Exemple #1
0
/* Model initialize function */
void xpcosc_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)xpcosc_rtM, 0,
                sizeof(rtModel_xpcosc));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&xpcosc_rtM->solverInfo,
                          &xpcosc_rtM->Timing.simTimeStep);
    rtsiSetTPtr(&xpcosc_rtM->solverInfo, &rtmGetTPtr(xpcosc_rtM));
    rtsiSetStepSizePtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->Timing.stepSize0);
    rtsiSetdXPtr(&xpcosc_rtM->solverInfo, &xpcosc_rtM->ModelData.derivs);
    rtsiSetContStatesPtr(&xpcosc_rtM->solverInfo,
                         &xpcosc_rtM->ModelData.contStates);
    rtsiSetNumContStatesPtr(&xpcosc_rtM->solverInfo,
      &xpcosc_rtM->Sizes.numContStates);
    rtsiSetErrorStatusPtr(&xpcosc_rtM->solverInfo, (&rtmGetErrorStatus
      (xpcosc_rtM)));
    rtsiSetRTModelPtr(&xpcosc_rtM->solverInfo, xpcosc_rtM);
  }

  rtsiSetSimTimeStep(&xpcosc_rtM->solverInfo, MAJOR_TIME_STEP);
  xpcosc_rtM->ModelData.intgData.y = xpcosc_rtM->ModelData.odeY;
  xpcosc_rtM->ModelData.intgData.f[0] = xpcosc_rtM->ModelData.odeF[0];
  xpcosc_rtM->ModelData.intgData.f[1] = xpcosc_rtM->ModelData.odeF[1];
  xpcosc_rtM->ModelData.intgData.f[2] = xpcosc_rtM->ModelData.odeF[2];
  xpcosc_rtM->ModelData.intgData.f[3] = xpcosc_rtM->ModelData.odeF[3];
  xpcosc_rtM->ModelData.contStates = ((real_T *) &xpcosc_X);
  rtsiSetSolverData(&xpcosc_rtM->solverInfo, (void *)
                    &xpcosc_rtM->ModelData.intgData);
  rtsiSetSolverName(&xpcosc_rtM->solverInfo,"ode4");
  xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = xpcosc_rtM->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    xpcosc_rtM->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    xpcosc_rtM->Timing.sampleTimes = (&xpcosc_rtM->Timing.sampleTimesArray[0]);
    xpcosc_rtM->Timing.offsetTimes = (&xpcosc_rtM->Timing.offsetTimesArray[0]);

    /* task periods */
    xpcosc_rtM->Timing.sampleTimes[0] = (0.0);
    xpcosc_rtM->Timing.sampleTimes[1] = (0.001);

    /* task offsets */
    xpcosc_rtM->Timing.offsetTimes[0] = (0.0);
    xpcosc_rtM->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(xpcosc_rtM, &xpcosc_rtM->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = xpcosc_rtM->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    xpcosc_rtM->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(xpcosc_rtM, 0.2);
  xpcosc_rtM->Timing.stepSize0 = 0.001;
  xpcosc_rtM->Timing.stepSize1 = 0.001;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    xpcosc_rtM->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    /*
     * Set pointers to the data and signal info each state
     */
    {
      static int_T rt_LoggedStateWidths[] = {
        1,
        1
      };

      static int_T rt_LoggedStateNumDimensions[] = {
        1,
        1
      };

      static int_T rt_LoggedStateDimensions[] = {
        1,
        1
      };

      static boolean_T rt_LoggedStateIsVarDims[] = {
        0,
        0
      };

      static BuiltInDTypeId rt_LoggedStateDataTypeIds[] = {
        SS_DOUBLE,
        SS_DOUBLE
      };

      static int_T rt_LoggedStateComplexSignals[] = {
        0,
        0
      };

      static const char_T *rt_LoggedStateLabels[] = {
        "CSTATE",
        "CSTATE"
      };

      static const char_T *rt_LoggedStateBlockNames[] = {
        "xpcosc/Integrator1",
        "xpcosc/Integrator"
      };

      static const char_T *rt_LoggedStateNames[] = {
        "",
        ""
      };

      static boolean_T rt_LoggedStateCrossMdlRef[] = {
        0,
        0
      };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 },

        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedStateSignalInfo = {
        2,
        rt_LoggedStateWidths,
        rt_LoggedStateNumDimensions,
        rt_LoggedStateDimensions,
        rt_LoggedStateIsVarDims,
        (NULL),
        rt_LoggedStateDataTypeIds,
        rt_LoggedStateComplexSignals,
        (NULL),

        { rt_LoggedStateLabels },
        (NULL),
        (NULL),
        (NULL),

        { rt_LoggedStateBlockNames },

        { rt_LoggedStateNames },
        rt_LoggedStateCrossMdlRef,
        rt_RTWLogDataTypeConvert
      };

      static void * rt_LoggedStateSignalPtrs[2];
      rtliSetLogXSignalPtrs(xpcosc_rtM->rtwLogInfo, (LogSignalPtrsType)
                            rt_LoggedStateSignalPtrs);
      rtliSetLogXSignalInfo(xpcosc_rtM->rtwLogInfo, &rt_LoggedStateSignalInfo);
      rt_LoggedStateSignalPtrs[0] = (void*)&xpcosc_X.Integrator1_CSTATE;
      rt_LoggedStateSignalPtrs[1] = (void*)&xpcosc_X.Integrator_CSTATE;
    }

    rtliSetLogT(xpcosc_rtM->rtwLogInfo, "tout");
    rtliSetLogX(xpcosc_rtM->rtwLogInfo, "xout");
    rtliSetLogXFinal(xpcosc_rtM->rtwLogInfo, "");
    rtliSetSigLog(xpcosc_rtM->rtwLogInfo, "");
    rtliSetLogVarNameModifier(xpcosc_rtM->rtwLogInfo, "rt_");
    rtliSetLogFormat(xpcosc_rtM->rtwLogInfo, 0);
    rtliSetLogMaxRows(xpcosc_rtM->rtwLogInfo, 0);
    rtliSetLogDecimation(xpcosc_rtM->rtwLogInfo, 1);

    /*
     * Set pointers to the data and signal info for each output
     */
    {
      static void * rt_LoggedOutputSignalPtrs[] = {
        &xpcosc_Y.Outport[0]
      };

      rtliSetLogYSignalPtrs(xpcosc_rtM->rtwLogInfo, ((LogSignalPtrsType)
        rt_LoggedOutputSignalPtrs));
    }

    {
      static int_T rt_LoggedOutputWidths[] = {
        2
      };

      static int_T rt_LoggedOutputNumDimensions[] = {
        1
      };

      static int_T rt_LoggedOutputDimensions[] = {
        2
      };

      static boolean_T rt_LoggedOutputIsVarDims[] = {
        0
      };

      static int_T* rt_LoggedCurrentSignalDimensions[] = {
        (NULL)
      };

      static BuiltInDTypeId rt_LoggedOutputDataTypeIds[] = {
        SS_DOUBLE
      };

      static int_T rt_LoggedOutputComplexSignals[] = {
        0
      };

      static const char_T *rt_LoggedOutputLabels[] = {
        "" };

      static const char_T *rt_LoggedOutputBlockNames[] = {
        "xpcosc/Outport" };

      static RTWLogDataTypeConvert rt_RTWLogDataTypeConvert[] = {
        { 0, SS_DOUBLE, SS_DOUBLE, 0, 0, 0, 1.0, 0, 0.0 }
      };

      static RTWLogSignalInfo rt_LoggedOutputSignalInfo[] = {
        {
          1,
          rt_LoggedOutputWidths,
          rt_LoggedOutputNumDimensions,
          rt_LoggedOutputDimensions,
          rt_LoggedOutputIsVarDims,
          rt_LoggedCurrentSignalDimensions,
          rt_LoggedOutputDataTypeIds,
          rt_LoggedOutputComplexSignals,
          (NULL),

          { rt_LoggedOutputLabels },
          (NULL),
          (NULL),
          (NULL),

          { rt_LoggedOutputBlockNames },

          { (NULL) },
          (NULL),
          rt_RTWLogDataTypeConvert
        }
      };

      rtliSetLogYSignalInfo(xpcosc_rtM->rtwLogInfo, rt_LoggedOutputSignalInfo);

      /* set currSigDims field */
      rt_LoggedCurrentSignalDimensions[0] = &rt_LoggedOutputWidths[0];
    }

    rtliSetLogY(xpcosc_rtM->rtwLogInfo, "yout");
  }

  /* external mode info */
  xpcosc_rtM->Sizes.checksums[0] = (1235351435U);
  xpcosc_rtM->Sizes.checksums[1] = (4143988505U);
  xpcosc_rtM->Sizes.checksums[2] = (362576123U);
  xpcosc_rtM->Sizes.checksums[3] = (1068881914U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    xpcosc_rtM->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(xpcosc_rtM->extModeInfo,
      &xpcosc_rtM->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(xpcosc_rtM->extModeInfo, xpcosc_rtM->Sizes.checksums);
    rteiSetTPtr(xpcosc_rtM->extModeInfo, rtmGetTPtr(xpcosc_rtM));
  }

  xpcosc_rtM->solverInfoPtr = (&xpcosc_rtM->solverInfo);
  xpcosc_rtM->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&xpcosc_rtM->solverInfo, 0.001);
  rtsiSetSolverMode(&xpcosc_rtM->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  xpcosc_rtM->ModelData.blockIO = ((void *) &xpcosc_B);

  {
    xpcosc_B.Integrator1 = 0.0;
    xpcosc_B.PCI6221AD = 0.0;
    xpcosc_B.RateTransition1 = 0.0;
    xpcosc_B.SignalGenerator = 0.0;
    xpcosc_B.RateTransition = 0.0;
    xpcosc_B.Gain = 0.0;
    xpcosc_B.Integrator = 0.0;
    xpcosc_B.Gain1 = 0.0;
    xpcosc_B.Gain2 = 0.0;
    xpcosc_B.Sum = 0.0;
  }

  /* parameters */
  xpcosc_rtM->ModelData.defaultParam = ((real_T *)&xpcosc_P);

  /* states (continuous) */
  {
    real_T *x = (real_T *) &xpcosc_X;
    xpcosc_rtM->ModelData.contStates = (x);
    (void) memset((void *)&xpcosc_X, 0,
                  sizeof(ContinuousStates_xpcosc));
  }

  /* states (dwork) */
  xpcosc_rtM->Work.dwork = ((void *) &xpcosc_DWork);
  (void) memset((void *)&xpcosc_DWork, 0,
                sizeof(D_Work_xpcosc));
  xpcosc_DWork.PCI6713DA_RWORK = 0.0;

  /* external outputs */
  xpcosc_rtM->ModelData.outputs = (&xpcosc_Y);
  xpcosc_Y.Outport[0] = 0.0;
  xpcosc_Y.Outport[1] = 0.0;

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    xpcosc_rtM->SpecialInfo.mappingInfo = (&dtInfo);
    xpcosc_rtM->SpecialInfo.xpcData = ((void*) &dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Initialize DataMapInfo substructure containing ModelMap for C API */
  xpcosc_InitializeDataMapInfo(xpcosc_rtM);

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &xpcosc_rtM->NonInlinedSFcns.sfcnInfo;
    xpcosc_rtM->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(xpcosc_rtM)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &xpcosc_rtM->Sizes.numSampTimes);
    xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(xpcosc_rtM)[0]);
    xpcosc_rtM->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(xpcosc_rtM)[1]);
    rtssSetTPtrPtr(sfcnInfo,xpcosc_rtM->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(xpcosc_rtM));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(xpcosc_rtM));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(xpcosc_rtM));
    rtssSetStepSizePtr(sfcnInfo, &xpcosc_rtM->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(xpcosc_rtM));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &xpcosc_rtM->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &xpcosc_rtM->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &xpcosc_rtM->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &xpcosc_rtM->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &xpcosc_rtM->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &xpcosc_rtM->solverInfoPtr);
  }

  xpcosc_rtM->Sizes.numSFcns = (2);

  /* register each child */
  {
    (void) memset((void *)&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0], 0,
                  2*sizeof(SimStruct));
    xpcosc_rtM->childSfunctions =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctionPtrs[0]);
    xpcosc_rtM->childSfunctions[0] =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[0]);
    xpcosc_rtM->childSfunctions[1] =
      (&xpcosc_rtM->NonInlinedSFcns.childSFunctions[1]);

