Exemple #1
0
static char *i_cid_pid() {
  if(db_vars_get(0, "cid") && db_vars_get(0, "pid"))
    return NULL;

  guint64 r = rand_64();

  struct tiger_ctx t;
  char pid[24];
  tiger_init(&t);
  tiger_update(&t, (char *)&r, 8);
  tiger_final(&t, pid);

  // now hash the PID so we have our CID
  char cid[24];
  tiger_init(&t);
  tiger_update(&t, pid, 24);
  tiger_final(&t, cid);

  // encode and save
  char enc[40] = {};
  base32_encode(pid, enc);
  db_vars_set(0, "pid", enc);
  base32_encode(cid, enc);
  db_vars_set(0, "cid", enc);

  return NULL;
}
Exemple #2
0
/* get tth root hash */
void tth_final(tth_ctx *ctx, unsigned char result[24]) {
  uint64_t it = 1;
  unsigned pos = 0;
  unsigned char msg[24];
  unsigned char* last_message;

  /* process bytes left in the context buffer */
  if(ctx->tiger.length>1 || ctx->block_count==0) {
    tth_process_block_hash(ctx);
  }
  
  for(; it < ctx->block_count && (it&ctx->block_count)==0; it <<= 1) pos += 3;
  last_message = (unsigned char*)(ctx->stack + pos);

  for(it <<= 1; it <= ctx->block_count; it <<= 1) {
    /* merge tth sums in the tree */
    pos += 3;
    if(it&ctx->block_count) {
      tiger_init(&ctx->tiger);
      ctx->tiger.message[ ctx->tiger.length++ ] = 1;
      tiger_update(&ctx->tiger, (unsigned char*)(ctx->stack + pos), 24);
      tiger_update(&ctx->tiger, last_message, 24);

      tiger_final(&ctx->tiger, msg);
      bswap_3x64(msg);
      last_message = msg;
    }
  }
  
  memcpy(result, last_message, 24);
  return;
}
Exemple #3
0
int main(int argc, char **argv)
{
  TIGER *tiger;
  TIGER_RECORD *record;
  uint x;

  DBUG_ENTER("main");
  DBUG_PROCESS(argv[0]);
  //DBUG_PUSH("d:t");

  if(!(tiger = tiger_init(0)))
  {
    fprintf(stderr, "Couldn't allocate TIGER\n");
    exit(1);
  }

  tiger_open(tiger, argv[1], 'r');
  tiger_dump(tiger);

  for(x=0; x<5 && (record = tiger_read_next(tiger, RT2)); x++)
  {
    tiger_record_dump(record);
    tiger_record_free(record);
  }

  tiger_free(tiger);

  DBUG_RETURN(0);
}
Exemple #4
0
	bool run()
	{
		tiger_ctx ctx;
		tiger_init(&ctx, 1);
		tiger_update(&ctx, buf.get(), sz);
		tiger_end(&ctx, res0, TIGER_SZ_DIGEST);
		return std::equal(res, res + TIGER_SZ_DIGEST, res0);
	}
Exemple #5
0
		void TigerHash::Reset()
		{
			CoreAssert(this != NULL);

			delete [] m_hash; m_hash = NULL;
			delete [] m_hashString; m_hashString = NULL;

			tiger_init(&m_state);
		}
Exemple #6
0
static void tth_process_block_hash(tth_ctx *ctx) {
  uint64_t it;
  unsigned pos = 0;
  unsigned char msg[24];
  for(it=1; it & ctx->block_count; it <<= 1) {
    tiger_final(&ctx->tiger, msg);
    bswap_3x64(msg);
    tiger_init(&ctx->tiger);
    ctx->tiger.message[ ctx->tiger.length++ ] = 1;
    tiger_update(&ctx->tiger, (unsigned char*)(ctx->stack + pos), 24);
    /* note: we can cut this step, if the previous tiger_final saves directly to ctx->tiger.message+25; */
    tiger_update(&ctx->tiger, msg, 24);
    pos += 3;
  }
  tiger_final(&ctx->tiger, (unsigned char*)(ctx->stack + pos));
  bswap_3x64( ctx->stack + pos );
  ctx->block_count++;
}
Exemple #7
0
void tth_update(tth_ctx *ctx, const unsigned char* msg, unsigned size) {
  unsigned rest = 1025 - (unsigned)ctx->tiger.length;
  for(;;) {
    if(size<rest) rest = size;
    tiger_update(&ctx->tiger, msg, rest);
    msg += rest;
    size -= rest;
    if(ctx->tiger.length<1025) {
      return;
    }
    
    /* process block hash */
    tth_process_block_hash(ctx);
    
