-specific * hack until we implement the nRF51 TWI controller properly and the * magnetometer/accelerometer devices. */ sysbus_init_child_obj(OBJECT(machine), "microbit.twi", i2c, sizeof(s->i2c), TYPE_MICROBIT_I2C); object_property_set_bool(i2c, true, "realized", &error_fatal); mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(i2c), 0); memory_region_add_subregion_overlap(&s->nrf51.container, NRF51_TWI_BASE, mr, -1); armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, NRF51_SOC(soc)->flash_size); }
/* VGA device wrapper around PCI device around virtio GPU */ static void virtio_vga_realize(VirtIOPCIProxy *vpci_dev, Error **errp) { VirtIOVGA *vvga = VIRTIO_VGA(vpci_dev); VirtIOGPU *g = &vvga->vdev; VGACommonState *vga = &vvga->vga; Error *err = NULL; uint32_t offset; int i; /* init vga compat bits */ vga->vram_size_mb = 8; vga_common_init(vga, OBJECT(vpci_dev), false); vga_init(vga, OBJECT(vpci_dev), pci_address_space(&vpci_dev->pci_dev), pci_address_space_io(&vpci_dev->pci_dev), true); pci_register_bar(&vpci_dev->pci_dev, 0, PCI_BASE_ADDRESS_MEM_PREFETCH, &vga->vram); /* * Configure virtio bar and regions * * We use bar #2 for the mmio regions, to be compatible with stdvga. * virtio regions are moved to the end of bar #2, to make room for * the stdvga mmio registers at the start of bar #2. */ vpci_dev->modern_mem_bar = 2; vpci_dev->msix_bar = 4; offset = memory_region_size(&vpci_dev->modern_bar); offset -= vpci_dev->notify.size; vpci_dev->notify.offset = offset; offset -= vpci_dev->device.size; vpci_dev->device.offset = offset; offset -= vpci_dev->isr.size; vpci_dev->isr.offset = offset; offset -= vpci_dev->common.size; vpci_dev->common.offset = offset; /* init virtio bits */ qdev_set_parent_bus(DEVICE(g), BUS(&vpci_dev->bus)); /* force virtio-1.0 */ vpci_dev->flags &= ~VIRTIO_PCI_FLAG_DISABLE_MODERN; vpci_dev->flags |= VIRTIO_PCI_FLAG_DISABLE_LEGACY; object_property_set_bool(OBJECT(g), true, "realized", &err); if (err) { error_propagate(errp, err); return; } /* add stdvga mmio regions */ pci_std_vga_mmio_region_init(vga, &vpci_dev->modern_bar, vvga->vga_mrs, true); vga->con = g->scanout[0].con; graphic_console_set_hwops(vga->con, &virtio_vga_ops, vvga); for (i = 0; i < g->conf.max_outputs; i++) { object_property_set_link(OBJECT(g->scanout[i].con), OBJECT(vpci_dev), "device", errp); } }
static void pmc_sss_realize(DeviceState *dev, Error **errp) { PMCSSS *s = PMC_SSS(dev); SSSBase *p = SSS_BASE(dev); Error *local_errp = NULL; int r, i; for (i = 0; i < R_MAX; ++i) { DepRegisterInfo *r = &s->regs_info[i]; *r = (DepRegisterInfo) { .data = (uint8_t *)&s->regs[i], .data_size = sizeof(uint32_t), .access = &pmc_sss_regs_info[i], .debug = PMC_SSS_ERR_DEBUG, .prefix = object_get_canonical_path(OBJECT(dev)), .opaque = s, }; memory_region_init_io(&r->mem, OBJECT(dev), &sss_ops, r, "sss-regs", 4); memory_region_add_subregion(&s->iomem, i * 4, &r->mem); } for (r = 0; r < NO_REMOTE; ++r) { SSSStream *ss = SSS_STREAM(&p->rx_devs[r]); object_property_add_link(OBJECT(ss), "sss", TYPE_PMC_SSS, (Object **)&ss->sss, qdev_prop_allow_set_link_before_realize, OBJ_PROP_LINK_UNREF_ON_RELEASE, &local_errp); if (local_errp) { goto pmc_sss_realize_fail; } object_property_set_link(OBJECT(ss), OBJECT(s), "sss", &local_errp); if (local_errp) { goto pmc_sss_realize_fail; } } return; pmc_sss_realize_fail: if (!*errp) { *errp = local_errp; } } static void sss_reset(DeviceState *dev) { PMCSSS *s = PMC_SSS(dev); SSSBase *p = SSS_BASE(dev); int i; for (i = 0; i < R_MAX; ++i) { dep_register_reset(&s->regs_info[i]); } sss_notify_all(p); }
static void virtio_rng_device_realize(DeviceState *dev, Error **errp) { VirtIODevice *vdev = VIRTIO_DEVICE(dev); VirtIORNG *vrng = VIRTIO_RNG(dev); Error *local_err = NULL; if (vrng->conf.period_ms <= 0) { error_setg(errp, "'period' parameter expects a positive integer"); return; } /* Workaround: Property parsing does not enforce unsigned integers, * So this is a hack to reject such numbers. */ if (vrng->conf.max_bytes > INT64_MAX) { error_setg(errp, "'max-bytes' parameter must be non-negative, " "and less than 2^63"); return; } if (vrng->conf.rng == NULL) { vrng->conf.default_backend = RNG_RANDOM(object_new(TYPE_RNG_RANDOM)); user_creatable_complete(OBJECT(vrng->conf.default_backend), &local_err); if (local_err) { error_propagate(errp, local_err); object_unref(OBJECT(vrng->conf.default_backend)); return; } object_property_add_child(OBJECT(dev), "default-backend", OBJECT(vrng->conf.default_backend), NULL); /* The child property took a reference, we can safely drop ours now */ object_unref(OBJECT(vrng->conf.default_backend)); object_property_set_link(OBJECT(dev), OBJECT(vrng->conf.default_backend), "rng", NULL); } vrng->rng = vrng->conf.rng; if (vrng->rng == NULL) { error_setg(errp, "'rng' parameter expects a valid object"); return; } virtio_init(vdev, "virtio-rng", VIRTIO_ID_RNG, 0); vrng->vq = virtio_add_queue(vdev, 8, handle_input); vrng->quota_remaining = vrng->conf.max_bytes; vrng->rate_limit_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, check_rate_limit, vrng); vrng->activate_timer = true; register_savevm(dev, "virtio-rng", -1, 1, virtio_rng_save, virtio_rng_load, vrng); }
static void s390_cpu_plug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { gchar *name; S390CPU *cpu = S390_CPU(dev); CPUState *cs = CPU(dev); name = g_strdup_printf("cpu[%i]", cpu->env.cpu_num); object_property_set_link(OBJECT(hotplug_dev), OBJECT(cs), name, errp); g_free(name); }
static void macio_realize_ide(MacIOState *s, MACIOIDEState *ide, qemu_irq irq0, qemu_irq irq1, int dmaid, Error **errp) { SysBusDevice *sysbus_dev; sysbus_dev = SYS_BUS_DEVICE(ide); sysbus_connect_irq(sysbus_dev, 0, irq0); sysbus_connect_irq(sysbus_dev, 1, irq1); qdev_prop_set_uint32(DEVICE(ide), "channel", dmaid); object_property_set_link(OBJECT(ide), OBJECT(&s->dbdma), "dbdma", errp); macio_ide_register_dma(ide); object_property_set_bool(OBJECT(ide), true, "realized", errp); }
static int virtio_ccw_rng_init(VirtioCcwDevice *ccw_dev) { VirtIORNGCcw *dev = VIRTIO_RNG_CCW(ccw_dev); DeviceState *vdev = DEVICE(&dev->vdev); qdev_set_parent_bus(vdev, BUS(&ccw_dev->bus)); if (qdev_init(vdev) < 0) { return -1; } object_property_set_link(OBJECT(dev), OBJECT(dev->vdev.conf.rng), "rng", NULL); return virtio_ccw_device_init(ccw_dev, VIRTIO_DEVICE(vdev)); }
static int virtio_ccw_rng_init(VirtioCcwDevice *dev) { VirtIODevice *vdev; if (dev->rng.rng == NULL) { dev->rng.default_backend = RNG_RANDOM(object_new(TYPE_RNG_RANDOM)); object_property_add_child(OBJECT(dev), "default-backend", OBJECT(dev->rng.default_backend), NULL); object_property_set_link(OBJECT(dev), OBJECT(dev->rng.default_backend), "rng", NULL); } vdev = virtio_rng_init((DeviceState *)dev, &dev->rng); if (!vdev) { return -1; } return virtio_ccw_device_init(dev, vdev); }
static void virtio_gpu_pci_realize(VirtIOPCIProxy *vpci_dev, Error **errp) { VirtIOGPUPCI *vgpu = VIRTIO_GPU_PCI(vpci_dev); VirtIOGPU *g = &vgpu->vdev; DeviceState *vdev = DEVICE(&vgpu->vdev); int i; qdev_set_parent_bus(vdev, BUS(&vpci_dev->bus)); virtio_pci_force_virtio_1(vpci_dev); object_property_set_bool(OBJECT(vdev), true, "realized", errp); for (i = 0; i < g->conf.max_outputs; i++) { object_property_set_link(OBJECT(g->scanout[i].con), OBJECT(vpci_dev), "device", errp); } }
static void nrf51_soc_realize(DeviceState *dev_soc, Error **errp) { NRF51State *s = NRF51_SOC(dev_soc); Error *err = NULL; if (!s->board_memory) { error_setg(errp, "memory property was not set"); return; } object_property_set_link(OBJECT(&s->cpu), OBJECT(&s->container), "memory", &err); if (err) { error_propagate(errp, err); return; } object_property_set_bool(OBJECT(&s->cpu), true, "realized", &err); if (err) { error_propagate(errp, err); return; } memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); memory_region_init_rom(&s->flash, OBJECT(s), "nrf51.flash", s->flash_size, &err); if (err) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, FLASH_BASE, &s->flash); memory_region_init_ram(&s->sram, NULL, "nrf51.sram", s->sram_size, &err); if (err) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, SRAM_BASE, &s->sram); create_unimplemented_device("nrf51_soc.io", IOMEM_BASE, IOMEM_SIZE); create_unimplemented_device("nrf51_soc.ficr", FICR_BASE, FICR_SIZE); create_unimplemented_device("nrf51_soc.private", PRIVATE_BASE, PRIVATE_SIZE); }
static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, const char *name, hwaddr size) { TZMPC *mpc = opaque; int i = mpc - &mms->ssram_mpc[0]; MemoryRegion *ssram = &mms->ssram[i]; MemoryRegion *upstream; char *mpcname = g_strdup_printf("%s-mpc", name); static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 }; static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 }; memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal); sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->ssram_mpc[0]), TYPE_TZ_MPC); object_property_set_link(OBJECT(mpc), OBJECT(ssram), "downstream", &error_fatal); object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal); /* Map the upstream end of the MPC into system memory */ upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); memory_region_add_subregion(get_system_memory(), rambase[i], upstream); /* and connect its interrupt to the IoTKit */ qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "mpcexp_status", i)); /* The first SSRAM is a special case as it has an alias; accesses to * the alias region at 0x00400000 must also go to the MPC upstream. */ if (i == 0) { make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000); } g_free(mpcname); /* Return the register interface MR for our caller to map behind the PPC */ return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); }
/* PC hardware initialisation */ static void pc_q35_init(MachineState *machine) { PCMachineState *pcms = PC_MACHINE(machine); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); Q35PCIHost *q35_host; PCIHostState *phb; PCIBus *host_bus; PCIDevice *lpc; DeviceState *lpc_dev; BusState *idebus[MAX_SATA_PORTS]; ISADevice *rtc_state; MemoryRegion *system_io = get_system_io(); MemoryRegion *pci_memory; MemoryRegion *rom_memory; MemoryRegion *ram_memory; GSIState *gsi_state; ISABus *isa_bus; qemu_irq *i8259; int i; ICH9LPCState *ich9_lpc; PCIDevice *ahci; ram_addr_t lowmem; DriveInfo *hd[MAX_SATA_PORTS]; MachineClass *mc = MACHINE_GET_CLASS(machine); /* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory * and 256 Mbytes for PCI Express Enhanced Configuration Access Mapping * also known as MMCFG). * If it doesn't, we need to split it in chunks below and above 4G. * In any case, try to make sure that guest addresses aligned at * 1G boundaries get mapped to host addresses aligned at 1G boundaries. */ if (machine->ram_size >= 0xb0000000) { lowmem = 0x80000000; } else { lowmem = 0xb0000000; } /* Handle the machine opt max-ram-below-4g. It is basically doing * min(qemu limit, user limit). */ if (!pcms->max_ram_below_4g) { pcms->max_ram_below_4g = 1ULL << 32; /* default: 4G */; } if (lowmem > pcms->max_ram_below_4g) { lowmem = pcms->max_ram_below_4g; if (machine->ram_size - lowmem > lowmem && lowmem & ((1ULL << 30) - 1)) { error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64 ") not a multiple of 1G; possible bad performance.", pcms->max_ram_below_4g); } } if (machine->ram_size >= lowmem) { pcms->above_4g_mem_size = machine->ram_size - lowmem; pcms->below_4g_mem_size = lowmem; } else { pcms->above_4g_mem_size = 0; pcms->below_4g_mem_size = machine->ram_size; } if (xen_enabled()) { xen_hvm_init(pcms, &ram_memory); } pc_cpus_init(pcms); kvmclock_create(); /* pci enabled */ if (pcmc->pci_enabled) { pci_memory = g_new(MemoryRegion, 1); memory_region_init(pci_memory, NULL, "pci", UINT64_MAX); rom_memory = pci_memory; } else { pci_memory = NULL; rom_memory = get_system_memory(); } pc_guest_info_init(pcms); if (pcmc->smbios_defaults) { /* These values are guest ABI, do not change */ smbios_set_defaults("QEMU", "Standard PC (Q35 + ICH9, 2009)", mc->name, pcmc->smbios_legacy_mode, pcmc->smbios_uuid_encoded, SMBIOS_ENTRY_POINT_21); } /* allocate ram and load rom/bios */ if (!xen_enabled()) { pc_memory_init(pcms, get_system_memory(), rom_memory, &ram_memory); } /* irq lines */ gsi_state = g_malloc0(sizeof(*gsi_state)); if (kvm_ioapic_in_kernel()) { kvm_pc_setup_irq_routing(pcmc->pci_enabled); pcms->gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state, GSI_NUM_PINS); } else { pcms->gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS); } /* create pci host bus */ q35_host = Q35_HOST_DEVICE(qdev_create(NULL, TYPE_Q35_HOST_DEVICE)); object_property_add_child(qdev_get_machine(), "q35", OBJECT(q35_host), NULL); object_property_set_link(OBJECT(q35_host), OBJECT(ram_memory), MCH_HOST_PROP_RAM_MEM, NULL); object_property_set_link(OBJECT(q35_host), OBJECT(pci_memory), MCH_HOST_PROP_PCI_MEM, NULL); object_property_set_link(OBJECT(q35_host), OBJECT(get_system_memory()), MCH_HOST_PROP_SYSTEM_MEM, NULL); object_property_set_link(OBJECT(q35_host), OBJECT(system_io), MCH_HOST_PROP_IO_MEM, NULL); object_property_set_int(OBJECT(q35_host), pcms->below_4g_mem_size, PCI_HOST_BELOW_4G_MEM_SIZE, NULL); object_property_set_int(OBJECT(q35_host), pcms->above_4g_mem_size, PCI_HOST_ABOVE_4G_MEM_SIZE, NULL); /* pci */ qdev_init_nofail(DEVICE(q35_host)); phb = PCI_HOST_BRIDGE(q35_host); host_bus = phb->bus; /* create ISA bus */ lpc = pci_create_simple_multifunction(host_bus, PCI_DEVFN(ICH9_LPC_DEV, ICH9_LPC_FUNC), true, TYPE_ICH9_LPC_DEVICE); object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP, TYPE_HOTPLUG_HANDLER, (Object **)&pcms->acpi_dev, object_property_allow_set_link, OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); object_property_set_link(OBJECT(machine), OBJECT(lpc), PC_MACHINE_ACPI_DEVICE_PROP, &error_abort); ich9_lpc = ICH9_LPC_DEVICE(lpc); lpc_dev = DEVICE(lpc); for (i = 0; i < GSI_NUM_PINS; i++) { qdev_connect_gpio_out_named(lpc_dev, ICH9_GPIO_GSI, i, pcms->gsi[i]); } pci_bus_irqs(host_bus, ich9_lpc_set_irq, ich9_lpc_map_irq, ich9_lpc, ICH9_LPC_NB_PIRQS); pci_bus_set_route_irq_fn(host_bus, ich9_route_intx_pin_to_irq); isa_bus = ich9_lpc->isa_bus; if (kvm_pic_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq()); } for (i = 0; i < ISA_NUM_IRQS; i++) { gsi_state->i8259_irq[i] = i8259[i]; } g_free(i8259); if (pcmc->pci_enabled) { ioapic_init_gsi(gsi_state, "q35"); } pc_register_ferr_irq(pcms->gsi[13]); assert(pcms->vmport != ON_OFF_AUTO__MAX); if (pcms->vmport == ON_OFF_AUTO_AUTO) { pcms->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON; } /* init basic PC hardware */ pc_basic_device_init(isa_bus, pcms->gsi, &rtc_state, !mc->no_floppy, (pcms->vmport != ON_OFF_AUTO_ON), 0xff0104); /* connect pm stuff to lpc */ ich9_lpc_pm_init(lpc, pc_machine_is_smm_enabled(pcms)); /* ahci and SATA device, for q35 1 ahci controller is built-in */ ahci = pci_create_simple_multifunction(host_bus, PCI_DEVFN(ICH9_SATA1_DEV, ICH9_SATA1_FUNC), true, "ich9-ahci"); idebus[0] = qdev_get_child_bus(&ahci->qdev, "ide.0"); idebus[1] = qdev_get_child_bus(&ahci->qdev, "ide.1"); g_assert(MAX_SATA_PORTS == ICH_AHCI(ahci)->ahci.ports); ide_drive_get(hd, ICH_AHCI(ahci)->ahci.ports); ahci_ide_create_devs(ahci, hd); if (machine_usb(machine)) { /* Should we create 6 UHCI according to ich9 spec? */ ehci_create_ich9_with_companions(host_bus, 0x1d); } /* TODO: Populate SPD eeprom data. */ smbus_eeprom_init(ich9_smb_init(host_bus, PCI_DEVFN(ICH9_SMB_DEV, ICH9_SMB_FUNC), 0xb100), 8, NULL, 0); pc_cmos_init(pcms, idebus[0], idebus[1], rtc_state); /* the rest devices to which pci devfn is automatically assigned */ pc_vga_init(isa_bus, host_bus); pc_nic_init(isa_bus, host_bus); if (pcmc->pci_enabled) { pc_pci_device_init(host_bus); } if (pcms->acpi_nvdimm_state.is_enabled) { nvdimm_init_acpi_state(&pcms->acpi_nvdimm_state, system_io, pcms->fw_cfg, OBJECT(pcms)); } }
/* PC hardware initialisation */ static void pc_q35_init(MachineState *machine) { PCMachineState *pc_machine = PC_MACHINE(machine); ram_addr_t below_4g_mem_size, above_4g_mem_size; Q35PCIHost *q35_host; PCIHostState *phb; PCIBus *host_bus; PCIDevice *lpc; BusState *idebus[MAX_SATA_PORTS]; ISADevice *rtc_state; ISADevice *floppy; MemoryRegion *pci_memory; MemoryRegion *rom_memory; MemoryRegion *ram_memory; GSIState *gsi_state; ISABus *isa_bus; int pci_enabled = 1; qemu_irq *cpu_irq; qemu_irq *gsi; qemu_irq *i8259; int i; ICH9LPCState *ich9_lpc; PCIDevice *ahci; DeviceState *icc_bridge; PcGuestInfo *guest_info; ram_addr_t lowmem; DriveInfo *hd[MAX_SATA_PORTS]; /* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory * and 256 Mbytes for PCI Express Enhanced Configuration Access Mapping * also known as MMCFG). * If it doesn't, we need to split it in chunks below and above 4G. * In any case, try to make sure that guest addresses aligned at * 1G boundaries get mapped to host addresses aligned at 1G boundaries. * For old machine types, use whatever split we used historically to avoid * breaking migration. */ if (machine->ram_size >= 0xb0000000) { lowmem = gigabyte_align ? 0x80000000 : 0xb0000000; } else { lowmem = 0xb0000000; } /* Handle the machine opt max-ram-below-4g. It is basically doing * min(qemu limit, user limit). */ if (lowmem > pc_machine->max_ram_below_4g) { lowmem = pc_machine->max_ram_below_4g; if (machine->ram_size - lowmem > lowmem && lowmem & ((1ULL << 30) - 1)) { error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64 ") not a multiple of 1G; possible bad performance.", pc_machine->max_ram_below_4g); } } if (machine->ram_size >= lowmem) { above_4g_mem_size = machine->ram_size - lowmem; below_4g_mem_size = lowmem; } else { above_4g_mem_size = 0; below_4g_mem_size = machine->ram_size; } if (xen_enabled() && xen_hvm_init(&below_4g_mem_size, &above_4g_mem_size, &ram_memory) != 0) { fprintf(stderr, "xen hardware virtual machine initialisation failed\n"); exit(1); } icc_bridge = qdev_create(NULL, TYPE_ICC_BRIDGE); object_property_add_child(qdev_get_machine(), "icc-bridge", OBJECT(icc_bridge), NULL); pc_cpus_init(machine->cpu_model, icc_bridge); pc_acpi_init("q35-acpi-dsdt.aml"); kvmclock_create(); /* pci enabled */ if (pci_enabled) { pci_memory = g_new(MemoryRegion, 1); memory_region_init(pci_memory, NULL, "pci", UINT64_MAX); rom_memory = pci_memory; } else { pci_memory = NULL; rom_memory = get_system_memory(); } guest_info = pc_guest_info_init(below_4g_mem_size, above_4g_mem_size); guest_info->isapc_ram_fw = false; guest_info->has_acpi_build = has_acpi_build; guest_info->has_reserved_memory = has_reserved_memory; guest_info->rsdp_in_ram = rsdp_in_ram; /* Migration was not supported in 2.0 for Q35, so do not bother * with this hack (see hw/i386/acpi-build.c). */ guest_info->legacy_acpi_table_size = 0; if (smbios_defaults) { MachineClass *mc = MACHINE_GET_CLASS(machine); /* These values are guest ABI, do not change */ smbios_set_defaults("QEMU", "Standard PC (Q35 + ICH9, 2009)", mc->name, smbios_legacy_mode, smbios_uuid_encoded); } /* allocate ram and load rom/bios */ if (!xen_enabled()) { pc_memory_init(machine, get_system_memory(), below_4g_mem_size, above_4g_mem_size, rom_memory, &ram_memory, guest_info); } /* irq lines */ gsi_state = g_malloc0(sizeof(*gsi_state)); if (kvm_irqchip_in_kernel()) { kvm_pc_setup_irq_routing(pci_enabled); gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state, GSI_NUM_PINS); } else { gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS); } /* create pci host bus */ q35_host = Q35_HOST_DEVICE(qdev_create(NULL, TYPE_Q35_HOST_DEVICE)); object_property_add_child(qdev_get_machine(), "q35", OBJECT(q35_host), NULL); q35_host->mch.ram_memory = ram_memory; q35_host->mch.pci_address_space = pci_memory; q35_host->mch.system_memory = get_system_memory(); q35_host->mch.address_space_io = get_system_io(); q35_host->mch.below_4g_mem_size = below_4g_mem_size; q35_host->mch.above_4g_mem_size = above_4g_mem_size; q35_host->mch.guest_info = guest_info; /* pci */ qdev_init_nofail(DEVICE(q35_host)); phb = PCI_HOST_BRIDGE(q35_host); host_bus = phb->bus; /* create ISA bus */ lpc = pci_create_simple_multifunction(host_bus, PCI_DEVFN(ICH9_LPC_DEV, ICH9_LPC_FUNC), true, TYPE_ICH9_LPC_DEVICE); object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP, TYPE_HOTPLUG_HANDLER, (Object **)&pc_machine->acpi_dev, object_property_allow_set_link, OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); object_property_set_link(OBJECT(machine), OBJECT(lpc), PC_MACHINE_ACPI_DEVICE_PROP, &error_abort); ich9_lpc = ICH9_LPC_DEVICE(lpc); ich9_lpc->pic = gsi; ich9_lpc->ioapic = gsi_state->ioapic_irq; pci_bus_irqs(host_bus, ich9_lpc_set_irq, ich9_lpc_map_irq, ich9_lpc, ICH9_LPC_NB_PIRQS); pci_bus_set_route_irq_fn(host_bus, ich9_route_intx_pin_to_irq); isa_bus = ich9_lpc->isa_bus; /*end early*/ isa_bus_irqs(isa_bus, gsi); if (kvm_irqchip_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { cpu_irq = pc_allocate_cpu_irq(); i8259 = i8259_init(isa_bus, cpu_irq[0]); } for (i = 0; i < ISA_NUM_IRQS; i++) { gsi_state->i8259_irq[i] = i8259[i]; } if (pci_enabled) { ioapic_init_gsi(gsi_state, "q35"); } qdev_init_nofail(icc_bridge); pc_register_ferr_irq(gsi[13]); assert(pc_machine->vmport != ON_OFF_AUTO_MAX); if (pc_machine->vmport == ON_OFF_AUTO_AUTO) { pc_machine->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON; } /* init basic PC hardware */ pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy, (pc_machine->vmport != ON_OFF_AUTO_ON), 0xff0104); /* connect pm stuff to lpc */ ich9_lpc_pm_init(lpc); /* ahci and SATA device, for q35 1 ahci controller is built-in */ ahci = pci_create_simple_multifunction(host_bus, PCI_DEVFN(ICH9_SATA1_DEV, ICH9_SATA1_FUNC), true, "ich9-ahci"); idebus[0] = qdev_get_child_bus(&ahci->qdev, "ide.0"); idebus[1] = qdev_get_child_bus(&ahci->qdev, "ide.1"); g_assert(MAX_SATA_PORTS == ICH_AHCI(ahci)->ahci.ports); ide_drive_get(hd, ICH_AHCI(ahci)->ahci.ports); ahci_ide_create_devs(ahci, hd); if (usb_enabled()) { /* Should we create 6 UHCI according to ich9 spec? */ ehci_create_ich9_with_companions(host_bus, 0x1d); } /* TODO: Populate SPD eeprom data. */ smbus_eeprom_init(ich9_smb_init(host_bus, PCI_DEVFN(ICH9_SMB_DEV, ICH9_SMB_FUNC), 0xb100), 8, NULL, 0); pc_cmos_init(below_4g_mem_size, above_4g_mem_size, machine->boot_order, machine, floppy, idebus[0], idebus[1], rtc_state); /* the rest devices to which pci devfn is automatically assigned */ pc_vga_init(isa_bus, host_bus); pc_nic_init(isa_bus, host_bus); if (pci_enabled) { pc_pci_device_init(host_bus); } }