    /* Level2 S-Function Block: xpcosc/<Root>/PCI-6221 AD (adnipcim) */
    {
      SimStruct *rts = xpcosc_rtM->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[0]);
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &xpcosc_B.PCI6221AD));
        }
      }

      /* path info */
      ssSetModelName(rts, "PCI-6221 AD");
      ssSetPath(rts, "xpcosc/PCI-6221 AD");
      ssSetRTModel(rts,xpcosc_rtM);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 7);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6221AD_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6221AD_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6221AD_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6221AD_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6221AD_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6221AD_P6_Size);
        ssSetSFcnParam(rts, 6, (mxArray*)xpcosc_P.PCI6221AD_P7_Size);
      }

      /* work vectors */
      ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6221AD_IWORK[0]);
      ssSetPWork(rts, (void **) &xpcosc_DWork.PCI6221AD_PWORK);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn0.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 2);

        /* IWORK */
        ssSetDWorkWidth(rts, 0, 41);
        ssSetDWorkDataType(rts, 0,SS_INTEGER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &xpcosc_DWork.PCI6221AD_IWORK[0]);

        /* PWORK */
        ssSetDWorkWidth(rts, 1, 1);
        ssSetDWorkDataType(rts, 1,SS_POINTER);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWork(rts, 1, &xpcosc_DWork.PCI6221AD_PWORK);
      }

      /* registration */
      adnipcim(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
    }

    /* Level2 S-Function Block: xpcosc/<Root>/PCI-6713 DA (danipci671x) */
    {
      SimStruct *rts = xpcosc_rtM->childSfunctions[1];

      /* timing info */
      time_T *sfcnPeriod = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnPeriod;
      time_T *sfcnOffset = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnOffset;
      int_T *sfcnTsMap = xpcosc_rtM->NonInlinedSFcns.Sfcn1.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &xpcosc_rtM->NonInlinedSFcns.blkInfo2[1]);
      }

      ssSetRTWSfcnInfo(rts, xpcosc_rtM->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &xpcosc_rtM->NonInlinedSFcns.methods2[1]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &xpcosc_rtM->NonInlinedSFcns.methods3[1]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &xpcosc_rtM->NonInlinedSFcns.statesInfo2[1]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);

        /* port 0 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &xpcosc_rtM->NonInlinedSFcns.Sfcn1.UPtrs0;
          sfcnUPtrs[0] = &xpcosc_B.RateTransition;
          ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }
      }

      /* path info */
      ssSetModelName(rts, "PCI-6713 DA");
      ssSetPath(rts, "xpcosc/PCI-6713 DA");
      ssSetRTModel(rts,xpcosc_rtM);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.params;
        ssSetSFcnParamsCount(rts, 6);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)xpcosc_P.PCI6713DA_P1_Size);
        ssSetSFcnParam(rts, 1, (mxArray*)xpcosc_P.PCI6713DA_P2_Size);
        ssSetSFcnParam(rts, 2, (mxArray*)xpcosc_P.PCI6713DA_P3_Size);
        ssSetSFcnParam(rts, 3, (mxArray*)xpcosc_P.PCI6713DA_P4_Size);
        ssSetSFcnParam(rts, 4, (mxArray*)xpcosc_P.PCI6713DA_P5_Size);
        ssSetSFcnParam(rts, 5, (mxArray*)xpcosc_P.PCI6713DA_P6_Size);
      }

      /* work vectors */
      ssSetRWork(rts, (real_T *) &xpcosc_DWork.PCI6713DA_RWORK);
      ssSetIWork(rts, (int_T *) &xpcosc_DWork.PCI6713DA_IWORK[0]);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &xpcosc_rtM->NonInlinedSFcns.Sfcn1.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 2);

        /* RWORK */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &xpcosc_DWork.PCI6713DA_RWORK);

        /* IWORK */
        ssSetDWorkWidth(rts, 1, 2);
        ssSetDWorkDataType(rts, 1,SS_INTEGER);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWork(rts, 1, &xpcosc_DWork.PCI6713DA_IWORK[0]);
      }

      /* registration */
      danipci671x(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.001);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }
  }
}
Exemple #2
0
/* Model initialize function */
void motor_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)motor_M, 0,
                sizeof(RT_MODEL_motor_T));
  rtmSetTFinal(motor_M, -1);
  motor_M->Timing.stepSize0 = 0.2;

  /* External mode info */
  motor_M->Sizes.checksums[0] = (1008116136U);
  motor_M->Sizes.checksums[1] = (3564589615U);
  motor_M->Sizes.checksums[2] = (1322083197U);
  motor_M->Sizes.checksums[3] = (1603772587U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    motor_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(motor_M->extModeInfo,
      &motor_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(motor_M->extModeInfo, motor_M->Sizes.checksums);
    rteiSetTPtr(motor_M->extModeInfo, rtmGetTPtr(motor_M));
  }

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    motor_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  {
    uint8_T tmp;
    uint8_T tmp_0;
    uint8_T tmp_1;
    uint8_T tmp_2;
    uint8_T tmp_3;
    uint8_T tmp_4;

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Left_high' */
    tmp_4 = motor_P.Left_high_p4;
    MW_gpioInit(motor_P.Left_high_p1, motor_P.Left_high_p2, motor_P.Left_high_p3,
                &tmp_4);

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Left_low' */
    tmp_3 = motor_P.Left_low_p4;
    MW_gpioInit(motor_P.Left_low_p1, motor_P.Left_low_p2, motor_P.Left_low_p3,
                &tmp_3);

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Right_high' */
    tmp_2 = motor_P.Right_high_p4;
    MW_gpioInit(motor_P.Right_high_p1, motor_P.Right_high_p2,
                motor_P.Right_high_p3, &tmp_2);

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/Right_low' */
    tmp_1 = motor_P.Right_low_p4;
    MW_gpioInit(motor_P.Right_low_p1, motor_P.Right_low_p2, motor_P.Right_low_p3,
                &tmp_1);

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/EN_Left' */
    tmp_0 = motor_P.EN_Left_p4;
    MW_gpioInit(motor_P.EN_Left_p1, motor_P.EN_Left_p2, motor_P.EN_Left_p3,
                &tmp_0);

    /* Start for S-Function (linuxGpioWrite_sfcn): '<S1>/EN_Right' */
    tmp = motor_P.EN_Right_p4;
    MW_gpioInit(motor_P.EN_Right_p1, motor_P.EN_Right_p2, motor_P.EN_Right_p3,
                &tmp);
  }
}
Exemple #3
0
/* Model initialize function */
void motor_hr_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)motor_hr_M, 0,
                sizeof(RT_MODEL_motor_hr_T));
  rtmSetTFinal(motor_hr_M, 1000.0);
  motor_hr_M->Timing.stepSize0 = 20.0;

  /* External mode info */
  motor_hr_M->Sizes.checksums[0] = (822641153U);
  motor_hr_M->Sizes.checksums[1] = (2911569967U);
  motor_hr_M->Sizes.checksums[2] = (108929926U);
  motor_hr_M->Sizes.checksums[3] = (297514658U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[3];
    motor_hr_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = &rtAlwaysEnabled;
    systemRan[2] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(motor_hr_M->extModeInfo,
      &motor_hr_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(motor_hr_M->extModeInfo, motor_hr_M->Sizes.checksums);
    rteiSetTPtr(motor_hr_M->extModeInfo, rtmGetTPtr(motor_hr_M));
  }

  /* states (dwork) */
  (void) memset((void *)&motor_hr_DW, 0,
                sizeof(DW_motor_hr_T));

  /* external inputs */
  (void) memset((void *)&motor_hr_U, 0,
                sizeof(ExtU_motor_hr_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    motor_hr_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Start for S-Function (arduinodigitaloutput_sfcn): '<S1>/Digital Output' */
  MW_pinModeOutput(motor_hr_P.DigitalOutput_pinNumber);

  /* Start for S-Function (arduinoanalogoutput_sfcn): '<S2>/PWM' */
  MW_pinModeOutput(motor_hr_P.PWM_pinNumber);
}
Exemple #4
0
/* Registration function */
RT_MODEL_DI_model_T *DI_model(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)DI_model_M, 0,
                sizeof(RT_MODEL_DI_model_T));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&DI_model_M->solverInfo,
                          &DI_model_M->Timing.simTimeStep);
    rtsiSetTPtr(&DI_model_M->solverInfo, &rtmGetTPtr(DI_model_M));
    rtsiSetStepSizePtr(&DI_model_M->solverInfo, &DI_model_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&DI_model_M->solverInfo, (&rtmGetErrorStatus
      (DI_model_M)));
    rtsiSetRTModelPtr(&DI_model_M->solverInfo, DI_model_M);
  }

  rtsiSetSimTimeStep(&DI_model_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&DI_model_M->solverInfo,"FixedStepDiscrete");
  DI_model_M->solverInfoPtr = (&DI_model_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = DI_model_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    DI_model_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    DI_model_M->Timing.sampleTimes = (&DI_model_M->Timing.sampleTimesArray[0]);
    DI_model_M->Timing.offsetTimes = (&DI_model_M->Timing.offsetTimesArray[0]);

    /* task periods */
    DI_model_M->Timing.sampleTimes[0] = (0.0);
    DI_model_M->Timing.sampleTimes[1] = (0.01);

    /* task offsets */
    DI_model_M->Timing.offsetTimes[0] = (0.0);
    DI_model_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(DI_model_M, &DI_model_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = DI_model_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    DI_model_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(DI_model_M, 30.0);
  DI_model_M->Timing.stepSize0 = 0.01;
  DI_model_M->Timing.stepSize1 = 0.01;

  /* External mode info */
  DI_model_M->Sizes.checksums[0] = (943881189U);
  DI_model_M->Sizes.checksums[1] = (2376373844U);
  DI_model_M->Sizes.checksums[2] = (1356612486U);
  DI_model_M->Sizes.checksums[3] = (687118842U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    DI_model_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(DI_model_M->extModeInfo,
      &DI_model_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(DI_model_M->extModeInfo, DI_model_M->Sizes.checksums);
    rteiSetTPtr(DI_model_M->extModeInfo, rtmGetTPtr(DI_model_M));
  }

  DI_model_M->solverInfoPtr = (&DI_model_M->solverInfo);
  DI_model_M->Timing.stepSize = (0.01);
  rtsiSetFixedStepSize(&DI_model_M->solverInfo, 0.01);
  rtsiSetSolverMode(&DI_model_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    DI_model_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];
  }

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &DI_model_M->NonInlinedSFcns.sfcnInfo;
    DI_model_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(DI_model_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &DI_model_M->Sizes.numSampTimes);
    DI_model_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(DI_model_M)[0]);
    DI_model_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(DI_model_M)[1]);
    rtssSetTPtrPtr(sfcnInfo,DI_model_M->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(DI_model_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(DI_model_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(DI_model_M));
    rtssSetStepSizePtr(sfcnInfo, &DI_model_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(DI_model_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &DI_model_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &DI_model_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &DI_model_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &DI_model_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &DI_model_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &DI_model_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &DI_model_M->solverInfoPtr);
  }

  DI_model_M->Sizes.numSFcns = (1);

  /* register each child */
  {
    (void) memset((void *)&DI_model_M->NonInlinedSFcns.childSFunctions[0], 0,
                  1*sizeof(SimStruct));
    DI_model_M->childSfunctions =
      (&DI_model_M->NonInlinedSFcns.childSFunctionPtrs[0]);
    DI_model_M->childSfunctions[0] =
      (&DI_model_M->NonInlinedSFcns.childSFunctions[0]);

    /* Level2 S-Function Block: DI_model/<Root>/S-Function (DI_v1) */
    {
      SimStruct *rts = DI_model_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = DI_model_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &DI_model_M->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, DI_model_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &DI_model_M->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &DI_model_M->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &DI_model_M->NonInlinedSFcns.statesInfo2[0]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &DI_model_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);

        /* port 0 */
        {
          ssSetInputPortRequiredContiguous(rts, 0, 1);
          ssSetInputPortSignal(rts, 0, (real_T*)&DI_model_RGND);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 1);
        }
      }

      /* path info */
      ssSetModelName(rts, "S-Function");
      ssSetPath(rts, "DI_model/S-Function");
      ssSetRTModel(rts,DI_model_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* registration */
      DI_v1(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.0);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }
  }