    /* init block hash */
    tiger_init(&ctx->tiger);
    ctx->tiger.message[ ctx->tiger.length++ ] = 0;
    rest = 1024;
  }
}
Exemple #8
0
void tth_init(tth_ctx *ctx) {
  tiger_init(&ctx->tiger);
  ctx->tiger.message[ ctx->tiger.length++ ] = 0;
  ctx->block_count = 0;
}
Exemple #9
0
int CHashManager::HashFile(char *pszFile)
{
	FILE *fp = NULL;
	unsigned char pBuf[SIZE_HASH_BUFFER];
	unsigned long uRead = 0;
	unsigned char pTemp[256];
	char szTemp[RH_MAX_BUFFER];
	int i = 0;

	printf("File: <");
	printf(pszFile);
	printf(">");
	printf(CPS_NEWLINE);

	fp = fopen(pszFile, "rb");
	if(fp == NULL) return RH_CANNOT_OPEN_FILE;

	if(m_bAlgorithm[HASHID_CRC16]) crc16_init(&m_crc16);
	if(m_bAlgorithm[HASHID_CRC16CCITT]) crc16ccitt_init(&m_crc16ccitt);
	if(m_bAlgorithm[HASHID_CRC32]) crc32Init(&m_crc32);
	if(m_bAlgorithm[HASHID_FCS_16]) fcs16_init(&m_fcs16);
	if(m_bAlgorithm[HASHID_FCS_32]) fcs32_init(&m_fcs32);
	if(m_bAlgorithm[HASHID_GHASH_32_3] || m_bAlgorithm[HASHID_GHASH_32_5]) m_ghash.Init();
	if(m_bAlgorithm[HASHID_GOST]) gosthash_reset(&m_gost);
	if(m_bAlgorithm[HASHID_HAVAL]) haval_start(&m_haval);
	if(m_bAlgorithm[HASHID_MD2]) m_md2.Init();
	if(m_bAlgorithm[HASHID_MD4]) MD4Init(&m_md4);
	if(m_bAlgorithm[HASHID_MD5]) MD5Init(&m_md5, 0);
	if(m_bAlgorithm[HASHID_SHA1]) sha1_begin(&m_sha1);
	if(m_bAlgorithm[HASHID_SHA2_256]) sha256_begin(&m_sha256);
	if(m_bAlgorithm[HASHID_SHA2_384]) sha384_begin(&m_sha384);
	if(m_bAlgorithm[HASHID_SHA2_512]) sha512_begin(&m_sha512);
	if(m_bAlgorithm[HASHID_SIZE_32]) sizehash32_begin(&m_uSizeHash32);
	if(m_bAlgorithm[HASHID_TIGER]) tiger_init(&m_tiger);

	while(1)
	{
		uRead = fread(pBuf, 1, SIZE_HASH_BUFFER, fp);

		if(uRead != 0)
		{
			if(m_bAlgorithm[HASHID_CRC16])
				crc16_update(&m_crc16, pBuf, uRead);

			if(m_bAlgorithm[HASHID_CRC16CCITT])
				crc16ccitt_update(&m_crc16ccitt, pBuf, uRead);

			if(m_bAlgorithm[HASHID_CRC32])
				crc32Update(&m_crc32, pBuf, uRead);

			if(m_bAlgorithm[HASHID_FCS_16])
				fcs16_update(&m_fcs16, pBuf, uRead);

			if(m_bAlgorithm[HASHID_FCS_32])
				fcs32_update(&m_fcs32, pBuf, uRead);

			if(m_bAlgorithm[HASHID_GHASH_32_3] || m_bAlgorithm[HASHID_GHASH_32_5])
				m_ghash.Update(pBuf, uRead);

			if(m_bAlgorithm[HASHID_GOST])
				gosthash_update(&m_gost, pBuf, uRead);

			if(m_bAlgorithm[HASHID_HAVAL])
				haval_hash(&m_haval, pBuf, uRead);

			if(m_bAlgorithm[HASHID_MD2])
				m_md2.Update(pBuf, uRead);

			if(m_bAlgorithm[HASHID_MD4])
				MD4Update(&m_md4, pBuf, uRead);

			if(m_bAlgorithm[HASHID_MD5])
				MD5Update(&m_md5, pBuf, uRead);

			if(m_bAlgorithm[HASHID_SHA1])
				sha1_hash(pBuf, uRead, &m_sha1);

			if(m_bAlgorithm[HASHID_SHA2_256])
				sha256_hash(pBuf, uRead, &m_sha256);

			if(m_bAlgorithm[HASHID_SHA2_384])
				sha384_hash(pBuf, uRead, &m_sha384);

			if(m_bAlgorithm[HASHID_SHA2_512])
				sha512_hash(pBuf, uRead, &m_sha512);

			if(m_bAlgorithm[HASHID_SIZE_32])
				sizehash32_hash(&m_uSizeHash32, uRead);

			if(m_bAlgorithm[HASHID_TIGER])
				tiger_process(&m_tiger, pBuf, uRead);
		}

		if(uRead != SIZE_HASH_BUFFER) break;
	}

	fclose(fp); fp = NULL;