static void sun4uv_init(MemoryRegion *address_space_mem, MachineState *machine, const struct hwdef *hwdef) { SPARCCPU *cpu; Nvram *nvram; unsigned int i; uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry; SabreState *sabre; PCIBus *pci_bus, *pci_busA, *pci_busB; PCIDevice *ebus, *pci_dev; SysBusDevice *s; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; DeviceState *iommu, *dev; FWCfgState *fw_cfg; NICInfo *nd; MACAddr macaddr; bool onboard_nic; /* init CPUs */ cpu = sparc64_cpu_devinit(machine->cpu_type, hwdef->prom_addr); /* IOMMU */ iommu = qdev_create(NULL, TYPE_SUN4U_IOMMU); qdev_init_nofail(iommu); /* set up devices */ ram_init(0, machine->ram_size); prom_init(hwdef->prom_addr, bios_name); /* Init sabre (PCI host bridge) */ sabre = SABRE_DEVICE(qdev_create(NULL, TYPE_SABRE)); qdev_prop_set_uint64(DEVICE(sabre), "special-base", PBM_SPECIAL_BASE); qdev_prop_set_uint64(DEVICE(sabre), "mem-base", PBM_MEM_BASE); object_property_set_link(OBJECT(sabre), OBJECT(iommu), "iommu", &error_abort); qdev_init_nofail(DEVICE(sabre)); /* Wire up PCI interrupts to CPU */ for (i = 0; i < IVEC_MAX; i++) { qdev_connect_gpio_out_named(DEVICE(sabre), "ivec-irq", i, qdev_get_gpio_in_named(DEVICE(cpu), "ivec-irq", i)); } pci_bus = PCI_HOST_BRIDGE(sabre)->bus; pci_busA = pci_bridge_get_sec_bus(sabre->bridgeA); pci_busB = pci_bridge_get_sec_bus(sabre->bridgeB); /* Only in-built Simba APBs can exist on the root bus, slot 0 on busA is reserved (leaving no slots free after on-board devices) however slots 0-3 are free on busB */ pci_bus->slot_reserved_mask = 0xfffffffc; pci_busA->slot_reserved_mask = 0xfffffff1; pci_busB->slot_reserved_mask = 0xfffffff0; ebus = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 0), true, TYPE_EBUS); qdev_prop_set_uint64(DEVICE(ebus), "console-serial-base", hwdef->console_serial_base); qdev_init_nofail(DEVICE(ebus)); /* Wire up "well-known" ISA IRQs to PBM legacy obio IRQs */ qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 7, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_LPT_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 6, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_FDD_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 1, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_KBD_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 12, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_MSE_IRQ)); qdev_connect_gpio_out_named(DEVICE(ebus), "isa-irq", 4, qdev_get_gpio_in_named(DEVICE(sabre), "pbm-irq", OBIO_SER_IRQ)); pci_dev = pci_create_simple(pci_busA, PCI_DEVFN(2, 0), "VGA"); memset(&macaddr, 0, sizeof(MACAddr)); onboard_nic = false; for (i = 0; i < nb_nics; i++) { nd = &nd_table[i]; if (!nd->model || strcmp(nd->model, "sunhme") == 0) { if (!onboard_nic) { pci_dev = pci_create_multifunction(pci_busA, PCI_DEVFN(1, 1), true, "sunhme"); memcpy(&macaddr, &nd->macaddr.a, sizeof(MACAddr)); onboard_nic = true; } else { pci_dev = pci_create(pci_busB, -1, "sunhme"); } } else { pci_dev = pci_create(pci_busB, -1, nd->model); } dev = &pci_dev->qdev; qdev_set_nic_properties(dev, nd); qdev_init_nofail(dev); } /* If we don't have an onboard NIC, grab a default MAC address so that * we have a valid machine id */ if (!onboard_nic) { qemu_macaddr_default_if_unset(&macaddr); } ide_drive_get(hd, ARRAY_SIZE(hd)); pci_dev = pci_create(pci_busA, PCI_DEVFN(3, 0), "cmd646-ide"); qdev_prop_set_uint32(&pci_dev->qdev, "secondary", 1); qdev_init_nofail(&pci_dev->qdev); pci_ide_create_devs(pci_dev, hd); /* Map NVRAM into I/O (ebus) space */ nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59); s = SYS_BUS_DEVICE(nvram); memory_region_add_subregion(pci_address_space_io(ebus), 0x2000, sysbus_mmio_get_region(s, 0)); initrd_size = 0; initrd_addr = 0; kernel_size = sun4u_load_kernel(machine->kernel_filename, machine->initrd_filename, ram_size, &initrd_size, &initrd_addr, &kernel_addr, &kernel_entry); sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size, machine->boot_order, kernel_addr, kernel_size, machine->kernel_cmdline, initrd_addr, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth, (uint8_t *)&macaddr); dev = qdev_create(NULL, TYPE_FW_CFG_IO); qdev_prop_set_bit(dev, "dma_enabled", false); object_property_add_child(OBJECT(ebus), TYPE_FW_CFG, OBJECT(dev), NULL); qdev_init_nofail(dev); memory_region_add_subregion(pci_address_space_io(ebus), BIOS_CFG_IOPORT, &FW_CFG_IO(dev)->comb_iomem); fw_cfg = FW_CFG(dev); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry); fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (machine->kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(machine->kernel_cmdline) + 1); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); } fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); }
static int fdt_init_qdev(char *node_path, FDTMachineInfo *fdti, char *compat) { int err; qemu_irq irq; hwaddr base; int offset; DeviceState *dev; char *dev_type = NULL; int is_intc; int i; dev = fdt_create_qdev_from_compat(compat, &dev_type); if (!dev) { DB_PRINT("no match found for %s\n", compat); return 1; } /* FIXME: attach to the sysbus instead */ object_property_add_child(container_get(qdev_get_machine(), "/unattached"), qemu_fdt_get_node_name(fdti->fdt, node_path), OBJECT(dev), NULL); fdt_init_set_opaque(fdti, node_path, dev); /* connect nic if appropriate */ static int nics; if (object_property_find(OBJECT(dev), "mac", NULL)) { qdev_set_nic_properties(dev, &nd_table[nics]); if (nd_table[nics].instantiated) { DB_PRINT("NIC instantiated: %s\n", dev_type); nics++; } } offset = fdt_path_offset(fdti->fdt, node_path); for (offset = fdt_first_property_offset(fdti->fdt, offset); offset != -FDT_ERR_NOTFOUND; offset = fdt_next_property_offset(fdti->fdt, offset)) { const char *propname; int len; const void *val = fdt_getprop_by_offset(fdti->fdt, offset, &propname, &len); propname = trim_vendor(propname); ObjectProperty *p = object_property_find(OBJECT(dev), propname, NULL); if (p) { DB_PRINT("matched property: %s of type %s, len %d\n", propname, p->type, len); } if (!p) { continue; } /* FIXME: handle generically using accessors and stuff */ if (!strcmp(p->type, "uint8") || !strcmp(p->type, "uint16") || !strcmp(p->type, "uint32") || !strcmp(p->type, "uint64")) { uint64_t offset = (!strcmp(propname, "reg")) ? fdt_get_parent_base(node_path, fdti) : 0; object_property_set_int(OBJECT(dev), get_int_be(val, len) + offset, propname, &error_abort); DB_PRINT("set property %s to %#llx\n", propname, (long long unsigned int)get_int_be(val, len)); } else if (!strcmp(p->type, "bool")) { object_property_set_bool(OBJECT(dev), !!get_int_be(val, len), propname, &error_abort); DB_PRINT("set property %s to %#llx\n", propname, (long long unsigned int)get_int_be(val, len)); } else if (!strncmp(p->type, "link", 4)) { char target_node_path[DT_PATH_LENGTH]; DeviceState *linked_dev; if (qemu_fdt_get_node_by_phandle(fdti->fdt, target_node_path, get_int_be(val, len))) { abort(); } while (!fdt_init_has_opaque(fdti, target_node_path)) { fdt_init_yield(fdti); } linked_dev = fdt_init_get_opaque(fdti, target_node_path); object_property_set_link(OBJECT(dev), OBJECT(linked_dev), propname, &error_abort); } else if (!strcmp(p->type, "string")) { object_property_set_str(OBJECT(dev), strndup(val, len), propname, &error_abort); } } qdev_init_nofail(dev); /* map slave attachment */ base = qemu_fdt_getprop_cell(fdti->fdt, node_path, "reg", 0, false, &error_abort); base += fdt_get_parent_base(node_path, fdti); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); { int len; fdt_get_property(fdti->fdt, fdt_path_offset(fdti->fdt, node_path), "interrupt-controller", &len); is_intc = len >= 0; DB_PRINT("is interrupt controller: %c\n", is_intc ? 'y' : 'n'); } /* connect irq */ for (i = 0; ; ++i) { char irq_info[1024]; irq = fdt_get_irq_info(fdti, node_path, i, &err, irq_info); /* INTCs inferr their top level, if no IRQ connection specified */ if (err && is_intc) { irq = fdti->irq_base; sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq); fprintf(stderr, "FDT: (%s) connected top level irq %s\n", dev_type, irq_info); break; } if (!err) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq); fprintf(stderr, "FDT: (%s) connected irq %s\n", dev_type, irq_info); } else { break; } } if (dev_type) { g_free(dev_type); } return 0; }
static void mips_cps_realize(DeviceState *dev, Error **errp) { MIPSCPSState *s = MIPS_CPS(dev); CPUMIPSState *env; MIPSCPU *cpu; int i; Error *err = NULL; target_ulong gcr_base; bool itu_present = false; bool saar_present = false; for (i = 0; i < s->num_vp; i++) { cpu = MIPS_CPU(cpu_create(s->cpu_type)); /* Init internal devices */ cpu_mips_irq_init_cpu(cpu); cpu_mips_clock_init(cpu); env = &cpu->env; if (cpu_mips_itu_supported(env)) { itu_present = true; /* Attach ITC Tag to the VP */ env->itc_tag = mips_itu_get_tag_region(&s->itu); env->itu = &s->itu; } qemu_register_reset(main_cpu_reset, cpu); } cpu = MIPS_CPU(first_cpu); env = &cpu->env; saar_present = (bool)env->saarp; /* Inter-Thread Communication Unit */ if (itu_present) { object_initialize(&s->itu, sizeof(s->itu), TYPE_MIPS_ITU); qdev_set_parent_bus(DEVICE(&s->itu), sysbus_get_default()); object_property_set_int(OBJECT(&s->itu), 16, "num-fifo", &err); object_property_set_int(OBJECT(&s->itu), 16, "num-semaphores", &err); object_property_set_bool(OBJECT(&s->itu), saar_present, "saar-present", &err); if (saar_present) { qdev_prop_set_ptr(DEVICE(&s->itu), "saar", (void *)&env->CP0_SAAR); } object_property_set_bool(OBJECT(&s->itu), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, 0, sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->itu), 0)); } /* Cluster Power Controller */ object_initialize(&s->cpc, sizeof(s->cpc), TYPE_MIPS_CPC); qdev_set_parent_bus(DEVICE(&s->cpc), sysbus_get_default()); object_property_set_int(OBJECT(&s->cpc), s->num_vp, "num-vp", &err); object_property_set_int(OBJECT(&s->cpc), 1, "vp-start-running", &err); object_property_set_bool(OBJECT(&s->cpc), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, 0, sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpc), 0)); /* Global Interrupt Controller */ object_initialize(&s->gic, sizeof(s->gic), TYPE_MIPS_GIC); qdev_set_parent_bus(DEVICE(&s->gic), sysbus_get_default()); object_property_set_int(OBJECT(&s->gic), s->num_vp, "num-vp", &err); object_property_set_int(OBJECT(&s->gic), 128, "num-irq", &err); object_property_set_bool(OBJECT(&s->gic), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, 0, sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->gic), 0)); /* Global Configuration Registers */ gcr_base = env->CP0_CMGCRBase << 4; object_initialize(&s->gcr, sizeof(s->gcr), TYPE_MIPS_GCR); qdev_set_parent_bus(DEVICE(&s->gcr), sysbus_get_default()); object_property_set_int(OBJECT(&s->gcr), s->num_vp, "num-vp", &err); object_property_set_int(OBJECT(&s->gcr), 0x800, "gcr-rev", &err); object_property_set_int(OBJECT(&s->gcr), gcr_base, "gcr-base", &err); object_property_set_link(OBJECT(&s->gcr), OBJECT(&s->gic.mr), "gic", &err); object_property_set_link(OBJECT(&s->gcr), OBJECT(&s->cpc.mr), "cpc", &err); object_property_set_bool(OBJECT(&s->gcr), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } memory_region_add_subregion(&s->container, gcr_base, sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->gcr), 0)); }
static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp) { MSF2State *s = MSF2_SOC(dev_soc); DeviceState *dev, *armv7m; SysBusDevice *busdev; Error *err = NULL; int i; MemoryRegion *system_memory = get_system_memory(); MemoryRegion *nvm = g_new(MemoryRegion, 1); MemoryRegion *nvm_alias = g_new(MemoryRegion, 1); MemoryRegion *sram = g_new(MemoryRegion, 1); memory_region_init_rom(nvm, NULL, "MSF2.eNVM", s->envm_size, &error_fatal); /* * On power-on, the eNVM region 0x60000000 is automatically * remapped to the Cortex-M3 processor executable region * start address (0x0). We do not support remapping other eNVM, * eSRAM and DDR regions by guest(via Sysreg) currently. */ memory_region_init_alias(nvm_alias, NULL, "MSF2.eNVM", nvm, 0, s->envm_size); memory_region_add_subregion(system_memory, ENVM_BASE_ADDRESS, nvm); memory_region_add_subregion(system_memory, 0, nvm_alias); memory_region_init_ram(sram, NULL, "MSF2.eSRAM", s->esram_size, &error_fatal); memory_region_add_subregion(system_memory, SRAM_BASE_ADDRESS, sram); armv7m = DEVICE(&s->armv7m); qdev_prop_set_uint32(armv7m, "num-irq", 81); qdev_prop_set_string(armv7m, "cpu-type", s->cpu_type); qdev_prop_set_bit(armv7m, "enable-bitband", true); object_property_set_link(OBJECT(&s->armv7m), OBJECT(get_system_memory()), "memory", &error_abort); object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } if (!s->m3clk) { error_setg(errp, "Invalid m3clk value"); error_append_hint(errp, "m3clk can not be zero\n"); return; } qdev_connect_gpio_out_named(DEVICE(&s->armv7m.nvic), "SYSRESETREQ", 0, qemu_allocate_irq(&do_sys_reset, NULL, 0)); system_clock_scale = NANOSECONDS_PER_SECOND / s->m3clk; for (i = 0; i < MSF2_NUM_UARTS; i++) { if (serial_hd(i)) { serial_mm_init(get_system_memory(), uart_addr[i], 2, qdev_get_gpio_in(armv7m, uart_irq[i]), 115200, serial_hd(i), DEVICE_NATIVE_ENDIAN); } } dev = DEVICE(&s->timer); /* APB0 clock is the timer input clock */ qdev_prop_set_uint32(dev, "clock-frequency", s->m3clk / s->apb0div); object_property_set_bool(OBJECT(&s->timer), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, MSF2_TIMER_BASE); sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(armv7m, timer_irq[0])); sysbus_connect_irq(busdev, 1, qdev_get_gpio_in(armv7m, timer_irq[1])); dev = DEVICE(&s->sysreg); qdev_prop_set_uint32(dev, "apb0divisor", s->apb0div); qdev_prop_set_uint32(dev, "apb1divisor", s->apb1div); object_property_set_bool(OBJECT(&s->sysreg), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, MSF2_SYSREG_BASE); for (i = 0; i < MSF2_NUM_SPIS; i++) { gchar *bus_name; object_property_set_bool(OBJECT(&s->spi[i]), true, "realized", &err); if (err != NULL) { error_propagate(errp, err); return; } sysbus_mmio_map(SYS_BUS_DEVICE(&s->spi[i]), 0, spi_addr[i]); sysbus_connect_irq(SYS_BUS_DEVICE(&s->spi[i]), 0, qdev_get_gpio_in(armv7m, spi_irq[i])); /* Alias controller SPI bus to the SoC itself */ bus_name = g_strdup_printf("spi%d", i); object_property_add_alias(OBJECT(s), bus_name, OBJECT(&s->spi[i]), "spi", &error_abort); g_free(bus_name); } /* Below devices are not modelled yet. */ create_unimplemented_device("i2c_0", 0x40002000, 0x1000); create_unimplemented_device("dma", 0x40003000, 0x1000); create_unimplemented_device("watchdog", 0x40005000, 0x1000); create_unimplemented_device("i2c_1", 0x40012000, 0x1000); create_unimplemented_device("gpio", 0x40013000, 0x1000); create_unimplemented_device("hs-dma", 0x40014000, 0x1000); create_unimplemented_device("can", 0x40015000, 0x1000); create_unimplemented_device("rtc", 0x40017000, 0x1000); create_unimplemented_device("apb_config", 0x40020000, 0x10000); create_unimplemented_device("emac", 0x40041000, 0x1000); create_unimplemented_device("usb", 0x40043000, 0x1000); }