  /* Initialize Sizes */
  DI_model_M->Sizes.numContStates = (0);/* Number of continuous states */
  DI_model_M->Sizes.numY = (0);        /* Number of model outputs */
  DI_model_M->Sizes.numU = (0);        /* Number of model inputs */
  DI_model_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */
  DI_model_M->Sizes.numSampTimes = (2);/* Number of sample times */
  DI_model_M->Sizes.numBlocks = (1);   /* Number of blocks */
  return DI_model_M;
}
/* Model initialize function */
void Crane_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));    /* initialize real-time model */
  (void) memset((char_T *)Crane_M,0,
                sizeof(RT_MODEL_Crane));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&Crane_M->solverInfo, &Crane_M->Timing.simTimeStep);
    rtsiSetTPtr(&Crane_M->solverInfo, &rtmGetTPtr(Crane_M));
    rtsiSetStepSizePtr(&Crane_M->solverInfo, &Crane_M->Timing.stepSize0);
    rtsiSetdXPtr(&Crane_M->solverInfo, &Crane_M->ModelData.derivs);
    rtsiSetContStatesPtr(&Crane_M->solverInfo, &Crane_M->ModelData.contStates);
    rtsiSetNumContStatesPtr(&Crane_M->solverInfo, &Crane_M->Sizes.numContStates);
    rtsiSetErrorStatusPtr(&Crane_M->solverInfo, (&rtmGetErrorStatus(Crane_M)));
    rtsiSetRTModelPtr(&Crane_M->solverInfo, Crane_M);
  }

  rtsiSetSimTimeStep(&Crane_M->solverInfo, MAJOR_TIME_STEP);
  Crane_M->ModelData.intgData.f[0] = Crane_M->ModelData.odeF[0];
  Crane_M->ModelData.contStates = ((real_T *) &Crane_X);
  rtsiSetSolverData(&Crane_M->solverInfo, (void *)&Crane_M->ModelData.intgData);
  rtsiSetSolverName(&Crane_M->solverInfo,"ode1");

  /* Initialize timing info */
  {
    int_T *mdlTsMap = Crane_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    Crane_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    Crane_M->Timing.sampleTimes = (&Crane_M->Timing.sampleTimesArray[0]);
    Crane_M->Timing.offsetTimes = (&Crane_M->Timing.offsetTimesArray[0]);

    /* task periods */
    Crane_M->Timing.sampleTimes[0] = (0.0);
    Crane_M->Timing.sampleTimes[1] = (0.001);

    /* task offsets */
    Crane_M->Timing.offsetTimes[0] = (0.0);
    Crane_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(Crane_M, &Crane_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = Crane_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    Crane_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(Crane_M, -1);
  Crane_M->Timing.stepSize0 = 0.001;
  Crane_M->Timing.stepSize1 = 0.001;

  /* external mode info */
  Crane_M->Sizes.checksums[0] = (2478158774U);
  Crane_M->Sizes.checksums[1] = (3803381746U);
  Crane_M->Sizes.checksums[2] = (277883647U);
  Crane_M->Sizes.checksums[3] = (670793414U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    Crane_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(&rt_ExtModeInfo,
      &Crane_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(&rt_ExtModeInfo, Crane_M->Sizes.checksums);
    rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Crane_M));
  }

  Crane_M->solverInfoPtr = (&Crane_M->solverInfo);
  Crane_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&Crane_M->solverInfo, 0.001);
  rtsiSetSolverMode(&Crane_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  Crane_M->ModelData.blockIO = ((void *) &Crane_B);

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&Crane_B.Block1_o1[0]);
    for (i = 0; i < 49; i++) {
      ((real_T*)pVoidBlockIORegion)[i] = 0.0;
    }
  }

  /* parameters */
  Crane_M->ModelData.defaultParam = ((real_T *) &Crane_P);

  /* states (continuous) */
  {
    real_T *x = (real_T *) &Crane_X;
    Crane_M->ModelData.contStates = (x);
    (void) memset((char_T *)x,0,
                  sizeof(ContinuousStates_Crane));
  }

  /* states (dwork) */
  Crane_M->Work.dwork = ((void *) &Crane_DWork);
  (void) memset((char_T *) &Crane_DWork,0,
                sizeof(D_Work_Crane));

  {
    int_T i;
    real_T *dwork_ptr = (real_T *) &Crane_DWork.Memory_PreviousInput[0];
    for (i = 0; i < 11; i++) {
      dwork_ptr[i] = 0.0;
    }
  }

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo,0,
                  sizeof(dtInfo));
    Crane_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 15;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }
}
Exemple #6
0
/* Model initialize function */
void Motor_Test_All_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)Motor_Test_All_M, 0,
                sizeof(RT_MODEL_Motor_Test_All_T));
  rtmSetTFinal(Motor_Test_All_M, 100.0);
  Motor_Test_All_M->Timing.stepSize0 = 10.0;

  /* External mode info */
  Motor_Test_All_M->Sizes.checksums[0] = (391574619U);
  Motor_Test_All_M->Sizes.checksums[1] = (1808842219U);
  Motor_Test_All_M->Sizes.checksums[2] = (99353943U);
  Motor_Test_All_M->Sizes.checksums[3] = (1218331709U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[2];
    Motor_Test_All_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(Motor_Test_All_M->extModeInfo,
      &Motor_Test_All_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(Motor_Test_All_M->extModeInfo,
                        Motor_Test_All_M->Sizes.checksums);
    rteiSetTPtr(Motor_Test_All_M->extModeInfo, rtmGetTPtr(Motor_Test_All_M));
  }

  /* states (dwork) */
  (void) memset((void *)&Motor_Test_All_DW, 0,
                sizeof(DW_Motor_Test_All_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    Motor_Test_All_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 18;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Model Initialize fcn for ModelReference Block: '<Root>/Model' */
  motor_hl_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M),
                      &(Motor_Test_All_DW.Model_DWORK1.rtm));

  /* Model Initialize fcn for ModelReference Block: '<Root>/Model1' */
  motor_vr_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M),
                      &(Motor_Test_All_DW.Model1_DWORK1.rtm));

  /* Model Initialize fcn for ModelReference Block: '<Root>/Model2' */
  motor_vl_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M),
                      &(Motor_Test_All_DW.Model2_DWORK1.rtm));

  /* Model Initialize fcn for ModelReference Block: '<Root>/Model3' */
  motor_hr_initialize(rtmGetErrorStatusPointer(Motor_Test_All_M),
                      &(Motor_Test_All_DW.Model3_DWORK1.rtm));

  /* Start for ModelReference: '<Root>/Model' */
  motor_hl_Start();

  /* Start for ModelReference: '<Root>/Model1' */
  motor_vr_Start();

  /* Start for ModelReference: '<Root>/Model2' */
  motor_vl_Start();

  /* Start for ModelReference: '<Root>/Model3' */
  motor_hr_Start();

  /* InitializeConditions for UnitDelay: '<S2>/Output' */
  Motor_Test_All_DW.Output_DSTATE = Motor_Test_All_P.Output_InitialCondition;
}
Exemple #7
0
/* Model initialize function */
void arbeitspunkt_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));    /* initialize real-time model */
  (void) memset((char_T *)arbeitspunkt_M,0,
                sizeof(RT_MODEL_arbeitspunkt));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&arbeitspunkt_M->solverInfo,
                          &arbeitspunkt_M->Timing.simTimeStep);
    rtsiSetTPtr(&arbeitspunkt_M->solverInfo, &rtmGetTPtr(arbeitspunkt_M));
    rtsiSetStepSizePtr(&arbeitspunkt_M->solverInfo,
                       &arbeitspunkt_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&arbeitspunkt_M->solverInfo, (&rtmGetErrorStatus
      (arbeitspunkt_M)));
    rtsiSetRTModelPtr(&arbeitspunkt_M->solverInfo, arbeitspunkt_M);
  }

  rtsiSetSimTimeStep(&arbeitspunkt_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&arbeitspunkt_M->solverInfo,"FixedStepDiscrete");

  /* Initialize timing info */
  {
    int_T *mdlTsMap = arbeitspunkt_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    arbeitspunkt_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    arbeitspunkt_M->Timing.sampleTimes =
      (&arbeitspunkt_M->Timing.sampleTimesArray[0]);
    arbeitspunkt_M->Timing.offsetTimes =
      (&arbeitspunkt_M->Timing.offsetTimesArray[0]);

    /* task periods */
    arbeitspunkt_M->Timing.sampleTimes[0] = (0.0);
    arbeitspunkt_M->Timing.sampleTimes[1] = (0.001);

    /* task offsets */
    arbeitspunkt_M->Timing.offsetTimes[0] = (0.0);
    arbeitspunkt_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(arbeitspunkt_M, &arbeitspunkt_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = arbeitspunkt_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    arbeitspunkt_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(arbeitspunkt_M, 10.0);
  arbeitspunkt_M->Timing.stepSize0 = 0.001;
  arbeitspunkt_M->Timing.stepSize1 = 0.001;

  /* external mode info */
  arbeitspunkt_M->Sizes.checksums[0] = (51356583U);
  arbeitspunkt_M->Sizes.checksums[1] = (1228941243U);
  arbeitspunkt_M->Sizes.checksums[2] = (1622391598U);
  arbeitspunkt_M->Sizes.checksums[3] = (3849823737U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    arbeitspunkt_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(&rt_ExtModeInfo,
      &arbeitspunkt_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(&rt_ExtModeInfo, arbeitspunkt_M->Sizes.checksums);
    rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(arbeitspunkt_M));
  }

  arbeitspunkt_M->solverInfoPtr = (&arbeitspunkt_M->solverInfo);
  arbeitspunkt_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&arbeitspunkt_M->solverInfo, 0.001);
  rtsiSetSolverMode(&arbeitspunkt_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  arbeitspunkt_M->ModelData.blockIO = ((void *) &arbeitspunkt_B);

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&arbeitspunkt_B.V_Step);
    for (i = 0; i < 3; i++) {
      ((real_T*)pVoidBlockIORegion)[i] = 0.0;
    }
  }

  /* parameters */
  arbeitspunkt_M->ModelData.defaultParam = ((real_T *) &arbeitspunkt_P);

  /* states (dwork) */
  arbeitspunkt_M->Work.dwork = ((void *) &arbeitspunkt_DWork);
  (void) memset((char_T *) &arbeitspunkt_DWork,0,
                sizeof(D_Work_arbeitspunkt));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo,0,
                  sizeof(dtInfo));
    arbeitspunkt_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }
}
/* Registration function */
RT_MODEL_RA4_student_T *RA4_student(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)RA4_student_M, 0,
                sizeof(RT_MODEL_RA4_student_T));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&RA4_student_M->solverInfo,
                          &RA4_student_M->Timing.simTimeStep);
    rtsiSetTPtr(&RA4_student_M->solverInfo, &rtmGetTPtr(RA4_student_M));
    rtsiSetStepSizePtr(&RA4_student_M->solverInfo,
                       &RA4_student_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&RA4_student_M->solverInfo, (&rtmGetErrorStatus
      (RA4_student_M)));
    rtsiSetRTModelPtr(&RA4_student_M->solverInfo, RA4_student_M);
  }

  rtsiSetSimTimeStep(&RA4_student_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&RA4_student_M->solverInfo,"FixedStepDiscrete");
  RA4_student_M->solverInfoPtr = (&RA4_student_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = RA4_student_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    RA4_student_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    RA4_student_M->Timing.sampleTimes = (&RA4_student_M->
      Timing.sampleTimesArray[0]);
    RA4_student_M->Timing.offsetTimes = (&RA4_student_M->
      Timing.offsetTimesArray[0]);

    /* task periods */
    RA4_student_M->Timing.sampleTimes[0] = (0.0);
    RA4_student_M->Timing.sampleTimes[1] = (0.000244140625);

    /* task offsets */
    RA4_student_M->Timing.offsetTimes[0] = (0.0);
    RA4_student_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(RA4_student_M, &RA4_student_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = RA4_student_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    RA4_student_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(RA4_student_M, 1000.0);
  RA4_student_M->Timing.stepSize0 = 0.000244140625;
  RA4_student_M->Timing.stepSize1 = 0.000244140625;

  /* Setup for data logging */
  {
    static RTWLogInfo rt_DataLoggingInfo;
    rt_DataLoggingInfo.loggingInterval = NULL;
    RA4_student_M->rtwLogInfo = &rt_DataLoggingInfo;
  }

