/* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ void *pNew = 0; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed==0 ){ if( p==0 ){ return sqlite3DbMallocRaw(db, n); } if( isLookaside(db, p) ){ if( n<=db->lookaside.sz ){ return p; } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ pNew = sqlite3_realloc(p, n); if( !pNew ){ db->mallocFailed = 1; } } } return pNew; }
/* ** Resize the block of memory pointed to by p to n bytes. If the ** resize fails, set the mallocFailed flag in the connection object. */ void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ void *pNew = 0; assert( db!=0 ); assert( sqlite3_mutex_held(db->mutex) ); if( db->mallocFailed==0 ){ if( p==0 ){ return sqlite3DbMallocRaw(db, n); } if( isLookaside(db, p) ){ if( n<=db->lookaside.sz ){ return p; } pNew = sqlite3DbMallocRaw(db, n); if( pNew ){ memcpy(pNew, p, db->lookaside.sz); sqlite3DbFree(db, p); } }else{ assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); sqlite3MemdebugSetType(p, MEMTYPE_HEAP); pNew = sqlite3_realloc64(p, n); if( !pNew ){ db->mallocFailed = 1; } sqlite3MemdebugSetType(pNew, (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); } } return pNew; }
/* ** Initialize iterator pIter to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the iterator pointing to the first key in the PMA (or EOF if the ** PMA is empty). */ static int vdbeSorterIterInit( sqlite3 *db, /* Database handle */ const VdbeSorter *pSorter, /* Sorter object */ i64 iStart, /* Start offset in pFile */ VdbeSorterIter *pIter, /* Iterator to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc = SQLITE_OK; int nBuf; nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); assert( pSorter->iWriteOff>iStart ); assert( pIter->aAlloc==0 ); assert( pIter->aBuffer==0 ); pIter->pFile = pSorter->pTemp1; pIter->iReadOff = iStart; pIter->nAlloc = 128; pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc); pIter->nBuffer = nBuf; pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !pIter->aBuffer ){ rc = SQLITE_NOMEM; }else{ int iBuf; iBuf = iStart % nBuf; if( iBuf ){ int nRead = nBuf - iBuf; if( (iStart + nRead) > pSorter->iWriteOff ){ nRead = (int)(pSorter->iWriteOff - iStart); } rc = sqlite3OsRead( pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart ); assert( rc!=SQLITE_IOERR_SHORT_READ ); } if( rc==SQLITE_OK ){ u64 nByte; /* Size of PMA in bytes */ pIter->iEof = pSorter->iWriteOff; rc = vdbeSorterIterVarint(db, pIter, &nByte); pIter->iEof = pIter->iReadOff + nByte; *pnByte += nByte; } } if( rc==SQLITE_OK ){ rc = vdbeSorterIterNext(db, pIter); } return rc; }
/* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( pMem->flags & (MEM_Static|MEM_Ephem) ){ return sqlite3VdbeMemMakeWriteable(pMem); }else{ char *z; sqlite3VdbeMemExpandBlob(pMem); z = sqlite3DbMallocRaw(pMem->db, pMem->n+2); if( !z ){ return SQLITE_NOMEM; } memcpy(z, pMem->z, pMem->n); z[pMem->n] = 0; z[pMem->n+1] = 0; if( pMem->xDel ){ pMem->xDel(pMem->z); }else{ sqlite3_free(pMem->z); } pMem->xDel = 0; pMem->z = z; pMem->flags |= MEM_Term; } return SQLITE_OK; }
/* ** Make the given Mem object either MEM_Short or MEM_Dyn so that bytes ** of the Mem.z[] array can be modified. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); assert( pMem->flags & (MEM_Str|MEM_Blob) ); if( (n = pMem->n)+2<sizeof(pMem->zShort) ){ z = (u8*)pMem->zShort; pMem->flags |= MEM_Short|MEM_Term; }else{ z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; } memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static); assert(0==(1&(int)pMem->z)); return SQLITE_OK; }
/* ** The implementation of the sqlite_record() function. This function accepts ** a single argument of any type. The return value is a formatted database ** record (a blob) containing the argument value. ** ** This is used to convert the value stored in the 'sample' column of the ** sqlite_stat3 table to the record format SQLite uses internally. */ static void recordFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const int file_format = 1; int iSerial; /* Serial type */ int nSerial; /* Bytes of space for iSerial as varint */ int nVal; /* Bytes of space required for argv[0] */ int nRet; sqlite3 *db; u8 *aRet; UNUSED_PARAMETER( argc ); iSerial = sqlite3VdbeSerialType(argv[0], file_format); nSerial = sqlite3VarintLen(iSerial); nVal = sqlite3VdbeSerialTypeLen(iSerial); db = sqlite3_context_db_handle(context); nRet = 1 + nSerial + nVal; aRet = sqlite3DbMallocRaw(db, nRet); if( aRet==0 ){ sqlite3_result_error_nomem(context); }else{ aRet[0] = nSerial+1; sqlite3PutVarint(&aRet[1], iSerial); sqlite3VdbeSerialPut(&aRet[1+nSerial], nVal, argv[0], file_format); sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); sqlite3DbFree(db, aRet); } }