static void petalogix_ml605_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; MemoryRegion *address_space_mem = get_system_memory(); DeviceState *dev, *dma, *eth0; Object *ds, *cs; MicroBlazeCPU *cpu; SysBusDevice *busdev; DriveInfo *dinfo; int i; MemoryRegion *phys_lmb_bram = g_new(MemoryRegion, 1); MemoryRegion *phys_ram = g_new(MemoryRegion, 1); qemu_irq irq[32]; /* init CPUs */ cpu = MICROBLAZE_CPU(object_new(TYPE_MICROBLAZE_CPU)); object_property_set_str(OBJECT(cpu), "8.10.a", "version", &error_abort); /* Use FPU but don't use floating point conversion and square * root instructions */ object_property_set_int(OBJECT(cpu), 1, "use-fpu", &error_abort); object_property_set_bool(OBJECT(cpu), true, "dcache-writeback", &error_abort); object_property_set_bool(OBJECT(cpu), true, "endianness", &error_abort); object_property_set_bool(OBJECT(cpu), true, "realized", &error_abort); /* Attach emulated BRAM through the LMB. */ memory_region_init_ram(phys_lmb_bram, NULL, "petalogix_ml605.lmb_bram", LMB_BRAM_SIZE, &error_fatal); vmstate_register_ram_global(phys_lmb_bram); memory_region_add_subregion(address_space_mem, 0x00000000, phys_lmb_bram); memory_region_init_ram(phys_ram, NULL, "petalogix_ml605.ram", ram_size, &error_fatal); vmstate_register_ram_global(phys_ram); memory_region_add_subregion(address_space_mem, MEMORY_BASEADDR, phys_ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* 5th parameter 2 means bank-width * 10th paremeter 0 means little-endian */ pflash_cfi01_register(FLASH_BASEADDR, NULL, "petalogix_ml605.flash", FLASH_SIZE, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, (64 * 1024), FLASH_SIZE >> 16, 2, 0x89, 0x18, 0x0000, 0x0, 0); dev = qdev_create(NULL, "xlnx.xps-intc"); qdev_prop_set_uint32(dev, "kind-of-intr", 1 << TIMER_IRQ); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, INTC_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(cpu), MB_CPU_IRQ)); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(dev, i); } serial_mm_init(address_space_mem, UART16550_BASEADDR + 0x1000, 2, irq[UART16550_IRQ], 115200, serial_hds[0], DEVICE_LITTLE_ENDIAN); /* 2 timers at irq 2 @ 100 Mhz. */ dev = qdev_create(NULL, "xlnx.xps-timer"); qdev_prop_set_uint32(dev, "one-timer-only", 0); qdev_prop_set_uint32(dev, "clock-frequency", 100 * 1000000); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, TIMER_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq[TIMER_IRQ]); /* axi ethernet and dma initialization. */ qemu_check_nic_model(&nd_table[0], "xlnx.axi-ethernet"); eth0 = qdev_create(NULL, "xlnx.axi-ethernet"); dma = qdev_create(NULL, "xlnx.axi-dma"); /* FIXME: attach to the sysbus instead */ object_property_add_child(qdev_get_machine(), "xilinx-eth", OBJECT(eth0), NULL); object_property_add_child(qdev_get_machine(), "xilinx-dma", OBJECT(dma), NULL); ds = object_property_get_link(OBJECT(dma), "axistream-connected-target", NULL); cs = object_property_get_link(OBJECT(dma), "axistream-control-connected-target", NULL); qdev_set_nic_properties(eth0, &nd_table[0]); qdev_prop_set_uint32(eth0, "rxmem", 0x1000); qdev_prop_set_uint32(eth0, "txmem", 0x1000); object_property_set_link(OBJECT(eth0), OBJECT(ds), "axistream-connected", &error_abort); object_property_set_link(OBJECT(eth0), OBJECT(cs), "axistream-control-connected", &error_abort); qdev_init_nofail(eth0); sysbus_mmio_map(SYS_BUS_DEVICE(eth0), 0, AXIENET_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(eth0), 0, irq[AXIENET_IRQ]); ds = object_property_get_link(OBJECT(eth0), "axistream-connected-target", NULL); cs = object_property_get_link(OBJECT(eth0), "axistream-control-connected-target", NULL); qdev_prop_set_uint32(dma, "freqhz", 100 * 1000000); object_property_set_link(OBJECT(dma), OBJECT(ds), "axistream-connected", &error_abort); object_property_set_link(OBJECT(dma), OBJECT(cs), "axistream-control-connected", &error_abort); qdev_init_nofail(dma); sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, AXIDMA_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dma), 0, irq[AXIDMA_IRQ0]); sysbus_connect_irq(SYS_BUS_DEVICE(dma), 1, irq[AXIDMA_IRQ1]); { SSIBus *spi; dev = qdev_create(NULL, "xlnx.xps-spi"); qdev_prop_set_uint8(dev, "num-ss-bits", NUM_SPI_FLASHES); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, SPI_BASEADDR); sysbus_connect_irq(busdev, 0, irq[SPI_IRQ]); spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < NUM_SPI_FLASHES; i++) { qemu_irq cs_line; dev = ssi_create_slave(spi, "n25q128"); cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0); sysbus_connect_irq(busdev, i+1, cs_line); } } /* setup PVR to match kernel settings */ cpu->env.pvr.regs[4] = 0xc56b8000; cpu->env.pvr.regs[5] = 0xc56be000; cpu->env.pvr.regs[10] = 0x0e000000; /* virtex 6 */ microblaze_load_kernel(cpu, MEMORY_BASEADDR, ram_size, machine->initrd_filename, BINARY_DEVICE_TREE_FILE, NULL); }
static void mps2_common_init(MachineState *machine) { MPS2MachineState *mms = MPS2_MACHINE(machine); MPS2MachineClass *mmc = MPS2_MACHINE_GET_CLASS(machine); MemoryRegion *system_memory = get_system_memory(); MachineClass *mc = MACHINE_GET_CLASS(machine); DeviceState *armv7m, *sccdev; if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { error_report("This board can only be used with CPU %s", mc->default_cpu_type); exit(1); } /* The FPGA images have an odd combination of different RAMs, * because in hardware they are different implementations and * connected to different buses, giving varying performance/size * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily * call the 16MB our "system memory", as it's the largest lump. * * Common to both boards: * 0x21000000..0x21ffffff : PSRAM (16MB) * AN385 only: * 0x00000000 .. 0x003fffff : ZBT SSRAM1 * 0x00400000 .. 0x007fffff : mirror of ZBT SSRAM1 * 0x20000000 .. 0x203fffff : ZBT SSRAM 2&3 * 0x20400000 .. 0x207fffff : mirror of ZBT SSRAM 2&3 * 0x01000000 .. 0x01003fff : block RAM (16K) * 0x01004000 .. 0x01007fff : mirror of above * 0x01008000 .. 0x0100bfff : mirror of above * 0x0100c000 .. 0x0100ffff : mirror of above * AN511 only: * 0x00000000 .. 0x0003ffff : FPGA block RAM * 0x00400000 .. 0x007fffff : ZBT SSRAM1 * 0x20000000 .. 0x2001ffff : SRAM * 0x20400000 .. 0x207fffff : ZBT SSRAM 2&3 * * The AN385 has a feature where the lowest 16K can be mapped * either to the bottom of the ZBT SSRAM1 or to the block RAM. * This is of no use for QEMU so we don't implement it (as if * zbt_boot_ctrl is always zero). */ memory_region_allocate_system_memory(&mms->psram, NULL, "mps.ram", 0x1000000); memory_region_add_subregion(system_memory, 0x21000000, &mms->psram); switch (mmc->fpga_type) { case FPGA_AN385: make_ram(&mms->ssram1, "mps.ssram1", 0x0, 0x400000); make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", &mms->ssram1, 0x400000); make_ram(&mms->ssram23, "mps.ssram23", 0x20000000, 0x400000); make_ram_alias(&mms->ssram23_m, "mps.ssram23_m", &mms->ssram23, 0x20400000); make_ram(&mms->blockram, "mps.blockram", 0x01000000, 0x4000); make_ram_alias(&mms->blockram_m1, "mps.blockram_m1", &mms->blockram, 0x01004000); make_ram_alias(&mms->blockram_m2, "mps.blockram_m2", &mms->blockram, 0x01008000); make_ram_alias(&mms->blockram_m3, "mps.blockram_m3", &mms->blockram, 0x0100c000); break; case FPGA_AN511: make_ram(&mms->blockram, "mps.blockram", 0x0, 0x40000); make_ram(&mms->ssram1, "mps.ssram1", 0x00400000, 0x00800000); make_ram(&mms->sram, "mps.sram", 0x20000000, 0x20000); make_ram(&mms->ssram23, "mps.ssram23", 0x20400000, 0x400000); break; default: g_assert_not_reached(); } sysbus_init_child_obj(OBJECT(mms), "armv7m", &mms->armv7m, sizeof(mms->armv7m), TYPE_ARMV7M); armv7m = DEVICE(&mms->armv7m); switch (mmc->fpga_type) { case FPGA_AN385: qdev_prop_set_uint32(armv7m, "num-irq", 32); break; case FPGA_AN511: qdev_prop_set_uint32(armv7m, "num-irq", 64); break; default: g_assert_not_reached(); } qdev_prop_set_string(armv7m, "cpu-type", machine->cpu_type); qdev_prop_set_bit(armv7m, "enable-bitband", true); object_property_set_link(OBJECT(&mms->armv7m), OBJECT(system_memory), "memory", &error_abort); object_property_set_bool(OBJECT(&mms->armv7m), true, "realized", &error_fatal); create_unimplemented_device("zbtsmram mirror", 0x00400000, 0x00400000); create_unimplemented_device("RESERVED 1", 0x00800000, 0x00800000); create_unimplemented_device("Block RAM", 0x01000000, 0x00010000); create_unimplemented_device("RESERVED 2", 0x01010000, 0x1EFF0000); create_unimplemented_device("RESERVED 3", 0x20800000, 0x00800000); create_unimplemented_device("PSRAM", 0x21000000, 0x01000000); /* These three ranges all cover multiple devices; we may implement * some of them below (in which case the real device takes precedence * over the unimplemented-region mapping). */ create_unimplemented_device("CMSDK APB peripheral region @0x40000000", 0x40000000, 0x00010000); create_unimplemented_device("CMSDK peripheral region @0x40010000", 0x40010000, 0x00010000); create_unimplemented_device("Extra peripheral region @0x40020000", 0x40020000, 0x00010000); create_unimplemented_device("RESERVED 4", 0x40030000, 0x001D0000); create_unimplemented_device("VGA", 0x41000000, 0x0200000); switch (mmc->fpga_type) { case FPGA_AN385: { /* The overflow IRQs for UARTs 0, 1 and 2 are ORed together. * Overflow for UARTs 4 and 5 doesn't trigger any interrupt. */ Object *orgate; DeviceState *orgate_dev; int i; orgate = object_new(TYPE_OR_IRQ); object_property_set_int(orgate, 6, "num-lines", &error_fatal); object_property_set_bool(orgate, true, "realized", &error_fatal); orgate_dev = DEVICE(orgate); qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12)); for (i = 0; i < 5; i++) { static const hwaddr uartbase[] = {0x40004000, 0x40005000, 0x40006000, 0x40007000, 0x40009000}; /* RX irq number; TX irq is always one greater */ static const int uartirq[] = {0, 2, 4, 18, 20}; qemu_irq txovrint = NULL, rxovrint = NULL; if (i < 3) { txovrint = qdev_get_gpio_in(orgate_dev, i * 2); rxovrint = qdev_get_gpio_in(orgate_dev, i * 2 + 1); } cmsdk_apb_uart_create(uartbase[i], qdev_get_gpio_in(armv7m, uartirq[i] + 1), qdev_get_gpio_in(armv7m, uartirq[i]), txovrint, rxovrint, NULL, serial_hd(i), SYSCLK_FRQ); } break; } case FPGA_AN511: { /* The overflow IRQs for all UARTs are ORed together. * Tx and Rx IRQs for each UART are ORed together. */ Object *orgate; DeviceState *orgate_dev; int i; orgate = object_new(TYPE_OR_IRQ); object_property_set_int(orgate, 10, "num-lines", &error_fatal); object_property_set_bool(orgate, true, "realized", &error_fatal); orgate_dev = DEVICE(orgate); qdev_connect_gpio_out(orgate_dev, 0, qdev_get_gpio_in(armv7m, 12)); for (i = 0; i < 5; i++) { /* system irq numbers for the combined tx/rx for each UART */ static const int uart_txrx_irqno[] = {0, 2, 45, 46, 56}; static const hwaddr uartbase[] = {0x40004000, 0x40005000, 0x4002c000, 0x4002d000, 0x4002e000}; Object *txrx_orgate; DeviceState *txrx_orgate_dev; txrx_orgate = object_new(TYPE_OR_IRQ); object_property_set_int(txrx_orgate, 2, "num-lines", &error_fatal); object_property_set_bool(txrx_orgate, true, "realized", &error_fatal); txrx_orgate_dev = DEVICE(txrx_orgate); qdev_connect_gpio_out(txrx_orgate_dev, 0, qdev_get_gpio_in(armv7m, uart_txrx_irqno[i])); cmsdk_apb_uart_create(uartbase[i], qdev_get_gpio_in(txrx_orgate_dev, 0), qdev_get_gpio_in(txrx_orgate_dev, 1), qdev_get_gpio_in(orgate_dev, i * 2), qdev_get_gpio_in(orgate_dev, i * 2 + 1), NULL, serial_hd(i), SYSCLK_FRQ); } break; } default: g_assert_not_reached(); } cmsdk_apb_timer_create(0x40000000, qdev_get_gpio_in(armv7m, 8), SYSCLK_FRQ); cmsdk_apb_timer_create(0x40001000, qdev_get_gpio_in(armv7m, 9), SYSCLK_FRQ); sysbus_init_child_obj(OBJECT(mms), "dualtimer", &mms->dualtimer, sizeof(mms->dualtimer), TYPE_CMSDK_APB_DUALTIMER); qdev_prop_set_uint32(DEVICE(&mms->dualtimer), "pclk-frq", SYSCLK_FRQ); object_property_set_bool(OBJECT(&mms->dualtimer), true, "realized", &error_fatal); sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0, qdev_get_gpio_in(armv7m, 10)); sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0x40002000); sysbus_init_child_obj(OBJECT(mms), "scc", &mms->scc, sizeof(mms->scc), TYPE_MPS2_SCC); sccdev = DEVICE(&mms->scc); qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); object_property_set_bool(OBJECT(&mms->scc), true, "realized", &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(sccdev), 0, 0x4002f000); /* In hardware this is a LAN9220; the LAN9118 is software compatible * except that it doesn't support the checksum-offload feature. */ lan9118_init(&nd_table[0], 0x40200000, qdev_get_gpio_in(armv7m, mmc->fpga_type == FPGA_AN385 ? 13 : 47)); system_clock_scale = NANOSECONDS_PER_SECOND / SYSCLK_FRQ; armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000); }