  /* Setup for data logging */
  {
    rtliSetLogXSignalInfo(RA4_student_M->rtwLogInfo, (NULL));
    rtliSetLogXSignalPtrs(RA4_student_M->rtwLogInfo, (NULL));
    rtliSetLogT(RA4_student_M->rtwLogInfo, "tout");
    rtliSetLogX(RA4_student_M->rtwLogInfo, "");
    rtliSetLogXFinal(RA4_student_M->rtwLogInfo, "");
    rtliSetLogVarNameModifier(RA4_student_M->rtwLogInfo, "rt_");
    rtliSetLogFormat(RA4_student_M->rtwLogInfo, 0);
    rtliSetLogMaxRows(RA4_student_M->rtwLogInfo, 0);
    rtliSetLogDecimation(RA4_student_M->rtwLogInfo, 1);
    rtliSetLogY(RA4_student_M->rtwLogInfo, "");
    rtliSetLogYSignalInfo(RA4_student_M->rtwLogInfo, (NULL));
    rtliSetLogYSignalPtrs(RA4_student_M->rtwLogInfo, (NULL));
  }

  /* External mode info */
  RA4_student_M->Sizes.checksums[0] = (2785597085U);
  RA4_student_M->Sizes.checksums[1] = (79388889U);
  RA4_student_M->Sizes.checksums[2] = (3150282079U);
  RA4_student_M->Sizes.checksums[3] = (1201550713U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[2];
    RA4_student_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = (sysRanDType *)&RA4_student_DW.Controller_SubsysRanBC;
    rteiSetModelMappingInfoPtr(RA4_student_M->extModeInfo,
      &RA4_student_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(RA4_student_M->extModeInfo,
                        RA4_student_M->Sizes.checksums);
    rteiSetTPtr(RA4_student_M->extModeInfo, rtmGetTPtr(RA4_student_M));
  }

  RA4_student_M->solverInfoPtr = (&RA4_student_M->solverInfo);
  RA4_student_M->Timing.stepSize = (0.000244140625);
  rtsiSetFixedStepSize(&RA4_student_M->solverInfo, 0.000244140625);
  rtsiSetSolverMode(&RA4_student_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  RA4_student_M->ModelData.blockIO = ((void *) &RA4_student_B);
  (void) memset(((void *) &RA4_student_B), 0,
                sizeof(B_RA4_student_T));

  {
    RA4_student_B.UnitDelay2[0] = 0.0;
    RA4_student_B.UnitDelay2[1] = 0.0;
    RA4_student_B.UnitDelay2[2] = 0.0;
    RA4_student_B.UnitDelay1 = 0.0;
    RA4_student_B.RobotArm_sfcn_o1 = 0.0;
    RA4_student_B.RobotArm_sfcn_o2[0] = 0.0;
    RA4_student_B.RobotArm_sfcn_o2[1] = 0.0;
    RA4_student_B.RobotArm_sfcn_o2[2] = 0.0;
    RA4_student_B.RobotArm_sfcn_o4 = 0.0;
    RA4_student_B.Sum4 = 0.0;
    RA4_student_B.Sum5 = 0.0;
    RA4_student_B.Sum6 = 0.0;
    RA4_student_B.ReferenceSolenoid = 0.0;
    RA4_student_B.SFunction[0] = 0.0;
    RA4_student_B.SFunction[1] = 0.0;
    RA4_student_B.SFunction[2] = 0.0;
    RA4_student_B.SFunction[3] = 0.0;
  }

  /* parameters */
  RA4_student_M->ModelData.defaultParam = ((real_T *)&RA4_student_P);

  /* states (dwork) */
  RA4_student_M->ModelData.dwork = ((void *) &RA4_student_DW);
  (void) memset((void *)&RA4_student_DW, 0,
                sizeof(DW_RA4_student_T));
  RA4_student_DW.UnitDelay2_DSTATE[0] = 0.0;
  RA4_student_DW.UnitDelay2_DSTATE[1] = 0.0;
  RA4_student_DW.UnitDelay2_DSTATE[2] = 0.0;
  RA4_student_DW.UnitDelay1_DSTATE = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK0 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK1 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK2 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK3 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK4 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK5 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK6 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK7 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK8 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK9 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK10 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK11 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK12 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK13 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK14 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK15 = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK16[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK16[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK17[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK17[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK18[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK18[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK18[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK18[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK19[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK19[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK19[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK19[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK20[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK20[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK21[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK21[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK21[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK21[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK22[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK22[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK22[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK22[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK23[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK23[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK24[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK24[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK25[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK25[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK25[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK25[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK26[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK26[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK26[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK26[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK27[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK27[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK28[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK28[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK28[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK28[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK29[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK29[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK29[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK29[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK30[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK30[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK31[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK31[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK32[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK32[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK32[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK32[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK33[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK33[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK33[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK33[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK34[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK34[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK35[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK35[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK35[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK35[3] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK36[0] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK36[1] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK36[2] = 0.0;
  RA4_student_DW.RobotArm_sfcn_DWORK36[3] = 0.0;

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    RA4_student_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &RA4_student_M->NonInlinedSFcns.sfcnInfo;
    RA4_student_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(RA4_student_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &RA4_student_M->Sizes.numSampTimes);
    RA4_student_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(RA4_student_M)
      [0]);
    RA4_student_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(RA4_student_M)
      [1]);
    rtssSetTPtrPtr(sfcnInfo,RA4_student_M->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(RA4_student_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(RA4_student_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(RA4_student_M));
    rtssSetStepSizePtr(sfcnInfo, &RA4_student_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(RA4_student_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &RA4_student_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &RA4_student_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &RA4_student_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &RA4_student_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo,
      &RA4_student_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &RA4_student_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &RA4_student_M->solverInfoPtr);
  }

  RA4_student_M->Sizes.numSFcns = (2);

  /* register each child */
  {
    (void) memset((void *)&RA4_student_M->NonInlinedSFcns.childSFunctions[0], 0,
                  2*sizeof(SimStruct));
    RA4_student_M->childSfunctions =
      (&RA4_student_M->NonInlinedSFcns.childSFunctionPtrs[0]);
    RA4_student_M->childSfunctions[0] =
      (&RA4_student_M->NonInlinedSFcns.childSFunctions[0]);
    RA4_student_M->childSfunctions[1] =
      (&RA4_student_M->NonInlinedSFcns.childSFunctions[1]);

    /* Level2 S-Function Block: RA4_student/<S6>/S-Function (sf_rt_scope) */
    {
      SimStruct *rts = RA4_student_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = RA4_student_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &RA4_student_M->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, RA4_student_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &RA4_student_M->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &RA4_student_M->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &RA4_student_M->NonInlinedSFcns.statesInfo2[0]);
        ssSetPeriodicStatesInfo(rts,
          &RA4_student_M->NonInlinedSFcns.periodicStatesInfo[0]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 1);
        ssSetPortInfoForInputs(rts,
          &RA4_student_M->NonInlinedSFcns.Sfcn0.inputPortInfo[0]);

        /* port 0 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &RA4_student_M->NonInlinedSFcns.Sfcn0.UPtrs0;
          sfcnUPtrs[0] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[1] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[2] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[3] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[4] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[5] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[6] = (real_T*)&RA4_student_RGND;
          sfcnUPtrs[7] = (real_T*)&RA4_student_RGND;
          ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 8);
        }
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &RA4_student_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 4);
          ssSetOutputPortSignal(rts, 0, ((real_T *) RA4_student_B.SFunction));
        }
      }

      /* path info */
      ssSetModelName(rts, "S-Function");
      ssSetPath(rts, "RA4_student/Controller/RTScope/S-Function");
      ssSetRTModel(rts,RA4_student_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &RA4_student_M->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 1);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)RA4_student_P.SFunction_P1_Size);
      }

      /* registration */
      sf_rt_scope(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.0);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
    }

    /* RTW Generated Level2 S-Function Block: RA4_student/<S2>/Robot Arm_sfcn (Robot_sf) */
    {
      SimStruct *rts = RA4_student_M->childSfunctions[1];

      /* timing info */
      time_T *sfcnPeriod = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnPeriod;
      time_T *sfcnOffset = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnOffset;
      int_T *sfcnTsMap = RA4_student_M->NonInlinedSFcns.Sfcn1.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*2);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*2);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &RA4_student_M->NonInlinedSFcns.blkInfo2[1]);
      }

      ssSetRTWSfcnInfo(rts, RA4_student_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &RA4_student_M->NonInlinedSFcns.methods2[1]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &RA4_student_M->NonInlinedSFcns.methods3[1]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &RA4_student_M->NonInlinedSFcns.statesInfo2[1]);
        ssSetPeriodicStatesInfo(rts,
          &RA4_student_M->NonInlinedSFcns.periodicStatesInfo[1]);
      }

      /* inputs */
      {
        _ssSetNumInputPorts(rts, 2);
        ssSetPortInfoForInputs(rts,
          &RA4_student_M->NonInlinedSFcns.Sfcn1.inputPortInfo[0]);

        /* port 0 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &RA4_student_M->NonInlinedSFcns.Sfcn1.UPtrs0;
          sfcnUPtrs[0] = RA4_student_B.UnitDelay2;
          sfcnUPtrs[1] = &RA4_student_B.UnitDelay2[1];
          sfcnUPtrs[2] = &RA4_student_B.UnitDelay2[2];
          ssSetInputPortSignalPtrs(rts, 0, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 0, 1);
          ssSetInputPortWidth(rts, 0, 3);
        }

        /* port 1 */
        {
          real_T const **sfcnUPtrs = (real_T const **)
            &RA4_student_M->NonInlinedSFcns.Sfcn1.UPtrs1;
          sfcnUPtrs[0] = &RA4_student_B.UnitDelay1;
          ssSetInputPortSignalPtrs(rts, 1, (InputPtrsType)&sfcnUPtrs[0]);
          _ssSetInputPortNumDimensions(rts, 1, 1);
          ssSetInputPortWidth(rts, 1, 1);
        }
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &RA4_student_M->NonInlinedSFcns.Sfcn1.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 4);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *)
            &RA4_student_B.RobotArm_sfcn_o1));
        }

        /* port 1 */
        {
          _ssSetOutputPortNumDimensions(rts, 1, 1);
          ssSetOutputPortWidth(rts, 1, 3);
          ssSetOutputPortSignal(rts, 1, ((real_T *)
            RA4_student_B.RobotArm_sfcn_o2));
        }

        /* port 2 */
        {
          _ssSetOutputPortNumDimensions(rts, 2, 1);
          ssSetOutputPortWidth(rts, 2, 3);
          ssSetOutputPortSignal(rts, 2, ((boolean_T *)
            RA4_student_B.RobotArm_sfcn_o3));
        }

        /* port 3 */
        {
          _ssSetOutputPortNumDimensions(rts, 3, 1);
          ssSetOutputPortWidth(rts, 3, 1);
          ssSetOutputPortSignal(rts, 3, ((real_T *)
            &RA4_student_B.RobotArm_sfcn_o4));
        }
      }

      /* path info */
      ssSetModelName(rts, "Robot Arm_sfcn");
      ssSetPath(rts, "RA4_student/Robot Arm1/Robot Arm_sfcn");
      ssSetRTModel(rts,RA4_student_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* work vectors */
      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &RA4_student_M->NonInlinedSFcns.Sfcn1.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &RA4_student_M->NonInlinedSFcns.Sfcn1.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 47);

        /* DWORK0 */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWorkUsedAsDState(rts, 0, 1);
        ssSetDWork(rts, 0, &RA4_student_DW.RobotArm_sfcn_DWORK0);

        /* DWORK1 */
        ssSetDWorkWidth(rts, 1, 1);
        ssSetDWorkDataType(rts, 1,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 1, 0);
        ssSetDWorkUsedAsDState(rts, 1, 1);
        ssSetDWork(rts, 1, &RA4_student_DW.RobotArm_sfcn_DWORK1);

        /* DWORK2 */
        ssSetDWorkWidth(rts, 2, 1);
        ssSetDWorkDataType(rts, 2,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 2, 0);
        ssSetDWorkUsedAsDState(rts, 2, 1);
        ssSetDWork(rts, 2, &RA4_student_DW.RobotArm_sfcn_DWORK2);