/* ** Add a single new WhereTerm entry to the WhereClause object pWC. ** The new WhereTerm object is constructed from Expr p and with wtFlags. ** The index in pWC->a[] of the new WhereTerm is returned on success. ** 0 is returned if the new WhereTerm could not be added due to a memory ** allocation error. The memory allocation failure will be recorded in ** the db->mallocFailed flag so that higher-level functions can detect it. ** ** This routine will increase the size of the pWC->a[] array as necessary. ** ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility ** for freeing the expression p is assumed by the WhereClause object pWC. ** This is true even if this routine fails to allocate a new WhereTerm. ** ** WARNING: This routine might reallocate the space used to store ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pWInfo->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); } pWC->a = pOld; return 0; } memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); if( pOld!=pWC->aStatic ){ sqlite3DbFree(db, pOld); } pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); } pTerm = &pWC->a[idx = pWC->nTerm++]; if( p && ExprHasProperty(p, EP_Unlikely) ){ pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; }else{ pTerm->truthProb = 1; } pTerm->pExpr = sqlite3ExprSkipCollate(p); pTerm->wtFlags = wtFlags; pTerm->pWC = pWC; pTerm->iParent = -1; return idx; }
static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ) { int rc, nName; Module *pMod; sqlite3_mutex_enter(db->mutex); nName = strlen(zName); pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); if( pMod ){ char *zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod = (Module *)sqlite3HashInsert(&db->aModule, zCopy, nName, (void*)pMod); if( pMod && pMod->xDestroy ){ pMod->xDestroy(pMod->pAux); } sqlite3_free(pMod); sqlite3ResetInternalSchema(db, 0); } rc = sqlite3ApiExit(db, SQLITE_OK); sqlite3_mutex_leave(db->mutex); return rc; }
/* ** Make sure pMem->z points to a writable allocation of at least ** n bytes. ** ** If the memory cell currently contains string or blob data ** and the third argument passed to this function is true, the ** current content of the cell is preserved. Otherwise, it may ** be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ assert( 1 >= ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + ((pMem->flags&MEM_Ephem) ? 1 : 0) + ((pMem->flags&MEM_Static) ? 1 : 0) ); if( n<32 ) n = 32; if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ if( preserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); preserve = 0; }else{ sqlite3DbFree(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } } if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( pMem->flags&MEM_Dyn && pMem->xDel ){ pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; if( pMem->z==0 ){ pMem->flags = MEM_Null; }else{ pMem->flags &= ~(MEM_Ephem|MEM_Static); } pMem->xDel = 0; return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); }
/* ** Insert a new value into a RowSet. ** ** The mallocFailed flag of the database connection is set if a ** memory allocation fails. */ void sqlite3RowSetInsert(RowSet *p, i64 rowid){ struct RowSetEntry *pEntry; struct RowSetEntry *pLast; if( p==0 ) return; /* Must have been a malloc failure */ if( p->nFresh==0 ){ struct RowSetChunk *pNew; pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); if( pNew==0 ){ return; } pNew->pNext = p->pChunk; p->pChunk = pNew; p->pFresh = pNew->aEntry; p->nFresh = ROWSET_ENTRY_PER_CHUNK; } pEntry = p->pFresh++; p->nFresh--; pEntry->v = rowid; pEntry->pNext = 0; pLast = p->pLast; if( pLast ){ if( p->isSorted && rowid<=pLast->v ){ p->isSorted = 0; } pLast->pNext = pEntry; }else{ assert( p->pEntry==0 ); p->pEntry = pEntry; } p->pLast = pEntry; }
/* ** Initialize iterator pIter to scan through the PMA stored in file pFile ** starting at offset iStart and ending at offset iEof-1. This function ** leaves the iterator pointing to the first key in the PMA (or EOF if the ** PMA is empty). */ static int vdbeSorterIterInit( sqlite3 *db, /* Database handle */ VdbeSorter *pSorter, /* Sorter object */ i64 iStart, /* Start offset in pFile */ VdbeSorterIter *pIter, /* Iterator to populate */ i64 *pnByte /* IN/OUT: Increment this value by PMA size */ ){ int rc; assert( pSorter->iWriteOff>iStart ); assert( pIter->aAlloc==0 ); pIter->pFile = pSorter->pTemp1; pIter->iReadOff = iStart; pIter->nAlloc = 128; pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc); if( !pIter->aAlloc ){ rc = SQLITE_NOMEM; }else{ i64 nByte; /* Total size of PMA in bytes */ rc = vdbeSorterReadVarint(pSorter->pTemp1, &pIter->iReadOff, &nByte); *pnByte += nByte; pIter->iEof = pIter->iReadOff + nByte; } if( rc==SQLITE_OK ){ rc = vdbeSorterIterNext(db, pIter); } return rc; }
/* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p; testcase( db==0 ); p = sqlite3DbMallocRaw(db, n); if( p ) memset(p, 0, (size_t)n); return p; }
/* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, int n){ void *p = sqlite3DbMallocRaw(db, n); if( p ){ memset(p, 0, n); } return p; }
/* ** Insert a new value into a RowSet. ** ** The mallocFailed flag of the database connection is set if a ** memory allocation fails. */ void sqlite3RowSetInsert(RowSet *p, i64 rowid){ struct RowSetEntry *pEntry; /* The new entry */ struct RowSetEntry *pLast; /* The last prior entry */ assert( p!=0 ); if( p->nFresh==0 ){ struct RowSetChunk *pNew; pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); if( pNew==0 ){ return; } pNew->pNextChunk = p->pChunk; p->pChunk = pNew; p->pFresh = pNew->aEntry; p->nFresh = ROWSET_ENTRY_PER_CHUNK; } pEntry = p->pFresh++; p->nFresh--; pEntry->v = rowid; pEntry->pRight = 0; pLast = p->pLast; if( pLast ){ if( p->isSorted && rowid<=pLast->v ){ p->isSorted = 0; } pLast->pRight = pEntry; }else{ assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */ p->pEntry = pEntry; } p->pLast = pEntry; }
/* ** Allocate and zero memory. If the allocation fails, make ** the mallocFailed flag in the connection pointer. */ void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ void *p = sqlite3DbMallocRaw(db, n); if( p ){ memset(p, 0, (size_t)n); } return p; }