static void zynq_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *cpu_model = machine->cpu_model; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; A9MPPrivState *mpcore; ObjectClass *cpu_oc; ARMCPU *cpu[MAX_CPUS]; MemoryRegion *address_space_mem = get_system_memory(); MemoryRegion *ext_ram = g_new(MemoryRegion, 1); MemoryRegion *ocm_ram = g_new(MemoryRegion, 1); DeviceState *dev; SysBusDevice *busdev; qemu_irq pic[64]; Error *err = NULL; int n; if (machine->cpu_model) { error_report("Zynq does not support CPU model override!\n"); exit(1); } if (!cpu_model) { cpu_model = "cortex-a9"; } cpu_oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model); for (n = 0; n < smp_cpus; n++) { cpu[n] = ARM_CPU(object_new(object_class_get_name(cpu_oc))); /* By default A9 CPUs have EL3 enabled. This board does not * currently support EL3 so the CPU EL3 property is disabled before * realization. */ if (object_property_find(OBJECT(cpu[n]), "has_el3", NULL)) { object_property_set_bool(OBJECT(cpu[n]), false, "has_el3", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } object_property_set_int(OBJECT(cpu[n]), ZYNQ_BOARD_MIDR, "midr", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } object_property_set_int(OBJECT(cpu[n]), MPCORE_PERIPHBASE, "reset-cbar", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } object_property_set_bool(OBJECT(cpu[n]), true, "realized", &err); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } /* max 2GB ram */ if (ram_size > 0x80000000) { ram_size = 0x80000000; } /* pl353 */ dev = qdev_create(NULL, "arm.pl35x"); /* FIXME: handle this somewhere central */ object_property_add_child(container_get(qdev_get_machine(), "/unattached"), "pl353", OBJECT(dev), NULL); qdev_prop_set_uint8(dev, "x", 3); { DriveInfo *dinfo = drive_get_next(IF_PFLASH); BlockBackend *blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL; DeviceState *att_dev = qdev_create(NULL, "cfi.pflash02"); Error *errp = NULL; if (blk && qdev_prop_set_drive(att_dev, "drive", blk)) { abort(); } qdev_prop_set_uint32(att_dev, "num-blocks", FLASH_SIZE/FLASH_SECTOR_SIZE); qdev_prop_set_uint32(att_dev, "sector-length", FLASH_SECTOR_SIZE); qdev_prop_set_uint8(att_dev, "width", 1); qdev_prop_set_uint8(att_dev, "mappings", 1); qdev_prop_set_uint8(att_dev, "big-endian", 0); qdev_prop_set_uint16(att_dev, "id0", 0x0066); qdev_prop_set_uint16(att_dev, "id1", 0x0022); qdev_prop_set_uint16(att_dev, "id2", 0x0000); qdev_prop_set_uint16(att_dev, "id3", 0x0000); qdev_prop_set_uint16(att_dev, "unlock-addr0", 0x0aaa); qdev_prop_set_uint16(att_dev, "unlock-addr1", 0x0555); qdev_prop_set_string(att_dev, "name", "pl353.pflash"); qdev_init_nofail(att_dev); object_property_set_link(OBJECT(dev), OBJECT(att_dev), "dev0", &errp); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } dinfo = drive_get_next(IF_PFLASH); att_dev = nand_init(dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, NAND_MFR_STMICRO, 0xaa); object_property_set_link(OBJECT(dev), OBJECT(att_dev), "dev1", &errp); if (err) { error_report("%s", error_get_pretty(err)); exit(1); } } qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xe000e000); sysbus_mmio_map(busdev, 1, 0xe2000000); sysbus_mmio_map(busdev, 2, 0xe1000000); /* DDR remapped to address zero. */ memory_region_allocate_system_memory(ext_ram, NULL, "zynq.ext_ram", ram_size); memory_region_add_subregion(address_space_mem, 0, ext_ram); /* 256K of on-chip memory */ memory_region_init_ram(ocm_ram, NULL, "zynq.ocm_ram", 256 << 10, &error_abort); vmstate_register_ram_global(ocm_ram); memory_region_add_subregion(address_space_mem, OCM_BASE, ocm_ram); DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); /* AMD */ pflash_cfi02_register(0xe2000000, NULL, "zynq.pflash", FLASH_SIZE, dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, FLASH_SECTOR_SIZE, FLASH_SIZE/FLASH_SECTOR_SIZE, 1, 1, 0x0066, 0x0022, 0x0000, 0x0000, 0x0555, 0x2aa, 0); dev = qdev_create(NULL, "xilinx,zynq_slcr"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xF8000000); for (n = 0; n < smp_cpus; n++) { qdev_connect_gpio_out(dev, n, qdev_get_gpio_in(DEVICE(cpu[n]), 0)); } mpcore = A9MPCORE_PRIV(object_new("a9mpcore_priv")); qdev_prop_set_uint32(DEVICE(mpcore), "num-cpu", smp_cpus); object_property_set_bool(OBJECT(mpcore), true, "realized", &err); if (err != NULL) { error_report("Couldn't realize the Zynq A9MPCore: %s", error_get_pretty(err)); exit(1); } busdev = SYS_BUS_DEVICE(DEVICE(mpcore)); sysbus_mmio_map(busdev, 0, MPCORE_PERIPHBASE); for (n = 0; n < smp_cpus; n++) { sysbus_connect_irq(busdev, n, qdev_get_gpio_in(DEVICE(cpu[n]), ARM_CPU_IRQ)); } for (n = 0; n < 64; n++) { pic[n] = qdev_get_gpio_in(dev, n); } zynq_init_zc70x_i2c(0xE0004000, pic[57-IRQ_OFFSET]); zynq_init_zc70x_i2c(0xE0005000, pic[80-IRQ_OFFSET]); dev = qdev_create(NULL, "xlnx,ps7-usb"); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xE0002000); sysbus_connect_irq(busdev, 0, pic[53-IRQ_OFFSET]); dev = qdev_create(NULL, "xlnx,ps7-usb"); busdev = SYS_BUS_DEVICE(dev); qdev_init_nofail(dev); sysbus_mmio_map(busdev, 0, 0xE0003000); sysbus_connect_irq(busdev, 0, pic[76-IRQ_OFFSET]); zynq_init_spi_flashes(0xE0006000, pic[58-IRQ_OFFSET], false); zynq_init_spi_flashes(0xE0007000, pic[81-IRQ_OFFSET], false); zynq_init_spi_flashes(0xE000D000, pic[51-IRQ_OFFSET], true); sysbus_create_simple("cadence_uart", 0xE0000000, pic[59-IRQ_OFFSET]); sysbus_create_simple("cadence_uart", 0xE0001000, pic[82-IRQ_OFFSET]); sysbus_create_varargs("cadence_ttc", 0xF8001000, pic[42-IRQ_OFFSET], pic[43-IRQ_OFFSET], pic[44-IRQ_OFFSET], NULL); sysbus_create_varargs("cadence_ttc", 0xF8002000, pic[69-IRQ_OFFSET], pic[70-IRQ_OFFSET], pic[71-IRQ_OFFSET], NULL); gem_init(&nd_table[0], 0xE000B000, pic[54-IRQ_OFFSET]); gem_init(&nd_table[1], 0xE000C000, pic[77-IRQ_OFFSET]); dev = qdev_create(NULL, "generic-sdhci"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xE0100000); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[56-IRQ_OFFSET]); dev = qdev_create(NULL, "generic-sdhci"); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xE0101000); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[79-IRQ_OFFSET]); dev = qdev_create(NULL, TYPE_ZYNQ_XADC); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xF8007100); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[39-IRQ_OFFSET]); dev = qdev_create(NULL, "pl330"); qdev_prop_set_uint8(dev, "num_chnls", 8); qdev_prop_set_uint8(dev, "num_periph_req", 4); qdev_prop_set_uint8(dev, "num_events", 16); qdev_prop_set_uint8(dev, "data_width", 64); qdev_prop_set_uint8(dev, "wr_cap", 8); qdev_prop_set_uint8(dev, "wr_q_dep", 16); qdev_prop_set_uint8(dev, "rd_cap", 8); qdev_prop_set_uint8(dev, "rd_q_dep", 16); qdev_prop_set_uint16(dev, "data_buffer_dep", 256); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, 0xF8003000); sysbus_connect_irq(busdev, 0, pic[45-IRQ_OFFSET]); /* abort irq line */ for (n = 0; n < 8; ++n) { /* event irqs */ sysbus_connect_irq(busdev, n + 1, pic[dma_irqs[n] - IRQ_OFFSET]); } dev = qdev_create(NULL, "xlnx.ps7-dev-cfg"); object_property_add_child(qdev_get_machine(), "xilinx-devcfg", OBJECT(dev), NULL); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_connect_irq(busdev, 0, pic[40-IRQ_OFFSET]); sysbus_mmio_map(busdev, 0, 0xF8007000); zynq_binfo.ram_size = ram_size; zynq_binfo.kernel_filename = kernel_filename; zynq_binfo.kernel_cmdline = kernel_cmdline; zynq_binfo.initrd_filename = initrd_filename; zynq_binfo.nb_cpus = smp_cpus; zynq_binfo.write_secondary_boot = zynq_write_secondary_boot; zynq_binfo.secondary_cpu_reset_hook = zynq_reset_secondary; zynq_binfo.smp_loader_start = SMP_BOOT_ADDR; zynq_binfo.board_id = 0xd32; zynq_binfo.loader_start = 0; arm_load_kernel(ARM_CPU(first_cpu), &zynq_binfo); }
static void versal_virt_init(MachineState *machine) { VersalVirt *s = XLNX_VERSAL_VIRT_MACHINE(machine); int psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; /* * If the user provides an Operating System to be loaded, we expect them * to use the -kernel command line option. * * Users can load firmware or boot-loaders with the -device loader options. * * When loading an OS, we generate a dtb and let arm_load_kernel() select * where it gets loaded. This dtb will be passed to the kernel in x0. * * If there's no -kernel option, we generate a DTB and place it at 0x1000 * for the bootloaders or firmware to pick up. * * If users want to provide their own DTB, they can use the -dtb option. * These dtb's will have their memory nodes modified to match QEMU's * selected ram_size option before they get passed to the kernel or fw. * * When loading an OS, we turn on QEMU's PSCI implementation with SMC * as the PSCI conduit. When there's no -kernel, we assume the user * provides EL3 firmware to handle PSCI. */ if (machine->kernel_filename) { psci_conduit = QEMU_PSCI_CONDUIT_SMC; } memory_region_allocate_system_memory(&s->mr_ddr, NULL, "ddr", machine->ram_size); sysbus_init_child_obj(OBJECT(machine), "xlnx-ve", &s->soc, sizeof(s->soc), TYPE_XLNX_VERSAL); object_property_set_link(OBJECT(&s->soc), OBJECT(&s->mr_ddr), "ddr", &error_abort); object_property_set_int(OBJECT(&s->soc), psci_conduit, "psci-conduit", &error_abort); object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal); fdt_create(s); create_virtio_regions(s); fdt_add_gem_nodes(s); fdt_add_uart_nodes(s); fdt_add_gic_nodes(s); fdt_add_timer_nodes(s); fdt_add_cpu_nodes(s, psci_conduit); fdt_add_clk_node(s, "/clk125", 125000000, s->phandle.clk_125Mhz); fdt_add_clk_node(s, "/clk25", 25000000, s->phandle.clk_25Mhz); /* Make the APU cpu address space visible to virtio and other * modules unaware of muliple address-spaces. */ memory_region_add_subregion_overlap(get_system_memory(), 0, &s->soc.fpd.apu.mr, 0); s->binfo.ram_size = machine->ram_size; s->binfo.kernel_filename = machine->kernel_filename; s->binfo.kernel_cmdline = machine->kernel_cmdline; s->binfo.initrd_filename = machine->initrd_filename; s->binfo.loader_start = 0x0; s->binfo.get_dtb = versal_virt_get_dtb; s->binfo.modify_dtb = versal_virt_modify_dtb; if (machine->kernel_filename) { arm_load_kernel(s->soc.fpd.apu.cpu[0], &s->binfo); } else { AddressSpace *as = arm_boot_address_space(s->soc.fpd.apu.cpu[0], &s->binfo); /* Some boot-loaders (e.g u-boot) don't like blobs at address 0 (NULL). * Offset things by 4K. */ s->binfo.loader_start = 0x1000; s->binfo.dtb_limit = 0x1000000; if (arm_load_dtb(s->binfo.loader_start, &s->binfo, s->binfo.dtb_limit, as) < 0) { exit(EXIT_FAILURE); } } }