        /* DWORK3 */
        ssSetDWorkWidth(rts, 3, 1);
        ssSetDWorkDataType(rts, 3,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 3, 0);
        ssSetDWorkUsedAsDState(rts, 3, 1);
        ssSetDWork(rts, 3, &RA4_student_DW.RobotArm_sfcn_DWORK3);

        /* DWORK4 */
        ssSetDWorkWidth(rts, 4, 1);
        ssSetDWorkDataType(rts, 4,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 4, 0);
        ssSetDWorkUsedAsDState(rts, 4, 1);
        ssSetDWork(rts, 4, &RA4_student_DW.RobotArm_sfcn_DWORK4);

        /* DWORK5 */
        ssSetDWorkWidth(rts, 5, 1);
        ssSetDWorkDataType(rts, 5,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 5, 0);
        ssSetDWorkUsedAsDState(rts, 5, 1);
        ssSetDWork(rts, 5, &RA4_student_DW.RobotArm_sfcn_DWORK5);

        /* DWORK6 */
        ssSetDWorkWidth(rts, 6, 1);
        ssSetDWorkDataType(rts, 6,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 6, 0);
        ssSetDWorkUsedAsDState(rts, 6, 1);
        ssSetDWork(rts, 6, &RA4_student_DW.RobotArm_sfcn_DWORK6);

        /* DWORK7 */
        ssSetDWorkWidth(rts, 7, 1);
        ssSetDWorkDataType(rts, 7,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 7, 0);
        ssSetDWorkUsedAsDState(rts, 7, 1);
        ssSetDWork(rts, 7, &RA4_student_DW.RobotArm_sfcn_DWORK7);

        /* DWORK8 */
        ssSetDWorkWidth(rts, 8, 1);
        ssSetDWorkDataType(rts, 8,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 8, 0);
        ssSetDWorkUsedAsDState(rts, 8, 1);
        ssSetDWork(rts, 8, &RA4_student_DW.RobotArm_sfcn_DWORK8);

        /* DWORK9 */
        ssSetDWorkWidth(rts, 9, 1);
        ssSetDWorkDataType(rts, 9,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 9, 0);
        ssSetDWorkUsedAsDState(rts, 9, 1);
        ssSetDWork(rts, 9, &RA4_student_DW.RobotArm_sfcn_DWORK9);

        /* DWORK10 */
        ssSetDWorkWidth(rts, 10, 1);
        ssSetDWorkDataType(rts, 10,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 10, 0);
        ssSetDWork(rts, 10, &RA4_student_DW.RobotArm_sfcn_DWORK10);

        /* DWORK11 */
        ssSetDWorkWidth(rts, 11, 1);
        ssSetDWorkDataType(rts, 11,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 11, 0);
        ssSetDWork(rts, 11, &RA4_student_DW.RobotArm_sfcn_DWORK11);

        /* DWORK12 */
        ssSetDWorkWidth(rts, 12, 1);
        ssSetDWorkDataType(rts, 12,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 12, 0);
        ssSetDWork(rts, 12, &RA4_student_DW.RobotArm_sfcn_DWORK12);

        /* DWORK13 */
        ssSetDWorkWidth(rts, 13, 1);
        ssSetDWorkDataType(rts, 13,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 13, 0);
        ssSetDWork(rts, 13, &RA4_student_DW.RobotArm_sfcn_DWORK13);

        /* DWORK14 */
        ssSetDWorkWidth(rts, 14, 1);
        ssSetDWorkDataType(rts, 14,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 14, 0);
        ssSetDWork(rts, 14, &RA4_student_DW.RobotArm_sfcn_DWORK14);

        /* DWORK15 */
        ssSetDWorkWidth(rts, 15, 1);
        ssSetDWorkDataType(rts, 15,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 15, 0);
        ssSetDWork(rts, 15, &RA4_student_DW.RobotArm_sfcn_DWORK15);

        /* DWORK16 */
        ssSetDWorkWidth(rts, 16, 2);
        ssSetDWorkDataType(rts, 16,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 16, 0);
        ssSetDWork(rts, 16, &RA4_student_DW.RobotArm_sfcn_DWORK16[0]);

        /* DWORK17 */
        ssSetDWorkWidth(rts, 17, 2);
        ssSetDWorkDataType(rts, 17,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 17, 0);
        ssSetDWork(rts, 17, &RA4_student_DW.RobotArm_sfcn_DWORK17[0]);

        /* DWORK18 */
        ssSetDWorkWidth(rts, 18, 4);
        ssSetDWorkDataType(rts, 18,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 18, 0);
        ssSetDWork(rts, 18, &RA4_student_DW.RobotArm_sfcn_DWORK18[0]);

        /* DWORK19 */
        ssSetDWorkWidth(rts, 19, 4);
        ssSetDWorkDataType(rts, 19,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 19, 0);
        ssSetDWork(rts, 19, &RA4_student_DW.RobotArm_sfcn_DWORK19[0]);

        /* DWORK20 */
        ssSetDWorkWidth(rts, 20, 2);
        ssSetDWorkDataType(rts, 20,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 20, 0);
        ssSetDWork(rts, 20, &RA4_student_DW.RobotArm_sfcn_DWORK20[0]);

        /* DWORK21 */
        ssSetDWorkWidth(rts, 21, 4);
        ssSetDWorkDataType(rts, 21,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 21, 0);
        ssSetDWork(rts, 21, &RA4_student_DW.RobotArm_sfcn_DWORK21[0]);

        /* DWORK22 */
        ssSetDWorkWidth(rts, 22, 4);
        ssSetDWorkDataType(rts, 22,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 22, 0);
        ssSetDWork(rts, 22, &RA4_student_DW.RobotArm_sfcn_DWORK22[0]);

        /* DWORK23 */
        ssSetDWorkWidth(rts, 23, 2);
        ssSetDWorkDataType(rts, 23,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 23, 0);
        ssSetDWork(rts, 23, &RA4_student_DW.RobotArm_sfcn_DWORK23[0]);

        /* DWORK24 */
        ssSetDWorkWidth(rts, 24, 2);
        ssSetDWorkDataType(rts, 24,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 24, 0);
        ssSetDWork(rts, 24, &RA4_student_DW.RobotArm_sfcn_DWORK24[0]);

        /* DWORK25 */
        ssSetDWorkWidth(rts, 25, 4);
        ssSetDWorkDataType(rts, 25,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 25, 0);
        ssSetDWork(rts, 25, &RA4_student_DW.RobotArm_sfcn_DWORK25[0]);

        /* DWORK26 */
        ssSetDWorkWidth(rts, 26, 4);
        ssSetDWorkDataType(rts, 26,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 26, 0);
        ssSetDWork(rts, 26, &RA4_student_DW.RobotArm_sfcn_DWORK26[0]);

        /* DWORK27 */
        ssSetDWorkWidth(rts, 27, 2);
        ssSetDWorkDataType(rts, 27,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 27, 0);
        ssSetDWork(rts, 27, &RA4_student_DW.RobotArm_sfcn_DWORK27[0]);

        /* DWORK28 */
        ssSetDWorkWidth(rts, 28, 4);
        ssSetDWorkDataType(rts, 28,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 28, 0);
        ssSetDWork(rts, 28, &RA4_student_DW.RobotArm_sfcn_DWORK28[0]);

        /* DWORK29 */
        ssSetDWorkWidth(rts, 29, 4);
        ssSetDWorkDataType(rts, 29,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 29, 0);
        ssSetDWork(rts, 29, &RA4_student_DW.RobotArm_sfcn_DWORK29[0]);

        /* DWORK30 */
        ssSetDWorkWidth(rts, 30, 2);
        ssSetDWorkDataType(rts, 30,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 30, 0);
        ssSetDWork(rts, 30, &RA4_student_DW.RobotArm_sfcn_DWORK30[0]);

        /* DWORK31 */
        ssSetDWorkWidth(rts, 31, 2);
        ssSetDWorkDataType(rts, 31,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 31, 0);
        ssSetDWork(rts, 31, &RA4_student_DW.RobotArm_sfcn_DWORK31[0]);

        /* DWORK32 */
        ssSetDWorkWidth(rts, 32, 4);
        ssSetDWorkDataType(rts, 32,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 32, 0);
        ssSetDWork(rts, 32, &RA4_student_DW.RobotArm_sfcn_DWORK32[0]);

        /* DWORK33 */
        ssSetDWorkWidth(rts, 33, 4);
        ssSetDWorkDataType(rts, 33,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 33, 0);
        ssSetDWork(rts, 33, &RA4_student_DW.RobotArm_sfcn_DWORK33[0]);

        /* DWORK34 */
        ssSetDWorkWidth(rts, 34, 2);
        ssSetDWorkDataType(rts, 34,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 34, 0);
        ssSetDWork(rts, 34, &RA4_student_DW.RobotArm_sfcn_DWORK34[0]);

        /* DWORK35 */
        ssSetDWorkWidth(rts, 35, 4);
        ssSetDWorkDataType(rts, 35,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 35, 0);
        ssSetDWork(rts, 35, &RA4_student_DW.RobotArm_sfcn_DWORK35[0]);

        /* DWORK36 */
        ssSetDWorkWidth(rts, 36, 4);
        ssSetDWorkDataType(rts, 36,SS_DOUBLE);
        ssSetDWorkComplexSignal(rts, 36, 0);
        ssSetDWork(rts, 36, &RA4_student_DW.RobotArm_sfcn_DWORK36[0]);

        /* DWORK37 */
        ssSetDWorkWidth(rts, 37, 1);
        ssSetDWorkDataType(rts, 37,SS_INT32);
        ssSetDWorkComplexSignal(rts, 37, 0);
        ssSetDWork(rts, 37, &RA4_student_DW.RobotArm_sfcn_DWORK37);

        /* DWORK38 */
        ssSetDWorkWidth(rts, 38, 1);
        ssSetDWorkDataType(rts, 38,SS_UINT16);
        ssSetDWorkComplexSignal(rts, 38, 0);
        ssSetDWork(rts, 38, &RA4_student_DW.RobotArm_sfcn_DWORK38);

        /* DWORK39 */
        ssSetDWorkWidth(rts, 39, 1);
        ssSetDWorkDataType(rts, 39,SS_UINT16);
        ssSetDWorkComplexSignal(rts, 39, 0);
        ssSetDWork(rts, 39, &RA4_student_DW.RobotArm_sfcn_DWORK39);

        /* DWORK40 */
        ssSetDWorkWidth(rts, 40, 1);
        ssSetDWorkDataType(rts, 40,SS_UINT16);
        ssSetDWorkComplexSignal(rts, 40, 0);
        ssSetDWork(rts, 40, &RA4_student_DW.RobotArm_sfcn_DWORK40);

        /* DWORK41 */
        ssSetDWorkWidth(rts, 41, 1);
        ssSetDWorkDataType(rts, 41,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 41, 0);
        ssSetDWork(rts, 41, &RA4_student_DW.RobotArm_sfcn_DWORK41);

        /* DWORK42 */
        ssSetDWorkWidth(rts, 42, 1);
        ssSetDWorkDataType(rts, 42,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 42, 0);
        ssSetDWork(rts, 42, &RA4_student_DW.RobotArm_sfcn_DWORK42);

        /* DWORK43 */
        ssSetDWorkWidth(rts, 43, 1);
        ssSetDWorkDataType(rts, 43,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 43, 0);
        ssSetDWork(rts, 43, &RA4_student_DW.RobotArm_sfcn_DWORK43);

        /* DWORK44 */
        ssSetDWorkWidth(rts, 44, 1);
        ssSetDWorkDataType(rts, 44,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 44, 0);
        ssSetDWork(rts, 44, &RA4_student_DW.RobotArm_sfcn_DWORK44);

        /* DWORK45 */
        ssSetDWorkWidth(rts, 45, 1);
        ssSetDWorkDataType(rts, 45,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 45, 0);
        ssSetDWork(rts, 45, &RA4_student_DW.RobotArm_sfcn_DWORK45);

        /* DWORK46 */
        ssSetDWorkWidth(rts, 46, 1);
        ssSetDWorkDataType(rts, 46,SS_UINT8);
        ssSetDWorkComplexSignal(rts, 46, 0);
        ssSetDWork(rts, 46, &RA4_student_DW.RobotArm_sfcn_DWORK46);
      }