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ char *zNew; if( z==0 ){ return 0; } assert( (n&0x7fffffff)==n ); zNew = sqlite3DbMallocRaw(db, n+1); if( zNew ){ memcpy(zNew, z, (size_t)n); zNew[n] = 0; } return zNew; }
/* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ char *sqlite3DbStrDup(sqlite3 *db, const char *z){ char *zNew; size_t n; if( z==0 ){ return 0; } n = strlen(z) + 1; zNew = sqlite3DbMallocRaw(db, n); if( zNew ){ memcpy(zNew, z, n); } return zNew; }
/* ** Make a copy of a string in memory obtained from sqliteMalloc(). These ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This ** is because when memory debugging is turned on, these two functions are ** called via macros that record the current file and line number in the ** ThreadData structure. */ char *sqlite3DbStrDup(sqlite3 *db, const char *z){ char *zNew; size_t n; if( z==0 ){ return 0; } n = sqlite3Strlen30(z) + 1; assert( (n&0x7fffffff)==n ); zNew = sqlite3DbMallocRaw(db, (int)n); if( zNew ){ memcpy(zNew, z, n); } return zNew; }
/* ** Add a record to the sorter. */ SQLITE_PRIVATE int sqlite3VdbeSorterWrite( sqlite3 *db, /* Database handle */ const VdbeCursor *pCsr, /* Sorter cursor */ Mem *pVal /* Memory cell containing record */ ){ VdbeSorter *pSorter = pCsr->pSorter; int rc = SQLITE_OK; /* Return Code */ SorterRecord *pNew; /* New list element */ assert( pSorter ); pSorter->nInMemory += sqlite3VarintLen(pVal->n) + pVal->n; pNew = (SorterRecord *)sqlite3DbMallocRaw(db, pVal->n + sizeof(SorterRecord)); if( pNew==0 ){ rc = SQLITE_NOMEM; }else{ pNew->pVal = (void *)&pNew[1]; memcpy(pNew->pVal, pVal->z, pVal->n); pNew->nVal = pVal->n; pNew->pNext = pSorter->pRecord; pSorter->pRecord = pNew; } /* See if the contents of the sorter should now be written out. They ** are written out when either of the following are true: ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * cache-size), or ** ** * The total memory allocated for the in-memory list is greater ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true. */ if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && ( (pSorter->nInMemory>pSorter->mxPmaSize) || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull()) )){ #ifdef SQLITE_DEBUG i64 nExpect = pSorter->iWriteOff + sqlite3VarintLen(pSorter->nInMemory) + pSorter->nInMemory; #endif rc = vdbeSorterListToPMA(db, pCsr); pSorter->nInMemory = 0; assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) ); } return rc; }
/* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. */ void sqlite3VdbeMemSetRowSet(Mem *pMem){ sqlite3 *db = pMem->db; assert( db!=0 ); assert( (pMem->flags & MEM_RowSet)==0 ); sqlite3VdbeMemRelease(pMem); pMem->zMalloc = sqlite3DbMallocRaw(db, 64); if( db->mallocFailed ){ pMem->flags = MEM_Null; }else{ assert( pMem->zMalloc ); pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, sqlite3DbMallocSize(db, pMem->zMalloc)); assert( pMem->u.pRowSet!=0 ); pMem->flags = MEM_RowSet; } }
/* ** Allocate a new RowSetEntry object that is associated with the ** given RowSet. Return a pointer to the new and completely uninitialized ** objected. ** ** In an OOM situation, the RowSet.db->mallocFailed flag is set and this ** routine returns NULL. */ static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ assert( p!=0 ); if( p->nFresh==0 ){ struct RowSetChunk *pNew; pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); if( pNew==0 ){ return 0; } pNew->pNextChunk = p->pChunk; p->pChunk = pNew; p->pFresh = pNew->aEntry; p->nFresh = ROWSET_ENTRY_PER_CHUNK; } p->nFresh--; return p->pFresh++; }
/* ** Initialize a file-writer object. */ static void fileWriterInit( sqlite3 *db, /* Database (for malloc) */ sqlite3_file *pFile, /* File to write to */ FileWriter *p, /* Object to populate */ i64 iStart /* Offset of pFile to begin writing at */ ){ int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt); memset(p, 0, sizeof(FileWriter)); p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf); if( !p->aBuffer ){ p->eFWErr = SQLITE_NOMEM; }else{ p->iBufEnd = p->iBufStart = (iStart % nBuf); p->iWriteOff = iStart - p->iBufStart; p->nBuffer = nBuf; p->pFile = pFile; } }
/* ** Make sure pMem->z points to a writable allocation of at least ** n bytes. ** ** If the third argument passed to this function is true, then memory ** cell pMem must contain a string or blob. In this case the content is ** preserved. Otherwise, if the third parameter to this function is false, ** any current string or blob value may be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ assert( 1 >= ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + ((pMem->flags&MEM_Ephem) ? 1 : 0) + ((pMem->flags&MEM_Static) ? 1 : 0) ); assert( (pMem->flags&MEM_RowSet)==0 ); /* If the preserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( preserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); if( n<32 ) n = 32; if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ if( preserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); preserve = 0; }else{ sqlite3DbFree(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } } if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( pMem->flags&MEM_Dyn && pMem->xDel ){ assert( pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; if( pMem->z==0 ){ pMem->flags = MEM_Null; }else{ pMem->flags &= ~(MEM_Ephem|MEM_Static); } pMem->xDel = 0; return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); }