static void ppc_heathrow_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; const char *boot_device = machine->boot_order; MemoryRegion *sysmem = get_system_memory(); PowerPCCPU *cpu = NULL; CPUPPCState *env = NULL; char *filename; int linux_boot, i; MemoryRegion *ram = g_new(MemoryRegion, 1); MemoryRegion *bios = g_new(MemoryRegion, 1); uint32_t kernel_base, initrd_base, cmdline_base = 0; int32_t kernel_size, initrd_size; PCIBus *pci_bus; OldWorldMacIOState *macio; MACIOIDEState *macio_ide; SysBusDevice *s; DeviceState *dev, *pic_dev; BusState *adb_bus; int bios_size; uint16_t ppc_boot_device; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; void *fw_cfg; uint64_t tbfreq; linux_boot = (kernel_filename != NULL); /* init CPUs */ for (i = 0; i < smp_cpus; i++) { cpu = POWERPC_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; /* Set time-base frequency to 16.6 Mhz */ cpu_ppc_tb_init(env, TBFREQ); qemu_register_reset(ppc_heathrow_reset, cpu); } /* allocate RAM */ if (ram_size > 2047 * MiB) { error_report("Too much memory for this machine: %" PRId64 " MB, " "maximum 2047 MB", ram_size / MiB); exit(1); } memory_region_allocate_system_memory(ram, NULL, "ppc_heathrow.ram", ram_size); memory_region_add_subregion(sysmem, 0, ram); /* allocate and load BIOS */ memory_region_init_ram(bios, NULL, "ppc_heathrow.bios", BIOS_SIZE, &error_fatal); if (bios_name == NULL) bios_name = PROM_FILENAME; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); memory_region_set_readonly(bios, true); memory_region_add_subregion(sysmem, PROM_ADDR, bios); /* Load OpenBIOS (ELF) */ if (filename) { bios_size = load_elf(filename, NULL, 0, NULL, NULL, NULL, NULL, 1, PPC_ELF_MACHINE, 0, 0); g_free(filename); } else { bios_size = -1; } if (bios_size < 0 || bios_size > BIOS_SIZE) { error_report("could not load PowerPC bios '%s'", bios_name); exit(1); } if (linux_boot) { uint64_t lowaddr = 0; int bswap_needed; #ifdef BSWAP_NEEDED bswap_needed = 1; #else bswap_needed = 0; #endif kernel_base = KERNEL_LOAD_ADDR; kernel_size = load_elf(kernel_filename, NULL, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0, 0); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, kernel_base, ram_size - kernel_base, bswap_needed, TARGET_PAGE_SIZE); if (kernel_size < 0) kernel_size = load_image_targphys(kernel_filename, kernel_base, ram_size - kernel_base); if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP); initrd_size = load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } cmdline_base = TARGET_PAGE_ALIGN(initrd_base + initrd_size); } else { initrd_base = 0; initrd_size = 0; cmdline_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP); } ppc_boot_device = 'm'; } else { kernel_base = 0; kernel_size = 0; initrd_base = 0; initrd_size = 0; ppc_boot_device = '\0'; for (i = 0; boot_device[i] != '\0'; i++) { /* TOFIX: for now, the second IDE channel is not properly * used by OHW. The Mac floppy disk are not emulated. * For now, OHW cannot boot from the network. */ #if 0 if (boot_device[i] >= 'a' && boot_device[i] <= 'f') { ppc_boot_device = boot_device[i]; break; } #else if (boot_device[i] >= 'c' && boot_device[i] <= 'd') { ppc_boot_device = boot_device[i]; break; } #endif } if (ppc_boot_device == '\0') { error_report("No valid boot device for G3 Beige machine"); exit(1); } } /* XXX: we register only 1 output pin for heathrow PIC */ pic_dev = qdev_create(NULL, TYPE_HEATHROW); qdev_init_nofail(pic_dev); /* Connect the heathrow PIC outputs to the 6xx bus */ for (i = 0; i < smp_cpus; i++) { switch (PPC_INPUT(env)) { case PPC_FLAGS_INPUT_6xx: qdev_connect_gpio_out(pic_dev, 0, ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT]); break; default: error_report("Bus model not supported on OldWorld Mac machine"); exit(1); } } /* Timebase Frequency */ if (kvm_enabled()) { tbfreq = kvmppc_get_tbfreq(); } else { tbfreq = TBFREQ; } /* init basic PC hardware */ if (PPC_INPUT(env) != PPC_FLAGS_INPUT_6xx) { error_report("Only 6xx bus is supported on heathrow machine"); exit(1); } /* Grackle PCI host bridge */ dev = qdev_create(NULL, TYPE_GRACKLE_PCI_HOST_BRIDGE); qdev_prop_set_uint32(dev, "ofw-addr", 0x80000000); object_property_set_link(OBJECT(dev), OBJECT(pic_dev), "pic", &error_abort); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); sysbus_mmio_map(s, 0, GRACKLE_BASE); sysbus_mmio_map(s, 1, GRACKLE_BASE + 0x200000); /* PCI hole */ memory_region_add_subregion(get_system_memory(), 0x80000000ULL, sysbus_mmio_get_region(s, 2)); /* Register 2 MB of ISA IO space */ memory_region_add_subregion(get_system_memory(), 0xfe000000, sysbus_mmio_get_region(s, 3)); pci_bus = PCI_HOST_BRIDGE(dev)->bus; pci_vga_init(pci_bus); for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); } ide_drive_get(hd, ARRAY_SIZE(hd)); /* MacIO */ macio = OLDWORLD_MACIO(pci_create(pci_bus, -1, TYPE_OLDWORLD_MACIO)); dev = DEVICE(macio); qdev_prop_set_uint64(dev, "frequency", tbfreq); object_property_set_link(OBJECT(macio), OBJECT(pic_dev), "pic", &error_abort); qdev_init_nofail(dev); macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio), "ide[0]")); macio_ide_init_drives(macio_ide, hd); macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio), "ide[1]")); macio_ide_init_drives(macio_ide, &hd[MAX_IDE_DEVS]); dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda")); adb_bus = qdev_get_child_bus(dev, "adb.0"); dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD); qdev_init_nofail(dev); dev = qdev_create(adb_bus, TYPE_ADB_MOUSE); qdev_init_nofail(dev); if (machine_usb(machine)) { pci_create_simple(pci_bus, -1, "pci-ohci"); } if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8) graphic_depth = 15; /* No PCI init: the BIOS will do it */ dev = qdev_create(NULL, TYPE_FW_CFG_MEM); fw_cfg = FW_CFG(dev); qdev_prop_set_uint32(dev, "data_width", 1); qdev_prop_set_bit(dev, "dma_enabled", false); object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, OBJECT(fw_cfg), NULL); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); sysbus_mmio_map(s, 0, CFG_ADDR); sysbus_mmio_map(s, 1, CFG_ADDR + 2); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, ARCH_HEATHROW); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base); pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled()); if (kvm_enabled()) { #ifdef CONFIG_KVM uint8_t *hypercall; hypercall = g_malloc(16); kvmppc_get_hypercall(env, hypercall, 16); fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid()); #endif } fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, tbfreq); /* Mac OS X requires a "known good" clock-frequency value; pass it one. */ fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_CLOCKFREQ, CLOCKFREQ); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_BUSFREQ, BUSFREQ); /* MacOS NDRV VGA driver */ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, NDRV_VGA_FILENAME); if (filename) { gchar *ndrv_file; gsize ndrv_size; if (g_file_get_contents(filename, &ndrv_file, &ndrv_size, NULL)) { fw_cfg_add_file(fw_cfg, "ndrv/qemu_vga.ndrv", ndrv_file, ndrv_size); } g_free(filename); } qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); }
/* PC hardware initialisation */ static void pc_init1(MachineState *machine, const char *host_type, const char *pci_type) { PCMachineState *pcms = PC_MACHINE(machine); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_io = get_system_io(); int i; PCIBus *pci_bus; ISABus *isa_bus; PCII440FXState *i440fx_state; int piix3_devfn = -1; qemu_irq *gsi; qemu_irq *i8259; qemu_irq smi_irq; GSIState *gsi_state; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BusState *idebus[MAX_IDE_BUS]; ISADevice *rtc_state; MemoryRegion *ram_memory; MemoryRegion *pci_memory; MemoryRegion *rom_memory; PcGuestInfo *guest_info; ram_addr_t lowmem; /* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory). * If it doesn't, we need to split it in chunks below and above 4G. * In any case, try to make sure that guest addresses aligned at * 1G boundaries get mapped to host addresses aligned at 1G boundaries. * For old machine types, use whatever split we used historically to avoid * breaking migration. */ if (machine->ram_size >= 0xe0000000) { lowmem = gigabyte_align ? 0xc0000000 : 0xe0000000; } else { lowmem = 0xe0000000; } /* Handle the machine opt max-ram-below-4g. It is basically doing * min(qemu limit, user limit). */ if (lowmem > pcms->max_ram_below_4g) { lowmem = pcms->max_ram_below_4g; if (machine->ram_size - lowmem > lowmem && lowmem & ((1ULL << 30) - 1)) { error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64 ") not a multiple of 1G; possible bad performance.", pcms->max_ram_below_4g); } } if (machine->ram_size >= lowmem) { pcms->above_4g_mem_size = machine->ram_size - lowmem; pcms->below_4g_mem_size = lowmem; } else { pcms->above_4g_mem_size = 0; pcms->below_4g_mem_size = machine->ram_size; } if (xen_enabled() && xen_hvm_init(pcms, &ram_memory) != 0) { fprintf(stderr, "xen hardware virtual machine initialisation failed\n"); exit(1); } pc_cpus_init(pcms); if (kvm_enabled() && kvmclock_enabled) { kvmclock_create(); } if (pci_enabled) { pci_memory = g_new(MemoryRegion, 1); memory_region_init(pci_memory, NULL, "pci", UINT64_MAX); rom_memory = pci_memory; } else { pci_memory = NULL; rom_memory = system_memory; } guest_info = pc_guest_info_init(pcms); guest_info->has_acpi_build = has_acpi_build; guest_info->legacy_acpi_table_size = legacy_acpi_table_size; guest_info->isapc_ram_fw = !pci_enabled; guest_info->has_reserved_memory = has_reserved_memory; guest_info->rsdp_in_ram = rsdp_in_ram; if (smbios_defaults) { MachineClass *mc = MACHINE_GET_CLASS(machine); /* These values are guest ABI, do not change */ smbios_set_defaults("QEMU", "Standard PC (i440FX + PIIX, 1996)", mc->name, smbios_legacy_mode, smbios_uuid_encoded, SMBIOS_ENTRY_POINT_21); } /* allocate ram and load rom/bios */ if (!xen_enabled()) { pc_memory_init(pcms, system_memory, rom_memory, &ram_memory, guest_info); } else if (machine->kernel_filename != NULL) { /* For xen HVM direct kernel boot, load linux here */ xen_load_linux(pcms, guest_info); } gsi_state = g_malloc0(sizeof(*gsi_state)); if (kvm_ioapic_in_kernel()) { kvm_pc_setup_irq_routing(pci_enabled); gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state, GSI_NUM_PINS); } else { gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS); } if (pci_enabled) { pci_bus = i440fx_init(host_type, pci_type, &i440fx_state, &piix3_devfn, &isa_bus, gsi, system_memory, system_io, machine->ram_size, pcms->below_4g_mem_size, pcms->above_4g_mem_size, pci_memory, ram_memory); } else { pci_bus = NULL; i440fx_state = NULL; isa_bus = isa_bus_new(NULL, get_system_memory(), system_io); no_hpet = 1; } isa_bus_irqs(isa_bus, gsi); if (kvm_pic_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq()); } for (i = 0; i < ISA_NUM_IRQS; i++) { gsi_state->i8259_irq[i] = i8259[i]; } g_free(i8259); if (pci_enabled) { ioapic_init_gsi(gsi_state, "i440fx"); } pc_register_ferr_irq(gsi[13]); pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL); assert(pcms->vmport != ON_OFF_AUTO__MAX); if (pcms->vmport == ON_OFF_AUTO_AUTO) { pcms->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON; } /* init basic PC hardware */ pc_basic_device_init(isa_bus, gsi, &rtc_state, true, (pcms->vmport != ON_OFF_AUTO_ON), 0x4); pc_nic_init(isa_bus, pci_bus); ide_drive_get(hd, ARRAY_SIZE(hd)); if (pci_enabled) { PCIDevice *dev; if (xen_enabled()) { dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1); } else { dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1); } idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0"); idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1"); } else { for(i = 0; i < MAX_IDE_BUS; i++) { ISADevice *dev; char busname[] = "ide.0"; dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); /* * The ide bus name is ide.0 for the first bus and ide.1 for the * second one. */ busname[4] = '0' + i; idebus[i] = qdev_get_child_bus(DEVICE(dev), busname); } } pc_cmos_init(pcms, idebus[0], idebus[1], rtc_state); if (pci_enabled && usb_enabled()) { pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci"); } if (pci_enabled && acpi_enabled) { DeviceState *piix4_pm; I2CBus *smbus; smi_irq = qemu_allocate_irq(pc_acpi_smi_interrupt, first_cpu, 0); /* TODO: Populate SPD eeprom data. */ smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, gsi[9], smi_irq, pc_machine_is_smm_enabled(pcms), &piix4_pm); smbus_eeprom_init(smbus, 8, NULL, 0); object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP, TYPE_HOTPLUG_HANDLER, (Object **)&pcms->acpi_dev, object_property_allow_set_link, OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); object_property_set_link(OBJECT(machine), OBJECT(piix4_pm), PC_MACHINE_ACPI_DEVICE_PROP, &error_abort); } if (pci_enabled) { pc_pci_device_init(pci_bus); } }