      /* registration */
      Robot_sf(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.0);
      ssSetOffsetTime(rts, 0, 0.0);
      ssSetSampleTime(rts, 1, 0.000244140625);
      ssSetOffsetTime(rts, 1, 0.0);
      sfcnTsMap[0] = 0;
      sfcnTsMap[1] = 1;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetInputPortConnected(rts, 0, 1);
      _ssSetInputPortConnected(rts, 1, 1);
      _ssSetOutputPortConnected(rts, 0, 1);
      _ssSetOutputPortConnected(rts, 1, 1);
      _ssSetOutputPortConnected(rts, 2, 1);
      _ssSetOutputPortConnected(rts, 3, 1);
      _ssSetOutputPortBeingMerged(rts, 0, 0);
      _ssSetOutputPortBeingMerged(rts, 1, 0);
      _ssSetOutputPortBeingMerged(rts, 2, 0);
      _ssSetOutputPortBeingMerged(rts, 3, 0);

      /* Update the BufferDstPort flags for each input port */
      ssSetInputPortBufferDstPort(rts, 0, -1);
      ssSetInputPortBufferDstPort(rts, 1, -1);

      /* Instance data for generated S-Function: Robot */
#include "Robot_sfcn_rtw/Robot_sid.h"

    }
  }

  /* Initialize Sizes */
  RA4_student_M->Sizes.numContStates = (0);/* Number of continuous states */
  RA4_student_M->Sizes.numY = (0);     /* Number of model outputs */
  RA4_student_M->Sizes.numU = (0);     /* Number of model inputs */
  RA4_student_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */
  RA4_student_M->Sizes.numSampTimes = (2);/* Number of sample times */
  RA4_student_M->Sizes.numBlocks = (24);/* Number of blocks */
  RA4_student_M->Sizes.numBlockIO = (11);/* Number of block outputs */
  RA4_student_M->Sizes.numBlockPrms = (16);/* Sum of parameter "widths" */
  return RA4_student_M;
}
/* Model initialize function */
void GyroskopAuswertung_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)GyroskopAuswertung_M, 0,
                sizeof(RT_MODEL_GyroskopAuswertung_T));
  rtmSetTFinal(GyroskopAuswertung_M, 10.0);
  GyroskopAuswertung_M->Timing.stepSize0 = 0.01;

  /* External mode info */
  GyroskopAuswertung_M->Sizes.checksums[0] = (1941814335U);
  GyroskopAuswertung_M->Sizes.checksums[1] = (4017032776U);
  GyroskopAuswertung_M->Sizes.checksums[2] = (2489100557U);
  GyroskopAuswertung_M->Sizes.checksums[3] = (945044384U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    GyroskopAuswertung_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(GyroskopAuswertung_M->extModeInfo,
      &GyroskopAuswertung_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(GyroskopAuswertung_M->extModeInfo,
                        GyroskopAuswertung_M->Sizes.checksums);
    rteiSetTPtr(GyroskopAuswertung_M->extModeInfo, rtmGetTPtr
                (GyroskopAuswertung_M));
  }

  /* block I/O */
  (void) memset(((void *) &GyroskopAuswertung_B), 0,
                sizeof(B_GyroskopAuswertung_T));

  /* states (dwork) */
  (void) memset((void *)&GyroskopAuswertung_DW, 0,
                sizeof(DW_GyroskopAuswertung_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    GyroskopAuswertung_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.BTransTable = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.PTransTable = &rtPTransTable;
  }

  /* S-Function Block: <Root>/Sensor1 */
  {
    real_T initVector[1] = { 0 };

    {
      int_T i1;
      for (i1=0; i1 < 1; i1++) {
        GyroskopAuswertung_DW.Sensor1_DSTATE = initVector[0];
      }
    }
  }

  /* S-Function Block: <Root>/Sensor2 */
  {
    real_T initVector[1] = { 0 };

    {
      int_T i1;
      for (i1=0; i1 < 1; i1++) {
        GyroskopAuswertung_DW.Sensor2_DSTATE = initVector[0];
      }
    }
  }
}
Exemple #10
0
/* Model initialize function */
void motor_control_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)motor_control_M, 0,
                sizeof(RT_MODEL_motor_control_T));
  rtmSetTFinal(motor_control_M, -1);
  motor_control_M->Timing.stepSize0 = 0.05;

  /* External mode info */
  motor_control_M->Sizes.checksums[0] = (2107225776U);
  motor_control_M->Sizes.checksums[1] = (1965539276U);
  motor_control_M->Sizes.checksums[2] = (1036431389U);
  motor_control_M->Sizes.checksums[3] = (618126809U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    motor_control_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(motor_control_M->extModeInfo,
      &motor_control_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(motor_control_M->extModeInfo,
                        motor_control_M->Sizes.checksums);
    rteiSetTPtr(motor_control_M->extModeInfo, rtmGetTPtr(motor_control_M));
  }

  /* block I/O */
  (void) memset(((void *) &motor_control_B), 0,
                sizeof(B_motor_control_T));

  /* states (dwork) */
  (void) memset((void *)&motor_control_DW, 0,
                sizeof(DW_motor_control_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    motor_control_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Start for DiscretePulseGenerator: '<Root>/Pulse Generator' */
  motor_control_DW.clockTickCounter = 0L;

  /* S-Function Block: <Root>/Encoder */
  {
    real_T initVector[1] = { 0 };

    {
      int_T i1;
      for (i1=0; i1 < 1; i1++) {
        motor_control_DW.Encoder_DSTATE = initVector[0];
      }
    }
  }

  /* InitializeConditions for DiscreteIntegrator: '<S1>/Integrator' */
  motor_control_DW.Integrator_DSTATE = motor_control_P.Integrator_IC;

  /* InitializeConditions for DiscreteIntegrator: '<S1>/Filter' */
  motor_control_DW.Filter_DSTATE = motor_control_P.Filter_IC;

  /* S-Function Block: <Root>/PWM */
  {
    real_T initVector[1] = { 0 };

    {
      int_T i1;
      for (i1=0; i1 < 1; i1++) {
        motor_control_DW.PWM_DSTATE = initVector[0];
      }
    }
  }
}
/* Model initialize function */
void omni_interface_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));    /* initialize real-time model */
  (void) memset((char_T *)omni_interface_M,0,
                sizeof(RT_MODEL_omni_interface));

  /* Initialize timing info */
  {
    int_T *mdlTsMap = omni_interface_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    omni_interface_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    omni_interface_M->Timing.sampleTimes =
      (&omni_interface_M->Timing.sampleTimesArray[0]);
    omni_interface_M->Timing.offsetTimes =
      (&omni_interface_M->Timing.offsetTimesArray[0]);

    /* task periods */
    omni_interface_M->Timing.sampleTimes[0] = (0.001);

    /* task offsets */
    omni_interface_M->Timing.offsetTimes[0] = (0.0);
  }

  rtmSetTPtr(omni_interface_M, &omni_interface_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = omni_interface_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    omni_interface_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(omni_interface_M, -1);
  omni_interface_M->Timing.stepSize0 = 0.001;

  /* external mode info */
  omni_interface_M->Sizes.checksums[0] = (3515672156U);
  omni_interface_M->Sizes.checksums[1] = (4130000490U);
  omni_interface_M->Sizes.checksums[2] = (2703472843U);
  omni_interface_M->Sizes.checksums[3] = (3284165155U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[13];
    omni_interface_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = &rtAlwaysEnabled;
    systemRan[2] = &rtAlwaysEnabled;
    systemRan[3] = &rtAlwaysEnabled;
    systemRan[4] = &rtAlwaysEnabled;
    systemRan[5] = &rtAlwaysEnabled;
    systemRan[6] = &rtAlwaysEnabled;
    systemRan[7] = &rtAlwaysEnabled;
    systemRan[8] = &rtAlwaysEnabled;
    systemRan[9] = &rtAlwaysEnabled;
    systemRan[10] = &rtAlwaysEnabled;
    systemRan[11] = &rtAlwaysEnabled;
    systemRan[12] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(&rt_ExtModeInfo,
      &omni_interface_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(&rt_ExtModeInfo, omni_interface_M->Sizes.checksums);
    rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(omni_interface_M));
  }

  omni_interface_M->solverInfoPtr = (&omni_interface_M->solverInfo);
  omni_interface_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&omni_interface_M->solverInfo, 0.001);
  rtsiSetSolverMode(&omni_interface_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  omni_interface_M->ModelData.blockIO = ((void *) &omni_interface_B);
  (void) memset(((void *) &omni_interface_B),0,
                sizeof(BlockIO_omni_interface));

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&omni_interface_B.Gain2[0]);
    for (i = 0; i < 12; i++) {
      ((real_T*)pVoidBlockIORegion)[i] = 0.0;
    }
  }

  /* parameters */
  omni_interface_M->ModelData.defaultParam = ((real_T *) &omni_interface_P);

  /* states (dwork) */
  omni_interface_M->Work.dwork = ((void *) &omni_interface_DWork);
  (void) memset((char_T *) &omni_interface_DWork,0,
                sizeof(D_Work_omni_interface));

  {
    int_T i;
    real_T *dwork_ptr = (real_T *) &omni_interface_DWork.FixPtUnitDelay1_DSTATE;
    for (i = 0; i < 19; i++) {
      dwork_ptr[i] = 0.0;
    }
  }

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo,0,
                  sizeof(dtInfo));
    omni_interface_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 18;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }
}
/* Model initialize function */
void motor_test_hierarchies_initialize(void)
{
  /* Registration code */

  /* initialize real-time model */
  (void) memset((void *)motor_test_hierarchies_M, 0,
                sizeof(RT_MODEL_motor_test_hierarchi_T));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&motor_test_hierarchies_M->solverInfo,
                          &motor_test_hierarchies_M->Timing.simTimeStep);
    rtsiSetTPtr(&motor_test_hierarchies_M->solverInfo, &rtmGetTPtr
                (motor_test_hierarchies_M));
    rtsiSetStepSizePtr(&motor_test_hierarchies_M->solverInfo,
                       &motor_test_hierarchies_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&motor_test_hierarchies_M->solverInfo,
                          (&rtmGetErrorStatus(motor_test_hierarchies_M)));
    rtsiSetRTModelPtr(&motor_test_hierarchies_M->solverInfo,
                      motor_test_hierarchies_M);
  }

  rtsiSetSimTimeStep(&motor_test_hierarchies_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&motor_test_hierarchies_M->solverInfo,"FixedStepDiscrete");
  rtmSetTPtr(motor_test_hierarchies_M, &motor_test_hierarchies_M->Timing.tArray
             [0]);
  rtmSetTFinal(motor_test_hierarchies_M, 200.0);
  motor_test_hierarchies_M->Timing.stepSize0 = 1.0;

  /* External mode info */
  motor_test_hierarchies_M->Sizes.checksums[0] = (1277721381U);
  motor_test_hierarchies_M->Sizes.checksums[1] = (3056422068U);
  motor_test_hierarchies_M->Sizes.checksums[2] = (826496824U);
  motor_test_hierarchies_M->Sizes.checksums[3] = (767811506U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[9];
    motor_test_hierarchies_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = &rtAlwaysEnabled;
    systemRan[2] = &rtAlwaysEnabled;
    systemRan[3] = &rtAlwaysEnabled;
    systemRan[4] = &rtAlwaysEnabled;
    systemRan[5] = &rtAlwaysEnabled;
    systemRan[6] = &rtAlwaysEnabled;
    systemRan[7] = &rtAlwaysEnabled;
    systemRan[8] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(motor_test_hierarchies_M->extModeInfo,
      &motor_test_hierarchies_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(motor_test_hierarchies_M->extModeInfo,
                        motor_test_hierarchies_M->Sizes.checksums);
    rteiSetTPtr(motor_test_hierarchies_M->extModeInfo, rtmGetTPtr
                (motor_test_hierarchies_M));
  }

  /* block I/O */
  (void) memset(((void *) &motor_test_hierarchies_B), 0,
                sizeof(B_motor_test_hierarchies_T));

  /* states (dwork) */
  (void) memset((void *)&motor_test_hierarchies_DW, 0,
                sizeof(DW_motor_test_hierarchies_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    motor_test_hierarchies_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* Start for FromWorkspace: '<S3>/FromWs' */
  {
    static real_T pTimeValues0[] = { 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 4.0, 6.0, 6.0,
      7.0 } ;

    static real_T pDataValues0[] = { 0.0, 128.0, 128.0, 128.0, 128.0, 255.0,
      255.0, 255.0, 255.0, 0.0 } ;

    motor_test_hierarchies_DW.FromWs_PWORK.TimePtr = (void *) pTimeValues0;
    motor_test_hierarchies_DW.FromWs_PWORK.DataPtr = (void *) pDataValues0;
    motor_test_hierarchies_DW.FromWs_IWORK.PrevIndex = 0;
  }