/* ** The actual function that does the work of creating a new module. ** This function implements the sqlite3_create_module() and ** sqlite3_create_module_v2() interfaces. */ static int createModule( sqlite3 *db, /* Database in which module is registered */ const char *zName, /* Name assigned to this module */ const sqlite3_module *pModule, /* The definition of the module */ void *pAux, /* Context pointer for xCreate/xConnect */ void (*xDestroy)(void *) /* Module destructor function */ ){ int rc = SQLITE_OK; int nName; sqlite3_mutex_enter(db->mutex); nName = sqlite3Strlen30(zName); if( sqlite3HashFind(&db->aModule, zName) ){ rc = SQLITE_MISUSE_BKPT; }else{ Module *pMod; pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); if( pMod ){ Module *pDel; char *zCopy = (char *)(&pMod[1]); memcpy(zCopy, zName, nName+1); pMod->zName = zCopy; pMod->pModule = pModule; pMod->pAux = pAux; pMod->xDestroy = xDestroy; pMod->pEpoTab = 0; pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); assert( pDel==0 || pDel==pMod ); if( pDel ){ db->mallocFailed = 1; sqlite3DbFree(db, pDel); } } } rc = sqlite3ApiExit(db, rc); if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); sqlite3_mutex_leave(db->mutex); return rc; }
int sqlite3VdbeMemExpandBlob(Mem *pMem){ if( pMem->flags & MEM_Zero ){ char *pNew; int nByte; assert( (pMem->flags & MEM_Blob)!=0 ); nByte = pMem->n + pMem->u.i; if( nByte<=0 ) nByte = 1; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); pNew = sqlite3DbMallocRaw(pMem->db, nByte); if( pNew==0 ){ return SQLITE_NOMEM; } memcpy(pNew, pMem->z, pMem->n); memset(&pNew[pMem->n], 0, pMem->u.i); sqlite3VdbeMemRelease(pMem); pMem->z = pNew; pMem->n += pMem->u.i; pMem->u.i = 0; pMem->flags &= ~(MEM_Zero|MEM_Static|MEM_Ephem|MEM_Short|MEM_Term); pMem->flags |= MEM_Dyn; } return SQLITE_OK; }
/* ** Make the given Mem object MEM_Dyn. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemDynamicify(Mem *pMem){ int n; u8 *z; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); expandBlob(pMem); if( (pMem->flags & (MEM_Ephem|MEM_Static|MEM_Short))==0 ){ return SQLITE_OK; } assert( (pMem->flags & MEM_Dyn)==0 ); n = pMem->n; assert( pMem->flags & (MEM_Str|MEM_Blob) ); z = sqlite3DbMallocRaw(pMem->db, n+2 ); if( z==0 ){ return SQLITE_NOMEM; } pMem->flags |= MEM_Dyn|MEM_Term; pMem->xDel = 0; memcpy(z, pMem->z, n ); z[n] = 0; z[n+1] = 0; pMem->z = (char*)z; pMem->flags &= ~(MEM_Ephem|MEM_Static|MEM_Short); return SQLITE_OK; }
/* ** Create a new Upsert object. */ Upsert *sqlite3UpsertNew( sqlite3 *db, /* Determines which memory allocator to use */ ExprList *pTarget, /* Target argument to ON CONFLICT, or NULL */ Expr *pTargetWhere, /* Optional WHERE clause on the target */ ExprList *pSet, /* UPDATE columns, or NULL for a DO NOTHING */ Expr *pWhere /* WHERE clause for the ON CONFLICT UPDATE */ ){ Upsert *pNew; pNew = sqlite3DbMallocRaw(db, sizeof(Upsert)); if( pNew==0 ){ sqlite3ExprListDelete(db, pTarget); sqlite3ExprDelete(db, pTargetWhere); sqlite3ExprListDelete(db, pSet); sqlite3ExprDelete(db, pWhere); return 0; }else{ pNew->pUpsertTarget = pTarget; pNew->pUpsertTargetWhere = pTargetWhere; pNew->pUpsertSet = pSet; pNew->pUpsertWhere = pWhere; pNew->pUpsertIdx = 0; } return pNew; }
/* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; ** \_______/ \________/ \______/ \________________/ * onError pTabList pChanges pWhere */ void sqlite3Update( Parse *pParse, /* The parser context */ SrcList *pTabList, /* The table in which we should change things */ ExprList *pChanges, /* Things to be changed */ Expr *pWhere, /* The WHERE clause. May be null */ int onError /* How to handle constraint errors */ ){ int i, j; /* Loop counters */ Table *pTab; /* The table to be updated */ int addrTop = 0; /* VDBE instruction address of the start of the loop */ WhereInfo *pWInfo; /* Information about the WHERE clause */ Vdbe *v; /* The virtual database engine */ Index *pIdx; /* For looping over indices */ Index *pPk; /* The PRIMARY KEY index for WITHOUT ROWID tables */ int nIdx; /* Number of indices that need updating */ int iBaseCur; /* Base cursor number */ int iDataCur; /* Cursor for the canonical data btree */ int iIdxCur; /* Cursor for the first index */ sqlite3 *db; /* The database structure */ int *aRegIdx = 0; /* One register assigned to each index to be updated */ int *aXRef = 0; /* aXRef[i] is the index in pChanges->a[] of the ** an expression for the i-th column of the table. ** aXRef[i]==-1 if the i-th column is not changed. */ u8 *aToOpen; /* 1 for tables and indices to be opened */ u8 chngPk; /* PRIMARY KEY changed in a WITHOUT ROWID table */ u8 chngRowid; /* Rowid changed in a normal table */ u8 chngKey; /* Either chngPk or chngRowid */ Expr *pRowidExpr = 0; /* Expression defining the new record number */ AuthContext sContext; /* The authorization context */ NameContext sNC; /* The name-context to resolve expressions in */ int iDb; /* Database containing the table being updated */ int okOnePass; /* True for one-pass algorithm without the FIFO */ int hasFK; /* True if foreign key processing is required */ int labelBreak; /* Jump here to break out of UPDATE loop */ int labelContinue; /* Jump here to continue next step of UPDATE loop */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True when updating a view (INSTEAD OF trigger) */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of TRIGGER_BEFORE|TRIGGER_AFTER */ #endif int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ int iEph = 0; /* Ephemeral table holding all primary key values */ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid = 0; /* The old rowid */ int regNewRowid = 0; /* The new rowid */ int regNew = 0; /* Content of the NEW.