	// SizeHash-32 is the first hash, because it's the simplest one,
	// the fastest, and most widely used one. ;-)
	if(m_bAlgorithm[HASHID_SIZE_32])
	{
		sizehash32_end(&m_uSizeHash32);
		printf(SZ_SIZEHASH_32);
		printf(SZ_HASHPRE);

		printf("%08X", m_uSizeHash32);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_CRC16])
	{
		crc16_final(&m_crc16);
		printf(SZ_CRC16);
		printf(SZ_HASHPRE);

		printf("%04X", m_crc16);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_CRC16CCITT])
	{
		crc16ccitt_final(&m_crc16ccitt);
		printf(SZ_CRC16CCITT);
		printf(SZ_HASHPRE);

		printf("%04X", m_crc16ccitt);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_CRC32])
	{
		crc32Finish(&m_crc32);
		printf(SZ_CRC32);
		printf(SZ_HASHPRE);

		printf("%08X", m_crc32);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_FCS_16])
	{
		fcs16_final(&m_fcs16);
		printf(SZ_FCS_16);
		printf(SZ_HASHPRE);

		printf("%04X", m_fcs16);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_FCS_32])
	{
		fcs32_final(&m_fcs32);
		printf(SZ_FCS_32);
		printf(SZ_HASHPRE);

		printf("%08X", m_fcs32);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_GHASH_32_3])
	{
		m_ghash.FinalToStr(szTemp, 3);
		printf(SZ_GHASH_32_3);
		printf(SZ_HASHPRE);

		printf(szTemp);

		printf(CPS_NEWLINE);
	}
	if(m_bAlgorithm[HASHID_GHASH_32_5])
	{
		m_ghash.FinalToStr(szTemp, 5);
		printf(SZ_GHASH_32_5);
		printf(SZ_HASHPRE);

		printf(szTemp);

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_GOST])
	{
		gosthash_final(&m_gost, pTemp);
		printf(SZ_GOST);
		printf(SZ_HASHPRE);

		for(i = 0; i < 32; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_HAVAL])
	{
		haval_end(&m_haval, pTemp);
		printf(SZ_HAVAL);
		printf(SZ_HASHPRE);

		for(i = 0; i < 32; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_MD2])
	{
		m_md2.TruncatedFinal(pTemp, 16);
		printf(SZ_MD2);
		printf(SZ_HASHPRE);

		for(i = 0; i < 16; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_MD4])
	{
		MD4Final(pTemp, &m_md4);
		printf(SZ_MD4);
		printf(SZ_HASHPRE);

		for(i = 0; i < 16; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_MD5])
	{
		MD5Final(&m_md5);
		printf(SZ_MD5);
		printf(SZ_HASHPRE);

		for(i = 0; i < 16; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", m_md5.digest[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_SHA1])
	{
		sha1_end(pTemp, &m_sha1);
		printf(SZ_SHA1);
		printf(SZ_HASHPRE);

		for(i = 0; i < 20; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_SHA2_256])
	{
		sha256_end(pTemp, &m_sha256);
		printf(SZ_SHA2_256);
		printf(SZ_HASHPRE);

		for(i = 0; i < 32; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}
	if(m_bAlgorithm[HASHID_SHA2_384])
	{
		sha384_end(pTemp, &m_sha384);
		printf(SZ_SHA2_384);
		printf(SZ_HASHPRE);

		for(i = 0; i < 48; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}
	if(m_bAlgorithm[HASHID_SHA2_512])
	{
		sha512_end(pTemp, &m_sha512);
		printf(SZ_SHA2_512);
		printf(SZ_HASHPRE);

		for(i = 0; i < 64; i++)
		{
			fmtFixHashOutput(i);
			printf("%02X", pTemp[i]);
		}

		printf(CPS_NEWLINE);
	}

	if(m_bAlgorithm[HASHID_TIGER])
	{
		tiger_done(&m_tiger, pTemp);
		printf(SZ_TIGER);
		printf(SZ_HASHPRE);

		for(i = 0; i < 8; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[7-i]); }
		for(i = 8; i < 16; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[23-i]); }
		for(i = 16; i < 24; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[39-i]); }

		printf(CPS_NEWLINE);
	}

	return RH_SUCCESS;
}