static void xlnx_zynqmp_init(XlnxZCU102 *s, MachineState *machine) { int i; uint64_t ram_size = machine->ram_size; /* Create the memory region to pass to the SoC */ if (ram_size > XLNX_ZYNQMP_MAX_RAM_SIZE) { error_report("ERROR: RAM size 0x%" PRIx64 " above max supported of " "0x%llx", ram_size, XLNX_ZYNQMP_MAX_RAM_SIZE); exit(1); } if (ram_size < 0x08000000) { qemu_log("WARNING: RAM size 0x%" PRIx64 " is small for ZCU102", ram_size); } memory_region_allocate_system_memory(&s->ddr_ram, NULL, "ddr-ram", ram_size); object_initialize(&s->soc, sizeof(s->soc), TYPE_XLNX_ZYNQMP); object_property_add_child(OBJECT(machine), "soc", OBJECT(&s->soc), &error_abort); object_property_set_link(OBJECT(&s->soc), OBJECT(&s->ddr_ram), "ddr-ram", &error_abort); object_property_set_bool(OBJECT(&s->soc), s->secure, "secure", &error_fatal); object_property_set_bool(OBJECT(&s->soc), s->virt, "virtualization", &error_fatal); object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_fatal); /* Create and plug in the SD cards */ for (i = 0; i < XLNX_ZYNQMP_NUM_SDHCI; i++) { BusState *bus; DriveInfo *di = drive_get_next(IF_SD); BlockBackend *blk = di ? blk_by_legacy_dinfo(di) : NULL; DeviceState *carddev; char *bus_name; bus_name = g_strdup_printf("sd-bus%d", i); bus = qdev_get_child_bus(DEVICE(&s->soc), bus_name); g_free(bus_name); if (!bus) { error_report("No SD bus found for SD card %d", i); exit(1); } carddev = qdev_create(bus, TYPE_SD_CARD); qdev_prop_set_drive(carddev, "drive", blk, &error_fatal); object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal); } for (i = 0; i < XLNX_ZYNQMP_NUM_SPIS; i++) { SSIBus *spi_bus; DeviceState *flash_dev; qemu_irq cs_line; DriveInfo *dinfo = drive_get_next(IF_MTD); gchar *bus_name = g_strdup_printf("spi%d", i); spi_bus = (SSIBus *)qdev_get_child_bus(DEVICE(&s->soc), bus_name); g_free(bus_name); flash_dev = ssi_create_slave_no_init(spi_bus, "sst25wf080"); if (dinfo) { qdev_prop_set_drive(flash_dev, "drive", blk_by_legacy_dinfo(dinfo), &error_fatal); } qdev_init_nofail(flash_dev); cs_line = qdev_get_gpio_in_named(flash_dev, SSI_GPIO_CS, 0); sysbus_connect_irq(SYS_BUS_DEVICE(&s->soc.spi[i]), 1, cs_line); } for (i = 0; i < XLNX_ZYNQMP_NUM_QSPI_FLASH; i++) { SSIBus *spi_bus; DeviceState *flash_dev; qemu_irq cs_line; DriveInfo *dinfo = drive_get_next(IF_MTD); int bus = i / XLNX_ZYNQMP_NUM_QSPI_BUS_CS; gchar *bus_name = g_strdup_printf("qspi%d", bus); spi_bus = (SSIBus *)qdev_get_child_bus(DEVICE(&s->soc), bus_name); g_free(bus_name); flash_dev = ssi_create_slave_no_init(spi_bus, "n25q512a11"); if (dinfo) { qdev_prop_set_drive(flash_dev, "drive", blk_by_legacy_dinfo(dinfo), &error_fatal); } qdev_init_nofail(flash_dev); cs_line = qdev_get_gpio_in_named(flash_dev, SSI_GPIO_CS, 0); sysbus_connect_irq(SYS_BUS_DEVICE(&s->soc.qspi), i + 1, cs_line); } /* TODO create and connect IDE devices for ide_drive_get() */ xlnx_zcu102_binfo.ram_size = ram_size; xlnx_zcu102_binfo.kernel_filename = machine->kernel_filename; xlnx_zcu102_binfo.kernel_cmdline = machine->kernel_cmdline; xlnx_zcu102_binfo.initrd_filename = machine->initrd_filename; xlnx_zcu102_binfo.loader_start = 0; arm_load_kernel(s->soc.boot_cpu_ptr, &xlnx_zcu102_binfo); }
/* PC hardware initialisation */ static void pc_init1(MachineState *machine, const char *host_type, const char *pci_type) { PCMachineState *pcms = PC_MACHINE(machine); PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_io = get_system_io(); int i; PCIBus *pci_bus; ISABus *isa_bus; PCII440FXState *i440fx_state; int piix3_devfn = -1; qemu_irq *gsi; qemu_irq *i8259; qemu_irq smi_irq; GSIState *gsi_state; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BusState *idebus[MAX_IDE_BUS]; ISADevice *rtc_state; MemoryRegion *ram_memory; MemoryRegion *pci_memory; MemoryRegion *rom_memory; ram_addr_t lowmem; /* * Calculate ram split, for memory below and above 4G. It's a bit * complicated for backward compatibility reasons ... * * - Traditional split is 3.5G (lowmem = 0xe0000000). This is the * default value for max_ram_below_4g now. * * - Then, to gigabyte align the memory, we move the split to 3G * (lowmem = 0xc0000000). But only in case we have to split in * the first place, i.e. ram_size is larger than (traditional) * lowmem. And for new machine types (gigabyte_align = true) * only, for live migration compatibility reasons. * * - Next the max-ram-below-4g option was added, which allowed to * reduce lowmem to a smaller value, to allow a larger PCI I/O * window below 4G. qemu doesn't enforce gigabyte alignment here, * but prints a warning. * * - Finally max-ram-below-4g got updated to also allow raising lowmem, * so legacy non-PAE guests can get as much memory as possible in * the 32bit address space below 4G. * * - Note that Xen has its own ram setp code in xen_ram_init(), * called via xen_hvm_init(). * * Examples: * qemu -M pc-1.7 -m 4G (old default) -> 3584M low, 512M high * qemu -M pc -m 4G (new default) -> 3072M low, 1024M high * qemu -M pc,max-ram-below-4g=2G -m 4G -> 2048M low, 2048M high * qemu -M pc,max-ram-below-4g=4G -m 3968M -> 3968M low (=4G-128M) */ if (xen_enabled()) { xen_hvm_init(pcms, &ram_memory); } else { if (!pcms->max_ram_below_4g) { pcms->max_ram_below_4g = 0xe0000000; /* default: 3.5G */ } lowmem = pcms->max_ram_below_4g; if (machine->ram_size >= pcms->max_ram_below_4g) { if (pcmc->gigabyte_align) { if (lowmem > 0xc0000000) { lowmem = 0xc0000000; } if (lowmem & ((1ULL << 30) - 1)) { error_report("Warning: Large machine and max_ram_below_4g " "(%" PRIu64 ") not a multiple of 1G; " "possible bad performance.", pcms->max_ram_below_4g); } } } if (machine->ram_size >= lowmem) { pcms->above_4g_mem_size = machine->ram_size - lowmem; pcms->below_4g_mem_size = lowmem; } else { pcms->above_4g_mem_size = 0; pcms->below_4g_mem_size = machine->ram_size; } } pc_cpus_init(pcms); if (kvm_enabled() && pcmc->kvmclock_enabled) { kvmclock_create(); } if (pcmc->pci_enabled) { pci_memory = g_new(MemoryRegion, 1); memory_region_init(pci_memory, NULL, "pci", UINT64_MAX); rom_memory = pci_memory; } else { pci_memory = NULL; rom_memory = system_memory; } pc_guest_info_init(pcms); if (pcmc->smbios_defaults) { MachineClass *mc = MACHINE_GET_CLASS(machine); /* These values are guest ABI, do not change */ smbios_set_defaults("QEMU", "Standard PC (i440FX + PIIX, 1996)", mc->name, pcmc->smbios_legacy_mode, pcmc->smbios_uuid_encoded, SMBIOS_ENTRY_POINT_21); } /* allocate ram and load rom/bios */ if (!xen_enabled()) { pc_memory_init(pcms, system_memory, rom_memory, &ram_memory); } else if (machine->kernel_filename != NULL) { /* For xen HVM direct kernel boot, load linux here */ xen_load_linux(pcms); } gsi_state = g_malloc0(sizeof(*gsi_state)); if (kvm_ioapic_in_kernel()) { kvm_pc_setup_irq_routing(pcmc->pci_enabled); gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state, GSI_NUM_PINS); } else { gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS); } if (pcmc->pci_enabled) { pci_bus = i440fx_init(host_type, pci_type, &i440fx_state, &piix3_devfn, &isa_bus, gsi, system_memory, system_io, machine->ram_size, pcms->below_4g_mem_size, pcms->above_4g_mem_size, pci_memory, ram_memory); pcms->bus = pci_bus; } else { pci_bus = NULL; i440fx_state = NULL; isa_bus = isa_bus_new(NULL, get_system_memory(), system_io, &error_abort); no_hpet = 1; } isa_bus_irqs(isa_bus, gsi); if (kvm_pic_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq()); } for (i = 0; i < ISA_NUM_IRQS; i++) { gsi_state->i8259_irq[i] = i8259[i]; } g_free(i8259); if (pcmc->pci_enabled) { ioapic_init_gsi(gsi_state, "i440fx"); } pc_register_ferr_irq(gsi[13]); pc_vga_init(isa_bus, pcmc->pci_enabled ? pci_bus : NULL); assert(pcms->vmport != ON_OFF_AUTO__MAX); if (pcms->vmport == ON_OFF_AUTO_AUTO) { pcms->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON; } /* init basic PC hardware */ pc_basic_device_init(isa_bus, gsi, &rtc_state, true, (pcms->vmport != ON_OFF_AUTO_ON), 0x4); pc_nic_init(isa_bus, pci_bus); ide_drive_get(hd, ARRAY_SIZE(hd)); if (pcmc->pci_enabled) { PCIDevice *dev; if (xen_enabled()) { dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1); } else { dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1); } idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0"); idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1"); } else { for(i = 0; i < MAX_IDE_BUS; i++) { ISADevice *dev; char busname[] = "ide.0"; dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); /* * The ide bus name is ide.0 for the first bus and ide.1 for the * second one. */ busname[4] = '0' + i; idebus[i] = qdev_get_child_bus(DEVICE(dev), busname); } } pc_cmos_init(pcms, idebus[0], idebus[1], rtc_state); if (pcmc->pci_enabled && machine_usb(machine)) { pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci"); } if (pcmc->pci_enabled && acpi_enabled) { DeviceState *piix4_pm; I2CBus *smbus; smi_irq = qemu_allocate_irq(pc_acpi_smi_interrupt, first_cpu, 0); /* TODO: Populate SPD eeprom data. */ smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, gsi[9], smi_irq, pc_machine_is_smm_enabled(pcms), &piix4_pm); smbus_eeprom_init(smbus, 8, NULL, 0); object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP, TYPE_HOTPLUG_HANDLER, (Object **)&pcms->acpi_dev, object_property_allow_set_link, OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); object_property_set_link(OBJECT(machine), OBJECT(piix4_pm), PC_MACHINE_ACPI_DEVICE_PROP, &error_abort); } if (pcmc->pci_enabled) { pc_pci_device_init(pci_bus); } if (pcms->acpi_nvdimm_state.is_enabled) { nvdimm_init_acpi_state(&pcms->acpi_nvdimm_state, system_io, pcms->fw_cfg, OBJECT(pcms)); } }
static void mps2tz_common_init(MachineState *machine) { MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); MachineClass *mc = MACHINE_GET_CLASS(machine); MemoryRegion *system_memory = get_system_memory(); DeviceState *iotkitdev; DeviceState *dev_splitter; int i; if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { error_report("This board can only be used with CPU %s", mc->default_cpu_type); exit(1); } sysbus_init_child_obj(OBJECT(machine), "iotkit", &mms->iotkit, sizeof(mms->iotkit), TYPE_IOTKIT); iotkitdev = DEVICE(&mms->iotkit); object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory), "memory", &error_abort); qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", 92); qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ); object_property_set_bool(OBJECT(&mms->iotkit), true, "realized", &error_fatal); /* The sec_resp_cfg output from the IoTKit must be split into multiple * lines, one for each of the PPCs we create here. */ object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter), TYPE_SPLIT_IRQ); object_property_add_child(OBJECT(machine), "sec-resp-splitter", OBJECT(&mms->sec_resp_splitter), &error_abort); object_property_set_int(OBJECT(&mms->sec_resp_splitter), 5, "num-lines", &error_fatal); object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true, "realized", &error_fatal); dev_splitter = DEVICE(&mms->sec_resp_splitter); qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, qdev_get_gpio_in(dev_splitter, 0)); /* The IoTKit sets up much of the memory layout, including * the aliases between secure and non-secure regions in the * address space. The FPGA itself contains: * * 0x00000000..0x003fffff SSRAM1 * 0x00400000..0x007fffff alias of SSRAM1 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices * 0x80000000..0x80ffffff 16MB PSRAM */ /* The FPGA images have an odd combination of different RAMs, * because in hardware they are different implementations and * connected to different buses, giving varying performance/size * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily * call the 16MB our "system memory", as it's the largest lump. */ memory_region_allocate_system_memory(&mms->psram, NULL, "mps.ram", 0x01000000); memory_region_add_subregion(system_memory, 0x80000000, &mms->psram); /* The overflow IRQs for all UARTs are ORed together. * Tx, Rx and "combined" IRQs are sent to the NVIC separately. * Create the OR gate for this. */ object_initialize(&mms->uart_irq_orgate, sizeof(mms->uart_irq_orgate), TYPE_OR_IRQ); object_property_add_child(OBJECT(mms), "uart-irq-orgate", OBJECT(&mms->uart_irq_orgate), &error_abort); object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines", &error_fatal); object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true, "realized", &error_fatal); qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, qdev_get_gpio_in_named(iotkitdev, "EXP_IRQ", 15)); /* Most of the devices in the FPGA are behind Peripheral Protection * Controllers. The required order for initializing things is: * + initialize the PPC * + initialize, configure and realize downstream devices * + connect downstream device MemoryRegions to the PPC * + realize the PPC * + map the PPC's MemoryRegions to the places in the address map * where the downstream devices should appear * + wire up the PPC's control lines to the IoTKit object */ const PPCInfo ppcs[] = { { .name = "apb_ppcexp0", .ports = { { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 }, { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 }, { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 }, }, }, { .name = "apb_ppcexp1",