* table in triggers */ int regOld = 0; /* Content of OLD.* table in triggers */ int regRowSet = 0; /* Rowset of rows to be updated */ int regKey = 0; /* composite PRIMARY KEY value */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto update_cleanup; } assert( pTabList->nSrc==1 ); /* Locate the table which we want to update. */ pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ) goto update_cleanup; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); /* Figure out if we have any triggers and if the table being ** updated is a view. */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_UPDATE, pChanges, &tmask); isView = pTab->pSelect!=0; assert( pTrigger || tmask==0 ); #else # define pTrigger 0 # define isView 0 # define tmask 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto update_cleanup; } if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ goto update_cleanup; } /* Allocate a cursors for the main database table and for all indices. ** The index cursors might not be used, but if they are used they ** need to occur right after the database cursor. So go ahead and ** allocate enough space, just in case. */ pTabList->a[0].iCursor = iBaseCur = iDataCur = pParse->nTab++; iIdxCur = iDataCur+1; pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab); for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ if( IsPrimaryKeyIndex(pIdx) && pPk!=0 ){ iDataCur = pParse->nTab; pTabList->a[0].iCursor = iDataCur; } pParse->nTab++; } /* Allocate space for aXRef[], aRegIdx[], and aToOpen[]. ** Initialize aXRef[] and aToOpen[] to their default values. */ aXRef = sqlite3DbMallocRaw(db, sizeof(int) * (pTab->nCol+nIdx) + nIdx+2 ); if( aXRef==0 ) goto update_cleanup; aRegIdx = aXRef+pTab->nCol; aToOpen = (u8*)(aRegIdx+nIdx); memset(aToOpen, 1, nIdx+1); aToOpen[nIdx+1] = 0; for(i=0; i<pTab->nCol; i++) aXRef[i] = -1; /* Initialize the name-context */ memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; sNC.pSrcList = pTabList; /* Resolve the column names in all the expressions of the ** of the UPDATE statement. Also find the column index ** for each column to be updated in the pChanges array. For each ** column to be updated, make sure we have authorization to change ** that column. */ chngRowid = chngPk = 0; for(i=0; i<pChanges->nExpr; i++){ if( sqlite3ResolveExprNames(&sNC, pChanges->a[i].pExpr) ){ goto update_cleanup; } for(j=0; j<pTab->nCol; j++){ if( sqlite3StrICmp(pTab->aCol[j].zName, pChanges->a[i].zName)==0 ){ if( j==pTab->iPKey ){ chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; }else if( pPk && (pTab->aCol[j].colFlags & COLFLAG_PRIMKEY)!=0 ){ chngPk = 1; } aXRef[j] = i; break; } } if( j>=pTab->nCol ){ if( pPk==0 && sqlite3IsRowid(pChanges->a[i].zName) ){ j = -1; chngRowid = 1; pRowidExpr = pChanges->a[i].pExpr; }else{ sqlite3ErrorMsg(pParse, "no such column: %s", pChanges->a[i].zName); pParse->checkSchema = 1; goto update_cleanup; } } #ifndef SQLITE_OMIT_AUTHORIZATION { int rc; rc = sqlite3AuthCheck(pParse, SQLITE_UPDATE, pTab->zName, j<0 ? "ROWID" : pTab->aCol[j].zName, db->aDb[iDb].zName); if( rc==SQLITE_DENY ){ goto update_cleanup; }else if( rc==SQLITE_IGNORE ){ aXRef[j] = -1; } } #endif } assert( (chngRowid & chngPk)==0 ); assert( chngRowid==0 || chngRowid==1 ); assert( chngPk==0 || chngPk==1 ); chngKey = chngRowid + chngPk; /* The SET expressions are not actually used inside the WHERE loop. ** So reset the colUsed mask */ pTabList->a[0].colUsed = 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. ** ** FIXME: Be smarter about omitting indexes that use expressions. */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int reg; if( chngKey || hasFK || pIdx->pPartIdxWhere || pIdx==pPk ){ reg = ++pParse->nMem; }else{ reg = 0; for(i=0; i<pIdx->nKeyCol; i++){ i16 iIdxCol = pIdx->aiColumn[i]; if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){ reg = ++pParse->nMem; break; } } } if( reg==0 ) aToOpen[j+1] = 0; aRegIdx[j] = reg; } /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); /* Allocate required registers. */ if( !IsVirtual(pTab) ){ regRowSet = ++pParse->nMem; regOldRowid = regNewRowid = ++pParse->nMem; if( chngPk || pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngKey || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; } /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into ** an ephemeral table. */ #if !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) if( isView ){ sqlite3MaterializeView(pParse, pTab, pWhere, iDataCur); } #endif /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif /* Begin the database scan */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur ); if( pWInfo==0 ) goto update_cleanup; okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); /* Remember the rowid of every item to be updated. */ sqlite3VdbeAddOp2(v, OP_Rowid, iDataCur, regOldRowid); if( !okOnePass ){ sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid); } /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); }else{ int iPk; /* First of nPk memory cells holding PRIMARY KEY value */ i16 nPk; /* Number of components of the PRIMARY KEY */ int addrOpen; /* Address of the OpenEphemeral instruction */ assert( pPk!