  /* Start for Atomic SubSystem: '<S1>/hl' */
  motor_test_hierarchies_hl_Start((P_hl_motor_test_hierarchies_T *)
    &motor_test_hierarchies_P.hl);

  /* End of Start for SubSystem: '<S1>/hl' */

  /* Start for Atomic SubSystem: '<S1>/hr' */
  /* Start for S-Function (arduinodigitaloutput_sfcn): '<S10>/Digital Output' */
  MW_pinModeOutput(motor_test_hierarchies_P.DigitalOutput_pinNumber);

  /* Start for S-Function (arduinoanalogoutput_sfcn): '<S11>/PWM' */
  MW_pinModeOutput(motor_test_hierarchies_P.PWM_pinNumber);

  /* Start for Atomic SubSystem: '<S1>/vl' */
  motor_test_hierarchies_hl_Start((P_hl_motor_test_hierarchies_T *)
    &motor_test_hierarchies_P.vl);

  /* End of Start for SubSystem: '<S1>/vl' */

  /* Start for Atomic SubSystem: '<S1>/vr' */
  /* Start for S-Function (arduinodigitaloutput_sfcn): '<S14>/Digital Output' */
  MW_pinModeOutput(motor_test_hierarchies_P.DigitalOutput_pinNumber_a);

  /* Start for S-Function (arduinoanalogoutput_sfcn): '<S15>/PWM' */
  MW_pinModeOutput(motor_test_hierarchies_P.PWM_pinNumber_n);
}
Exemple #13
0
/* Model initialize function */
void udpRead_initialize(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)udpRead_M, 0,
                sizeof(RT_MODEL_udpRead_T));
  rtmSetTFinal(udpRead_M, -1);
  udpRead_M->Timing.stepSize0 = 0.001;

  /* External mode info */
  udpRead_M->Sizes.checksums[0] = (597430241U);
  udpRead_M->Sizes.checksums[1] = (1019470990U);
  udpRead_M->Sizes.checksums[2] = (4143940322U);
  udpRead_M->Sizes.checksums[3] = (93090447U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[5];
    udpRead_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = (sysRanDType *)&udpRead_DW.ForIteratorSubsystem_SubsysRanB;
    systemRan[2] = (sysRanDType *)&udpRead_DW.ForIteratorSubsystem1_SubsysRan;
    systemRan[3] = (sysRanDType *)&udpRead_DW.EnabledSubsystem_SubsysRanBC;
    systemRan[4] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(udpRead_M->extModeInfo,
      &udpRead_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(udpRead_M->extModeInfo, udpRead_M->Sizes.checksums);
    rteiSetTPtr(udpRead_M->extModeInfo, rtmGetTPtr(udpRead_M));
  }

  /* block I/O */
  (void) memset(((void *) &udpRead_B), 0,
                sizeof(B_udpRead_T));

  /* states (dwork) */
  (void) memset((void *)&udpRead_DW, 0,
                sizeof(DW_udpRead_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    udpRead_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  {
    char_T *sErr;

    /* Start for S-Function (sdspFromNetwork): '<Root>/UDP Receive' */
    sErr = GetErrorBuffer(&udpRead_DW.UDPReceive_NetworkLib[0U]);
    CreateUDPInterface(&udpRead_DW.UDPReceive_NetworkLib[0U]);
    if (*sErr == 0) {
      LibCreate_Network(&udpRead_DW.UDPReceive_NetworkLib[0U], 0, "0.0.0.0",
                        25000, "0.0.0.0", -1, 8192, 4, 0);
    }

    if (*sErr == 0) {
      LibStart(&udpRead_DW.UDPReceive_NetworkLib[0U]);
    }

    if (*sErr != 0) {
      DestroyUDPInterface(&udpRead_DW.UDPReceive_NetworkLib[0U]);
      if (*sErr != 0) {
        rtmSetErrorStatus(udpRead_M, sErr);
        rtmSetStopRequested(udpRead_M, 1);
      }
    }

    /* End of Start for S-Function (sdspFromNetwork): '<Root>/UDP Receive' */

    /* InitializeConditions for UnitDelay: '<S3>/FixPt Unit Delay2' */
    udpRead_DW.FixPtUnitDelay2_DSTATE =
      udpRead_P.FixPtUnitDelay2_InitialConditio;

    /* InitializeConditions for UnitDelay: '<S3>/FixPt Unit Delay1' */
    udpRead_DW.FixPtUnitDelay1_DSTATE = udpRead_P.UnitDelayResettable_vinit;
  }
}
Exemple #14
0
/* Model initialize function */
void Maglev_PD_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((char_T *)Maglev_PD_M,0,
                sizeof(RT_MODEL_Maglev_PD));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&Maglev_PD_M->solverInfo,
                          &Maglev_PD_M->Timing.simTimeStep);
    rtsiSetTPtr(&Maglev_PD_M->solverInfo, &rtmGetTPtr(Maglev_PD_M));
    rtsiSetStepSizePtr(&Maglev_PD_M->solverInfo, &Maglev_PD_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&Maglev_PD_M->solverInfo, (&rtmGetErrorStatus
      (Maglev_PD_M)));
    rtsiSetRTModelPtr(&Maglev_PD_M->solverInfo, Maglev_PD_M);
  }

  rtsiSetSimTimeStep(&Maglev_PD_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&Maglev_PD_M->solverInfo,"FixedStepDiscrete");

  /* Initialize timing info */
  {
    int_T *mdlTsMap = Maglev_PD_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    mdlTsMap[2] = 2;
    Maglev_PD_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    Maglev_PD_M->Timing.sampleTimes = (&Maglev_PD_M->Timing.sampleTimesArray[0]);
    Maglev_PD_M->Timing.offsetTimes = (&Maglev_PD_M->Timing.offsetTimesArray[0]);

    /* task periods */
    Maglev_PD_M->Timing.sampleTimes[0] = (0.0);
    Maglev_PD_M->Timing.sampleTimes[1] = (0.001);
    Maglev_PD_M->Timing.sampleTimes[2] = (0.01);

    /* task offsets */
    Maglev_PD_M->Timing.offsetTimes[0] = (0.0);
    Maglev_PD_M->Timing.offsetTimes[1] = (0.0);
    Maglev_PD_M->Timing.offsetTimes[2] = (0.0);
  }

  rtmSetTPtr(Maglev_PD_M, &Maglev_PD_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = Maglev_PD_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    mdlSampleHits[2] = 1;
    Maglev_PD_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(Maglev_PD_M, 200.0);
  Maglev_PD_M->Timing.stepSize0 = 0.001;
  Maglev_PD_M->Timing.stepSize1 = 0.001;
  Maglev_PD_M->Timing.stepSize2 = 0.01;

  /* external mode info */
  Maglev_PD_M->Sizes.checksums[0] = (2405431628U);
  Maglev_PD_M->Sizes.checksums[1] = (4276893873U);
  Maglev_PD_M->Sizes.checksums[2] = (2115234442U);
  Maglev_PD_M->Sizes.checksums[3] = (4197356474U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[2];
    Maglev_PD_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    systemRan[1] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(&rt_ExtModeInfo,
      &Maglev_PD_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(&rt_ExtModeInfo, Maglev_PD_M->Sizes.checksums);
    rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Maglev_PD_M));
  }

  Maglev_PD_M->solverInfoPtr = (&Maglev_PD_M->solverInfo);
  Maglev_PD_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&Maglev_PD_M->solverInfo, 0.001);
  rtsiSetSolverMode(&Maglev_PD_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  Maglev_PD_M->ModelData.blockIO = ((void *) &Maglev_PD_B);

  {
    int_T i;
    void *pVoidBlockIORegion;
    pVoidBlockIORegion = (void *)(&Maglev_PD_B.AnalogInput);
    for (i = 0; i < 9; i++) {
      ((real_T*)pVoidBlockIORegion)[i] = 0.0;
    }
  }

  /* parameters */
  Maglev_PD_M->ModelData.defaultParam = ((real_T *) &Maglev_PD_P);

  /* states (dwork) */
  Maglev_PD_M->Work.dwork = ((void *) &Maglev_PD_DWork);
  (void) memset((char_T *) &Maglev_PD_DWork,0,
                sizeof(D_Work_Maglev_PD));

  {
    real_T *dwork_ptr = (real_T *) &Maglev_PD_DWork.DiscreteTransferFcn1_DSTATE;
    dwork_ptr[0] = 0.0;
    dwork_ptr[1] = 0.0;
  }

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo,0,
                  sizeof(dtInfo));
    Maglev_PD_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }
}
Exemple #15
0
/* Registration function */
RT_MODEL_DO_model_T *DO_model(void)
{
  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));

  /* initialize real-time model */
  (void) memset((void *)DO_model_M, 0,
                sizeof(RT_MODEL_DO_model_T));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&DO_model_M->solverInfo,
                          &DO_model_M->Timing.simTimeStep);
    rtsiSetTPtr(&DO_model_M->solverInfo, &rtmGetTPtr(DO_model_M));
    rtsiSetStepSizePtr(&DO_model_M->solverInfo, &DO_model_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&DO_model_M->solverInfo, (&rtmGetErrorStatus
      (DO_model_M)));
    rtsiSetRTModelPtr(&DO_model_M->solverInfo, DO_model_M);
  }

  rtsiSetSimTimeStep(&DO_model_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&DO_model_M->solverInfo,"FixedStepDiscrete");
  DO_model_M->solverInfoPtr = (&DO_model_M->solverInfo);

  /* Initialize timing info */
  {
    int_T *mdlTsMap = DO_model_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    DO_model_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    DO_model_M->Timing.sampleTimes = (&DO_model_M->Timing.sampleTimesArray[0]);
    DO_model_M->Timing.offsetTimes = (&DO_model_M->Timing.offsetTimesArray[0]);

    /* task periods */
    DO_model_M->Timing.sampleTimes[0] = (0.0);
    DO_model_M->Timing.sampleTimes[1] = (0.02);

    /* task offsets */
    DO_model_M->Timing.offsetTimes[0] = (0.0);
    DO_model_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(DO_model_M, &DO_model_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = DO_model_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    DO_model_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(DO_model_M, 10.0);
  DO_model_M->Timing.stepSize0 = 0.02;
  DO_model_M->Timing.stepSize1 = 0.02;

  /* External mode info */
  DO_model_M->Sizes.checksums[0] = (1233238421U);
  DO_model_M->Sizes.checksums[1] = (25660452U);
  DO_model_M->Sizes.checksums[2] = (2649484807U);
  DO_model_M->Sizes.checksums[3] = (3179384684U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    DO_model_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(DO_model_M->extModeInfo,
      &DO_model_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(DO_model_M->extModeInfo, DO_model_M->Sizes.checksums);
    rteiSetTPtr(DO_model_M->extModeInfo, rtmGetTPtr(DO_model_M));
  }

  DO_model_M->solverInfoPtr = (&DO_model_M->solverInfo);
  DO_model_M->Timing.stepSize = (0.02);
  rtsiSetFixedStepSize(&DO_model_M->solverInfo, 0.02);
  rtsiSetSolverMode(&DO_model_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  DO_model_M->ModelData.blockIO = ((void *) &DO_model_B);
  (void) memset(((void *) &DO_model_B), 0,
                sizeof(B_DO_model_T));

  /* parameters */
  DO_model_M->ModelData.defaultParam = ((real_T *)&DO_model_P);

  /* states (dwork) */
  DO_model_M->ModelData.dwork = ((void *) &DO_model_DW);
  (void) memset((void *)&DO_model_DW, 0,
                sizeof(DW_DO_model_T));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo, 0,
                  sizeof(dtInfo));
    DO_model_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 14;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }

  /* child S-Function registration */
  {
    RTWSfcnInfo *sfcnInfo = &DO_model_M->NonInlinedSFcns.sfcnInfo;
    DO_model_M->sfcnInfo = (sfcnInfo);
    rtssSetErrorStatusPtr(sfcnInfo, (&rtmGetErrorStatus(DO_model_M)));
    rtssSetNumRootSampTimesPtr(sfcnInfo, &DO_model_M->Sizes.numSampTimes);
    DO_model_M->NonInlinedSFcns.taskTimePtrs[0] = &(rtmGetTPtr(DO_model_M)[0]);
    DO_model_M->NonInlinedSFcns.taskTimePtrs[1] = &(rtmGetTPtr(DO_model_M)[1]);
    rtssSetTPtrPtr(sfcnInfo,DO_model_M->NonInlinedSFcns.taskTimePtrs);
    rtssSetTStartPtr(sfcnInfo, &rtmGetTStart(DO_model_M));
    rtssSetTFinalPtr(sfcnInfo, &rtmGetTFinal(DO_model_M));
    rtssSetTimeOfLastOutputPtr(sfcnInfo, &rtmGetTimeOfLastOutput(DO_model_M));
    rtssSetStepSizePtr(sfcnInfo, &DO_model_M->Timing.stepSize);
    rtssSetStopRequestedPtr(sfcnInfo, &rtmGetStopRequested(DO_model_M));
    rtssSetDerivCacheNeedsResetPtr(sfcnInfo,
      &DO_model_M->ModelData.derivCacheNeedsReset);
    rtssSetZCCacheNeedsResetPtr(sfcnInfo,
      &DO_model_M->ModelData.zCCacheNeedsReset);
    rtssSetBlkStateChangePtr(sfcnInfo, &DO_model_M->ModelData.blkStateChange);
    rtssSetSampleHitsPtr(sfcnInfo, &DO_model_M->Timing.sampleHits);
    rtssSetPerTaskSampleHitsPtr(sfcnInfo, &DO_model_M->Timing.perTaskSampleHits);
    rtssSetSimModePtr(sfcnInfo, &DO_model_M->simMode);
    rtssSetSolverInfoPtr(sfcnInfo, &DO_model_M->solverInfoPtr);
  }

  DO_model_M->Sizes.numSFcns = (1);

  /* register each child */
  {
    (void) memset((void *)&DO_model_M->NonInlinedSFcns.childSFunctions[0], 0,
                  1*sizeof(SimStruct));
    DO_model_M->childSfunctions =
      (&DO_model_M->NonInlinedSFcns.childSFunctionPtrs[0]);
    DO_model_M->childSfunctions[0] =
      (&DO_model_M->NonInlinedSFcns.childSFunctions[0]);

    /* Level2 S-Function Block: DO_model/<Root>/S-Function (DO_v1) */
    {
      SimStruct *rts = DO_model_M->childSfunctions[0];

      /* timing info */
      time_T *sfcnPeriod = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnPeriod;
      time_T *sfcnOffset = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnOffset;
      int_T *sfcnTsMap = DO_model_M->NonInlinedSFcns.Sfcn0.sfcnTsMap;
      (void) memset((void*)sfcnPeriod, 0,
                    sizeof(time_T)*1);
      (void) memset((void*)sfcnOffset, 0,
                    sizeof(time_T)*1);
      ssSetSampleTimePtr(rts, &sfcnPeriod[0]);
      ssSetOffsetTimePtr(rts, &sfcnOffset[0]);
      ssSetSampleTimeTaskIDPtr(rts, sfcnTsMap);

      /* Set up the mdlInfo pointer */
      {
        ssSetBlkInfo2Ptr(rts, &DO_model_M->NonInlinedSFcns.blkInfo2[0]);
      }

      ssSetRTWSfcnInfo(rts, DO_model_M->sfcnInfo);

      /* Allocate memory of model methods 2 */
      {
        ssSetModelMethods2(rts, &DO_model_M->NonInlinedSFcns.methods2[0]);
      }

      /* Allocate memory of model methods 3 */
      {
        ssSetModelMethods3(rts, &DO_model_M->NonInlinedSFcns.methods3[0]);
      }

      /* Allocate memory for states auxilliary information */
      {
        ssSetStatesInfo2(rts, &DO_model_M->NonInlinedSFcns.statesInfo2[0]);
      }

      /* outputs */
      {
        ssSetPortInfoForOutputs(rts,
          &DO_model_M->NonInlinedSFcns.Sfcn0.outputPortInfo[0]);
        _ssSetNumOutputPorts(rts, 1);

        /* port 0 */
        {
          _ssSetOutputPortNumDimensions(rts, 0, 1);
          ssSetOutputPortWidth(rts, 0, 1);
          ssSetOutputPortSignal(rts, 0, ((real_T *) &DO_model_B.SFunction));
        }
      }

      /* path info */
      ssSetModelName(rts, "S-Function");
      ssSetPath(rts, "DO_model/S-Function");
      ssSetRTModel(rts,DO_model_M);
      ssSetParentSS(rts, (NULL));
      ssSetRootSS(rts, rts);
      ssSetVersion(rts, SIMSTRUCT_VERSION_LEVEL2);

      /* parameters */
      {
        mxArray **sfcnParams = (mxArray **)
          &DO_model_M->NonInlinedSFcns.Sfcn0.params;
        ssSetSFcnParamsCount(rts, 1);
        ssSetSFcnParamsPtr(rts, &sfcnParams[0]);
        ssSetSFcnParam(rts, 0, (mxArray*)DO_model_P.SFunction_P1_Size);
      }

      /* work vectors */
      ssSetIWork(rts, (int_T *) &DO_model_DW.SFunction_IWORK);

      {
        struct _ssDWorkRecord *dWorkRecord = (struct _ssDWorkRecord *)
          &DO_model_M->NonInlinedSFcns.Sfcn0.dWork;
        struct _ssDWorkAuxRecord *dWorkAuxRecord = (struct _ssDWorkAuxRecord *)
          &DO_model_M->NonInlinedSFcns.Sfcn0.dWorkAux;
        ssSetSFcnDWork(rts, dWorkRecord);
        ssSetSFcnDWorkAux(rts, dWorkAuxRecord);
        _ssSetNumDWork(rts, 1);

        /* IWORK */
        ssSetDWorkWidth(rts, 0, 1);
        ssSetDWorkDataType(rts, 0,SS_INTEGER);
        ssSetDWorkComplexSignal(rts, 0, 0);
        ssSetDWork(rts, 0, &DO_model_DW.SFunction_IWORK);
      }

      /* registration */
      DO_v1(rts);
      sfcnInitializeSizes(rts);
      sfcnInitializeSampleTimes(rts);

      /* adjust sample time */
      ssSetSampleTime(rts, 0, 0.0);
      ssSetOffsetTime(rts, 0, 0.0);
      sfcnTsMap[0] = 0;

      /* set compiled values of dynamic vector attributes */
      ssSetNumNonsampledZCs(rts, 0);

      /* Update connectivity flags for each port */
      _ssSetOutputPortConnected(rts, 0, 0);
      _ssSetOutputPortBeingMerged(rts, 0, 0);

      /* Update the BufferDstPort flags for each input port */
    }
  }

  /* Initialize Sizes */
  DO_model_M->Sizes.numContStates = (0);/* Number of continuous states */
  DO_model_M->Sizes.numY = (0);        /* Number of model outputs */
  DO_model_M->Sizes.numU = (0);        /* Number of model inputs */
  DO_model_M->Sizes.sysDirFeedThru = (0);/* The model is not direct feedthrough */
  DO_model_M->Sizes.numSampTimes = (2);/* Number of sample times */
  DO_model_M->Sizes.numBlocks = (1);   /* Number of blocks */
  DO_model_M->Sizes.numBlockIO = (1);  /* Number of block outputs */
  DO_model_M->Sizes.numBlockPrms = (3);/* Sum of parameter "widths" */
  return DO_model_M;
}
/* Model initialize function */
void Server_initialize(boolean_T firstTime)
{
  (void)firstTime;

  /* Registration code */

  /* initialize non-finites */
  rt_InitInfAndNaN(sizeof(real_T));    /* initialize real-time model */
  (void) memset((char_T *)Server_M,0,
                sizeof(RT_MODEL_Server));

  {
    /* Setup solver object */
    rtsiSetSimTimeStepPtr(&Server_M->solverInfo, &Server_M->Timing.simTimeStep);
    rtsiSetTPtr(&Server_M->solverInfo, &rtmGetTPtr(Server_M));
    rtsiSetStepSizePtr(&Server_M->solverInfo, &Server_M->Timing.stepSize0);
    rtsiSetErrorStatusPtr(&Server_M->solverInfo, (&rtmGetErrorStatus(Server_M)));
    rtsiSetRTModelPtr(&Server_M->solverInfo, Server_M);
  }

  rtsiSetSimTimeStep(&Server_M->solverInfo, MAJOR_TIME_STEP);
  rtsiSetSolverName(&Server_M->solverInfo,"FixedStepDiscrete");

  /* Initialize timing info */
  {
    int_T *mdlTsMap = Server_M->Timing.sampleTimeTaskIDArray;
    mdlTsMap[0] = 0;
    mdlTsMap[1] = 1;
    Server_M->Timing.sampleTimeTaskIDPtr = (&mdlTsMap[0]);
    Server_M->Timing.sampleTimes = (&Server_M->Timing.sampleTimesArray[0]);
    Server_M->Timing.offsetTimes = (&Server_M->Timing.offsetTimesArray[0]);

    /* task periods */
    Server_M->Timing.sampleTimes[0] = (0.0);
    Server_M->Timing.sampleTimes[1] = (0.001);

    /* task offsets */
    Server_M->Timing.offsetTimes[0] = (0.0);
    Server_M->Timing.offsetTimes[1] = (0.0);
  }

  rtmSetTPtr(Server_M, &Server_M->Timing.tArray[0]);

  {
    int_T *mdlSampleHits = Server_M->Timing.sampleHitArray;
    mdlSampleHits[0] = 1;
    mdlSampleHits[1] = 1;
    Server_M->Timing.sampleHits = (&mdlSampleHits[0]);
  }

  rtmSetTFinal(Server_M, -1);
  Server_M->Timing.stepSize0 = 0.001;
  Server_M->Timing.stepSize1 = 0.001;

  /* external mode info */
  Server_M->Sizes.checksums[0] = (3791027284U);
  Server_M->Sizes.checksums[1] = (1928235140U);
  Server_M->Sizes.checksums[2] = (386570905U);
  Server_M->Sizes.checksums[3] = (3697957716U);

  {
    static const sysRanDType rtAlwaysEnabled = SUBSYS_RAN_BC_ENABLE;
    static RTWExtModeInfo rt_ExtModeInfo;
    static const sysRanDType *systemRan[1];
    Server_M->extModeInfo = (&rt_ExtModeInfo);
    rteiSetSubSystemActiveVectorAddresses(&rt_ExtModeInfo, systemRan);
    systemRan[0] = &rtAlwaysEnabled;
    rteiSetModelMappingInfoPtr(&rt_ExtModeInfo,
      &Server_M->SpecialInfo.mappingInfo);
    rteiSetChecksumsPtr(&rt_ExtModeInfo, Server_M->Sizes.checksums);
    rteiSetTPtr(&rt_ExtModeInfo, rtmGetTPtr(Server_M));
  }

  Server_M->solverInfoPtr = (&Server_M->solverInfo);
  Server_M->Timing.stepSize = (0.001);
  rtsiSetFixedStepSize(&Server_M->solverInfo, 0.001);
  rtsiSetSolverMode(&Server_M->solverInfo, SOLVER_MODE_SINGLETASKING);

  /* block I/O */
  Server_M->ModelData.blockIO = ((void *) &Server_B);
  (void) memset(((void *) &Server_B),0,
                sizeof(BlockIO_Server));

  {
    ((real_T*)&Server_B.SineWave)[0] = 0.0;
  }

  /* parameters */
  Server_M->ModelData.defaultParam = ((real_T *) &Server_P);

  /* states (dwork) */
  Server_M->Work.dwork = ((void *) &Server_DWork);
  (void) memset((char_T *) &Server_DWork,0,
                sizeof(D_Work_Server));

  /* data type transition information */
  {
    static DataTypeTransInfo dtInfo;
    (void) memset((char_T *) &dtInfo,0,
                  sizeof(dtInfo));
    Server_M->SpecialInfo.mappingInfo = (&dtInfo);
    dtInfo.numDataTypes = 16;
    dtInfo.dataTypeSizes = &rtDataTypeSizes[0];
    dtInfo.dataTypeNames = &rtDataTypeNames[0];

    /* Block I/O transition table */
    dtInfo.B = &rtBTransTable;

    /* Parameters transition table */
    dtInfo.P = &rtPTransTable;
  }
}