/* PowerPC Mac99 hardware initialisation */ static void ppc_core99_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; const char *kernel_filename = machine->kernel_filename; const char *kernel_cmdline = machine->kernel_cmdline; const char *initrd_filename = machine->initrd_filename; const char *boot_device = machine->boot_order; PowerPCCPU *cpu = NULL; CPUPPCState *env = NULL; char *filename; qemu_irq *pic, **openpic_irqs; MemoryRegion *isa = g_new(MemoryRegion, 1); MemoryRegion *unin_memory = g_new(MemoryRegion, 1); MemoryRegion *unin2_memory = g_new(MemoryRegion, 1); int linux_boot, i, j, k; MemoryRegion *ram = g_new(MemoryRegion, 1), *bios = g_new(MemoryRegion, 1); hwaddr kernel_base, initrd_base, cmdline_base = 0; long kernel_size, initrd_size; PCIBus *pci_bus; NewWorldMacIOState *macio; MACIOIDEState *macio_ide; BusState *adb_bus; MacIONVRAMState *nvr; int bios_size, ndrv_size; uint8_t *ndrv_file; int ppc_boot_device; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; void *fw_cfg; int machine_arch; SysBusDevice *s; DeviceState *dev, *pic_dev; int *token = g_new(int, 1); hwaddr nvram_addr = 0xFFF04000; uint64_t tbfreq; linux_boot = (kernel_filename != NULL); /* init CPUs */ for (i = 0; i < smp_cpus; i++) { cpu = POWERPC_CPU(cpu_create(machine->cpu_type)); env = &cpu->env; /* Set time-base frequency to 100 Mhz */ cpu_ppc_tb_init(env, TBFREQ); qemu_register_reset(ppc_core99_reset, cpu); } /* allocate RAM */ memory_region_allocate_system_memory(ram, NULL, "ppc_core99.ram", ram_size); memory_region_add_subregion(get_system_memory(), 0, ram); /* allocate and load BIOS */ memory_region_init_ram(bios, NULL, "ppc_core99.bios", BIOS_SIZE, &error_fatal); if (bios_name == NULL) bios_name = PROM_FILENAME; filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); memory_region_set_readonly(bios, true); memory_region_add_subregion(get_system_memory(), PROM_ADDR, bios); /* Load OpenBIOS (ELF) */ if (filename) { bios_size = load_elf(filename, NULL, NULL, NULL, NULL, NULL, 1, PPC_ELF_MACHINE, 0, 0); g_free(filename); } else { bios_size = -1; } if (bios_size < 0 || bios_size > BIOS_SIZE) { error_report("could not load PowerPC bios '%s'", bios_name); exit(1); } if (linux_boot) { uint64_t lowaddr = 0; int bswap_needed; #ifdef BSWAP_NEEDED bswap_needed = 1; #else bswap_needed = 0; #endif kernel_base = KERNEL_LOAD_ADDR; kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0, 0); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, kernel_base, ram_size - kernel_base, bswap_needed, TARGET_PAGE_SIZE); if (kernel_size < 0) kernel_size = load_image_targphys(kernel_filename, kernel_base, ram_size - kernel_base); if (kernel_size < 0) { error_report("could not load kernel '%s'", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP); initrd_size = load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { error_report("could not load initial ram disk '%s'", initrd_filename); exit(1); } cmdline_base = TARGET_PAGE_ALIGN(initrd_base + initrd_size); } else { initrd_base = 0; initrd_size = 0; cmdline_base = TARGET_PAGE_ALIGN(kernel_base + kernel_size + KERNEL_GAP); } ppc_boot_device = 'm'; } else { kernel_base = 0; kernel_size = 0; initrd_base = 0; initrd_size = 0; ppc_boot_device = '\0'; /* We consider that NewWorld PowerMac never have any floppy drive * For now, OHW cannot boot from the network. */ for (i = 0; boot_device[i] != '\0'; i++) { if (boot_device[i] >= 'c' && boot_device[i] <= 'f') { ppc_boot_device = boot_device[i]; break; } } if (ppc_boot_device == '\0') { error_report("No valid boot device for Mac99 machine"); exit(1); } } /* Register 8 MB of ISA IO space */ memory_region_init_alias(isa, NULL, "isa_mmio", get_system_io(), 0, 0x00800000); memory_region_add_subregion(get_system_memory(), 0xf2000000, isa); /* UniN init: XXX should be a real device */ memory_region_init_io(unin_memory, NULL, &unin_ops, token, "unin", 0x1000); memory_region_add_subregion(get_system_memory(), 0xf8000000, unin_memory); memory_region_init_io(unin2_memory, NULL, &unin_ops, token, "unin", 0x1000); memory_region_add_subregion(get_system_memory(), 0xf3000000, unin2_memory); openpic_irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *)); openpic_irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB); for (i = 0; i < smp_cpus; i++) { /* Mac99 IRQ connection between OpenPIC outputs pins * and PowerPC input pins */ switch (PPC_INPUT(env)) { case PPC_FLAGS_INPUT_6xx: openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB); openpic_irqs[i][OPENPIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT]; openpic_irqs[i][OPENPIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_INT]; openpic_irqs[i][OPENPIC_OUTPUT_MCK] = ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_MCP]; /* Not connected ? */ openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL; /* Check this */ openpic_irqs[i][OPENPIC_OUTPUT_RESET] = ((qemu_irq *)env->irq_inputs)[PPC6xx_INPUT_HRESET]; break; #if defined(TARGET_PPC64) case PPC_FLAGS_INPUT_970: openpic_irqs[i] = openpic_irqs[0] + (i * OPENPIC_OUTPUT_NB); openpic_irqs[i][OPENPIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT]; openpic_irqs[i][OPENPIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_INT]; openpic_irqs[i][OPENPIC_OUTPUT_MCK] = ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_MCP]; /* Not connected ? */ openpic_irqs[i][OPENPIC_OUTPUT_DEBUG] = NULL; /* Check this */ openpic_irqs[i][OPENPIC_OUTPUT_RESET] = ((qemu_irq *)env->irq_inputs)[PPC970_INPUT_HRESET]; break; #endif /* defined(TARGET_PPC64) */ default: error_report("Bus model not supported on mac99 machine"); exit(1); } } pic = g_new0(qemu_irq, 64); pic_dev = qdev_create(NULL, TYPE_OPENPIC); qdev_prop_set_uint32(pic_dev, "model", OPENPIC_MODEL_KEYLARGO); qdev_init_nofail(pic_dev); s = SYS_BUS_DEVICE(pic_dev); k = 0; for (i = 0; i < smp_cpus; i++) { for (j = 0; j < OPENPIC_OUTPUT_NB; j++) { sysbus_connect_irq(s, k++, openpic_irqs[i][j]); } } for (i = 0; i < 64; i++) { pic[i] = qdev_get_gpio_in(pic_dev, i); } if (PPC_INPUT(env) == PPC_FLAGS_INPUT_970) { /* 970 gets a U3 bus */ pci_bus = pci_pmac_u3_init(pic, get_system_memory(), get_system_io()); machine_arch = ARCH_MAC99_U3; } else { pci_bus = pci_pmac_init(pic, get_system_memory(), get_system_io()); machine_arch = ARCH_MAC99; } object_property_set_bool(OBJECT(pci_bus), true, "realized", &error_abort); machine->usb |= defaults_enabled() && !machine->usb_disabled; /* Timebase Frequency */ if (kvm_enabled()) { tbfreq = kvmppc_get_tbfreq(); } else { tbfreq = TBFREQ; } /* MacIO */ macio = NEWWORLD_MACIO(pci_create(pci_bus, -1, TYPE_NEWWORLD_MACIO)); dev = DEVICE(macio); qdev_connect_gpio_out(dev, 0, pic[0x19]); /* CUDA */ qdev_connect_gpio_out(dev, 1, pic[0x24]); /* ESCC-B */ qdev_connect_gpio_out(dev, 2, pic[0x25]); /* ESCC-A */ qdev_connect_gpio_out(dev, 3, pic[0x0d]); /* IDE */ qdev_connect_gpio_out(dev, 4, pic[0x02]); /* IDE DMA */ qdev_connect_gpio_out(dev, 5, pic[0x0e]); /* IDE */ qdev_connect_gpio_out(dev, 6, pic[0x03]); /* IDE DMA */ qdev_prop_set_uint64(dev, "frequency", tbfreq); object_property_set_link(OBJECT(macio), OBJECT(pic_dev), "pic", &error_abort); qdev_init_nofail(dev); /* We only emulate 2 out of 3 IDE controllers for now */ ide_drive_get(hd, ARRAY_SIZE(hd)); macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio), "ide[0]")); macio_ide_init_drives(macio_ide, hd); macio_ide = MACIO_IDE(object_resolve_path_component(OBJECT(macio), "ide[1]")); macio_ide_init_drives(macio_ide, &hd[MAX_IDE_DEVS]); dev = DEVICE(object_resolve_path_component(OBJECT(macio), "cuda")); adb_bus = qdev_get_child_bus(dev, "adb.0"); dev = qdev_create(adb_bus, TYPE_ADB_KEYBOARD); qdev_init_nofail(dev); dev = qdev_create(adb_bus, TYPE_ADB_MOUSE); qdev_init_nofail(dev); if (machine->usb) { pci_create_simple(pci_bus, -1, "pci-ohci"); /* U3 needs to use USB for input because Linux doesn't support via-cuda on PPC64 */ if (machine_arch == ARCH_MAC99_U3) { USBBus *usb_bus = usb_bus_find(-1); usb_create_simple(usb_bus, "usb-kbd"); usb_create_simple(usb_bus, "usb-mouse"); } } pci_vga_init(pci_bus); if (graphic_depth != 15 && graphic_depth != 32 && graphic_depth != 8) { graphic_depth = 15; } for (i = 0; i < nb_nics; i++) { pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); } /* The NewWorld NVRAM is not located in the MacIO device */ #ifdef CONFIG_KVM if (kvm_enabled() && getpagesize() > 4096) { /* We can't combine read-write and read-only in a single page, so move the NVRAM out of ROM again for KVM */ nvram_addr = 0xFFE00000; } #endif dev = qdev_create(NULL, TYPE_MACIO_NVRAM); qdev_prop_set_uint32(dev, "size", 0x2000); qdev_prop_set_uint32(dev, "it_shift", 1); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, nvram_addr); nvr = MACIO_NVRAM(dev); pmac_format_nvram_partition(nvr, 0x2000); /* No PCI init: the BIOS will do it */ fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, machine_arch); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_base); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, cmdline_base); pstrcpy_targphys("cmdline", cmdline_base, TARGET_PAGE_SIZE, kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_base); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ppc_boot_device); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_PPC_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_IS_KVM, kvm_enabled()); if (kvm_enabled()) { #ifdef CONFIG_KVM uint8_t *hypercall; hypercall = g_malloc(16); kvmppc_get_hypercall(env, hypercall, 16); fw_cfg_add_bytes(fw_cfg, FW_CFG_PPC_KVM_HC, hypercall, 16); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_KVM_PID, getpid()); #endif } fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_TBFREQ, tbfreq); /* Mac OS X requires a "known good" clock-frequency value; pass it one. */ fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_CLOCKFREQ, CLOCKFREQ); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_BUSFREQ, BUSFREQ); fw_cfg_add_i32(fw_cfg, FW_CFG_PPC_NVRAM_ADDR, nvram_addr); /* MacOS NDRV VGA driver */ filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, NDRV_VGA_FILENAME); if (filename) { ndrv_size = get_image_size(filename); if (ndrv_size != -1) { ndrv_file = g_malloc(ndrv_size); ndrv_size = load_image(filename, ndrv_file); fw_cfg_add_file(fw_cfg, "ndrv/qemu_vga.ndrv", ndrv_file, ndrv_size); } g_free(filename); } qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); }