=0 ); nPk = pPk->nKeyCol; iPk = pParse->nMem+1; pParse->nMem += nPk; regKey = ++pParse->nMem; iEph = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_Null, 0, iPk); addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur); if( pWInfo==0 ) goto update_cleanup; okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); for(i=0; i<nPk; i++){ assert( pPk->aiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i], iPk+i); } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; }else{ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, regKey, sqlite3IndexAffinityStr(db, pPk), nPk); sqlite3VdbeAddOp2(v, OP_IdxInsert, iEph, regKey); } sqlite3WhereEnd(pWInfo); } /* Initialize the count of updated rows */ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } labelBreak = sqlite3VdbeMakeLabel(v); if( !isView ){ /* ** Open every index that needs updating. Note that if any ** index could potentially invoke a REPLACE conflict resolution ** action, then we need to open all indices because we might need ** to be deleting some records. */ if( onError==OE_Replace ){ memset(aToOpen, 1, nIdx+1); }else{ for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ if( pIdx->onError==OE_Replace ){ memset(aToOpen, 1, nIdx+1); break; } } } if( okOnePass ){ if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0; if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0; } sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen, 0, 0); } /* Top of the update loop */ if( okOnePass ){ if( aToOpen[iDataCur-iBaseCur] && !isView ){ assert( pPk ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelBreak, regKey, nKey); VdbeCoverageNeverTaken(v); } labelContinue = labelBreak; sqlite3VdbeAddOp2(v, OP_IsNull, pPk ? regKey : regOldRowid, labelBreak); VdbeCoverageIf(v, pPk==0); VdbeCoverageIf(v, pPk!=0); }else if( pPk ){ labelContinue = sqlite3VdbeMakeLabel(v); sqlite3VdbeAddOp2(v, OP_Rewind, iEph, labelBreak); VdbeCoverage(v); addrTop = sqlite3VdbeAddOp2(v, OP_RowKey, iEph, regKey); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue, regKey, 0); VdbeCoverage(v); }else{ labelContinue = sqlite3VdbeAddOp3(v, OP_RowSetRead, regRowSet, labelBreak, regOldRowid); VdbeCoverage(v); sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If the record number will change, set register regNewRowid to ** contain the new value. If the record number is not being modified, ** then regNewRowid is the same register as regOldRowid, which is ** already populated. */ assert( chngKey || pTrigger || hasFK || regOldRowid==regNewRowid ); if( chngRowid ){ sqlite3ExprCode(pParse, pRowidExpr, regNewRowid); sqlite3VdbeAddOp1(v, OP_MustBeInt, regNewRowid); VdbeCoverage(v); } /* Compute the old pre-UPDATE content of the row being changed, if that ** information is needed */ if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( oldmask==0xffffffff || (i<32 && (oldmask & MASKBIT32(i))!=0) || (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ testcase( oldmask!=0xffffffff && i==31 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regOld+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i); } } if( chngRowid==0 && pPk==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); } } /* Populate the array of registers beginning at regNew with the new ** row data. This array is used to check constants, create the new ** table and index records, and as the values for any new.* references ** made by triggers. ** ** If there are one or more BEFORE triggers, then do not populate the ** registers associated with columns that are (a) not modified by ** this UPDATE statement and (b) not accessed by new.* references. The ** values for registers not modified by the UPDATE must be reloaded from ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); }else{ j = aXRef[i]; if( j>=0 ){ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){ /* This branch loads the value of a column that will not be changed ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); } } } /* Fire any BEFORE UPDATE triggers. This happens before constraints are ** verified. One could argue that this is wrong. */ if( tmask&TRIGGER_BEFORE ){ sqlite3TableAffinity(v, pTab, regNew); sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_BEFORE, pTab, regOldRowid, onError, labelContinue); /* The row-trigger may have deleted the row being updated. In this ** case, jump to the next row. No updates or AFTER triggers are ** required. This behavior - what happens when the row being updated ** is deleted or renamed by a BEFORE trigger - is left undefined in the ** documentation. */ if( pPk ){ sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, labelContinue,regKey,nKey); VdbeCoverage(v); }else{ sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, labelContinue, regOldRowid); VdbeCoverage(v); } /* If it did not delete it, the row-trigger may still have modified ** some of the columns of the row being updated. Load the values for ** all columns not modified by the update statement into their ** registers in case this has happened. */ for(i=0; i<pTab->nCol; i++){ if( aXRef[i]<0 && i!=pTab->iPKey ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i); } } } if( !isView ){ int addr1 = 0; /* Address of jump instruction */ int bReplace = 0; /* True if REPLACE conflict resolution might happen */ /* Do constraint checks. */ assert( regOldRowid>0 ); sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, regNewRowid, regOldRowid, chngKey, onError, labelContinue, &bReplace); /* Do FK constraint checks. */ if( hasFK ){ sqlite3FkCheck(pParse, pTab, regOldRowid, 0, aXRef, chngKey); } /* Delete the index entries associated with the current record. */ if( bReplace || chngKey ){ if( pPk ){ addr1 = sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, 0, regKey, nKey); }else{ addr1 = sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, 0, regOldRowid); } VdbeCoverageNeverTaken(v); } sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, aRegIdx, -1); /* If changing the record number, delete the old record. */ if( hasFK || chngKey || pPk!=0 ){ sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, 0); } if( bReplace || chngKey ){ sqlite3VdbeJumpHere(v, addr1); } if( hasFK ){ sqlite3FkCheck(pParse, pTab, 0, regNewRowid, aXRef, chngKey); } /* Insert the new index entries and the new record. */ sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, regNewRowid, aRegIdx, 1, 0, 0); /* Do any ON CASCADE, SET NULL or SET DEFAULT operations required to ** handle rows (possibly in other tables) that refer via a foreign key ** to the row just updated. */ if( hasFK ){ sqlite3FkActions(pParse, pTab, pChanges, regOldRowid, aXRef, chngKey); } } /* Increment the row counter */ if( (db->flags & SQLITE_CountRows) && !pParse->pTriggerTab){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } sqlite3CodeRowTrigger(pParse, pTrigger, TK_UPDATE, pChanges, TRIGGER_AFTER, pTab, regOldRowid, onError, labelContinue); /* Repeat the above with the next record to be updated, until ** all record selected by the WHERE clause have been updated. */ if( okOnePass ){ /* Nothing to do at end-of-loop for a single-pass */ }else if( pPk ){ sqlite3VdbeResolveLabel(v, labelContinue); sqlite3VdbeAddOp2(v, OP_Next, iEph, addrTop); VdbeCoverage(v); }else{ sqlite3VdbeGoto(v, labelContinue); } sqlite3VdbeResolveLabel(v, labelBreak); /* Close all tables */ for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ assert( aRegIdx ); if( aToOpen[i+1] ){ sqlite3VdbeAddOp2(v, OP_Close, iIdxCur+i, 0); } } if( iDataCur<iIdxCur ) sqlite3VdbeAddOp2(v, OP_Close, iDataCur, 0); /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows that were changed. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( (db->flags&SQLITE_CountRows) && !pParse->pTriggerTab && !pParse->nested ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows updated", SQLITE_STATIC); } update_cleanup: sqlite3AuthContextPop(&sContext); sqlite3DbFree(db, aXRef); /* Also frees aRegIdx[] and aToOpen[] */ sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pChanges); sqlite3ExprDelete(db, pWhere); return; }
/* ** This routine transforms the internal text encoding used by pMem to ** desiredEnc. It is an error if the string is already of the desired ** encoding, or if *pMem does not contain a string value. */ int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ int len; /* Maximum length of output string in bytes */ unsigned char *zOut; /* Output buffer */ unsigned char *zIn; /* Input iterator */ unsigned char *zTerm; /* End of input */ unsigned char *z; /* Output iterator */ unsigned int c; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( pMem->flags&MEM_Str ); assert( pMem->enc!=desiredEnc ); assert( pMem->enc!=0 ); assert( pMem->n>=0 ); #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "INPUT: %s\n", zBuf); } #endif /* If the translation is between UTF-16 little and big endian, then ** all that is required is to swap the byte order. This case is handled ** differently from the others. */ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ u8 temp; int rc; rc = sqlite3VdbeMemMakeWriteable(pMem); if( rc!=SQLITE_OK ){ assert( rc==SQLITE_NOMEM ); return SQLITE_NOMEM; } zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; while( zIn<zTerm ){ temp = *zIn; *zIn = *(zIn+1); zIn++; *zIn++ = temp; } pMem->enc = desiredEnc; goto translate_out; } /* Set len to the maximum number of bytes required in the output buffer. */ if( desiredEnc==SQLITE_UTF8 ){ /* When converting from UTF-16, the maximum growth results from ** translating a 2-byte character to a 4-byte UTF-8 character. ** A single byte is required for the output string ** nul-terminator. */ len = pMem->n * 2 + 1; }else{ /* When converting from UTF-8 to UTF-16 the maximum growth is caused ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 ** character. Two bytes are required in the output buffer for the ** nul-terminator. */ len = pMem->n * 2 + 2; } /* Set zIn to point at the start of the input buffer and zTerm to point 1 ** byte past the end. ** ** Variable zOut is set to point at the output buffer, space obtained ** from sqlite3_malloc(). */ zIn = (u8*)pMem->z; zTerm = &zIn[pMem->n]; zOut = sqlite3DbMallocRaw(pMem->db, len); if( !zOut ){ return SQLITE_NOMEM; } z = zOut; if( pMem->enc==SQLITE_UTF8 ){ if( desiredEnc==SQLITE_UTF16LE ){ /* UTF-8 -> UTF-16 Little-endian */ while( zIn<zTerm ){ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ READ_UTF8(zIn, zTerm, c); WRITE_UTF16LE(z, c); } }else{ assert( desiredEnc==SQLITE_UTF16BE ); /* UTF-8 -> UTF-16 Big-endian */ while( zIn<zTerm ){ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ READ_UTF8(zIn, zTerm, c); WRITE_UTF16BE(z, c); } } pMem->n = z - zOut; *z++ = 0; }else{ assert( desiredEnc==SQLITE_UTF8 ); if( pMem->enc==SQLITE_UTF16LE ){ /* UTF-16 Little-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16LE(zIn, c); WRITE_UTF8(z, c); } }else{ /* UTF-16 Big-endian -> UTF-8 */ while( zIn<zTerm ){ READ_UTF16BE(zIn, c); WRITE_UTF8(z, c); } } pMem->n = z - zOut; } *z = 0; assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sqlite3VdbeMemRelease(pMem); pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); pMem->enc = desiredEnc; pMem->flags |= (MEM_Term|MEM_Dyn); pMem->z = (char*)zOut; pMem->zMalloc = pMem->z; translate_out: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) { char zBuf[100]; sqlite3VdbeMemPrettyPrint(pMem, zBuf); fprintf(stderr, "OUTPUT: %s\n", zBuf); } #endif return SQLITE_OK; }
/* ** An SQL user-function registered to do the work of an ATTACH statement. The ** three arguments to the function come directly from an attach statement: ** ** ATTACH DATABASE x AS y KEY z ** ** SELECT sqlite_attach(x, y, z) ** ** If the optional "KEY z" syntax is omitted, an SQL NULL is passed as the ** third argument. */ static void attachFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ int i; int rc = 0; sqlite3 *db = sqlite3_context_db_handle(context); const char *zName; const char *zFile; Db *aNew; char *zErrDyn = 0; UNUSED_PARAMETER(NotUsed); zFile = (const char *)sqlite3_value_text(argv[0]); zName = (const char *)sqlite3_value_text(argv[1]); if( zFile==0 ) zFile = ""; if( zName==0 ) zName = ""; /* Check for the following errors: ** ** * Too many attached databases, ** * Transaction currently open ** * Specified database name already being used. */ if( db->nDb>=db->aLimit[SQLITE_LIMIT_ATTACHED]+2 ){ zErrDyn = sqlite3MPrintf(db, "too many attached databases - max %d", db->aLimit[SQLITE_LIMIT_ATTACHED] ); goto attach_error; } if( !db->autoCommit ){ zErrDyn = sqlite3MPrintf(db, "cannot ATTACH database within transaction"); goto attach_error; } for(i=0; i<db->nDb; i++){ char *z = db->aDb[i].zName; assert( z && zName ); if( sqlite3StrICmp(z, zName)==0 ){ zErrDyn = sqlite3MPrintf(db, "database %s is already in use", zName); goto attach_error; } } /* Allocate the new entry in the db->aDb[] array and initialise the schema ** hash tables. */ if( db->aDb==db->aDbStatic ){ aNew = sqlite3DbMallocRaw(db, sizeof(db->aDb[0])*3 ); if( aNew==0 ) return; memcpy(aNew, db->aDb, sizeof(db->aDb[0])*2); }else{ aNew = sqlite3DbRealloc(db, db->aDb, sizeof(db->aDb[0])*(db->nDb+1) ); if( aNew==0 ) return; } db->aDb = aNew; aNew = &db->aDb[db->nDb]; memset(aNew, 0, sizeof(*aNew)); /* Open the database file. If the btree is successfully opened, use ** it to obtain the database schema. At this point the schema may ** or may not be initialised. */ rc = sqlite3BtreeFactory(db, zFile, 0, SQLITE_DEFAULT_CACHE_SIZE, db->openFlags | SQLITE_OPEN_MAIN_DB, &aNew->pBt); db->nDb++; if( rc==SQLITE_CONSTRAINT ){ rc = SQLITE_ERROR; zErrDyn = sqlite3MPrintf(db, "database is already attached"); }else if( rc==SQLITE_OK ){ Pager *pPager; aNew->pSchema = sqlite3SchemaGet(db, aNew->pBt); if( !aNew->pSchema ){ rc = SQLITE_NOMEM; }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){ zErrDyn = sqlite3MPrintf(db, "attached databases must use the same text encoding as main database"); rc = SQLITE_ERROR; } pPager = sqlite3BtreePager(aNew->pBt); sqlite3PagerLockingMode(pPager, db->dfltLockMode); sqlite3PagerJournalMode(pPager, db->dfltJournalMode); } aNew->zName = sqlite3DbStrDup(db, zName); aNew->safety_level = 3; #if SQLITE_HAS_CODEC { extern int sqlite3CodecAttach(sqlite3*, int, const void*, int); extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*); int nKey; char *zKey; int t = sqlite3_value_type(argv[2]); switch( t ){ case SQLITE_INTEGER: case SQLITE_FLOAT: zErrDyn = sqlite3DbStrDup(db, "Invalid key value"); rc = SQLITE_ERROR; break; case SQLITE_TEXT: case SQLITE_BLOB: nKey = sqlite3_value_bytes(argv[2]); zKey = (char *)sqlite3_value_blob(argv[2]); sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); break; case SQLITE_NULL: /* No key specified. Use the key from the main database */ sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey); sqlite3CodecAttach(db, db->nDb-1, zKey, nKey); break; } } #endif /* If the file was opened successfully, read the schema for the new database. ** If this fails, or if opening the file failed, then close the file and ** remove the entry from the db->aDb[] array. i.e. put everything back the way ** we found it. */ if( rc==SQLITE_OK ){ (void)sqlite3SafetyOn(db); sqlite3BtreeEnterAll(db); rc = sqlite3Init(db, &zErrDyn); sqlite3BtreeLeaveAll(db); (void)sqlite3SafetyOff(db); } if( rc ){ int iDb = db->nDb - 1; assert( iDb>=2 ); if( db->aDb[iDb].pBt ){ sqlite3BtreeClose(db->aDb[iDb].pBt); db->aDb[iDb].pBt = 0; db->aDb[iDb].pSchema = 0; } sqlite3ResetInternalSchema(db, 0); db->nDb = iDb; if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ){ db->mallocFailed = 1; sqlite3DbFree(db, zErrDyn); zErrDyn = sqlite3MPrintf(db, "out of memory"); }else if( zErrDyn==0 ){ zErrDyn = sqlite3MPrintf(db, "unable to open database: %s", zFile); } goto attach_error; } return; attach_error: /* Return an error if we get here */ if( zErrDyn ){ sqlite3_result_error(context, zErrDyn, -1); sqlite3DbFree(db, zErrDyn); } if( rc ) sqlite3_result_error_code(context, rc); }