static char *i_cid_pid() { if(db_vars_get(0, "cid") && db_vars_get(0, "pid")) return NULL; guint64 r = rand_64(); struct tiger_ctx t; char pid[24]; tiger_init(&t); tiger_update(&t, (char *)&r, 8); tiger_final(&t, pid); // now hash the PID so we have our CID char cid[24]; tiger_init(&t); tiger_update(&t, pid, 24); tiger_final(&t, cid); // encode and save char enc[40] = {}; base32_encode(pid, enc); db_vars_set(0, "pid", enc); base32_encode(cid, enc); db_vars_set(0, "cid", enc); return NULL; }
/* get tth root hash */ void tth_final(tth_ctx *ctx, unsigned char result[24]) { uint64_t it = 1; unsigned pos = 0; unsigned char msg[24]; unsigned char* last_message; /* process bytes left in the context buffer */ if(ctx->tiger.length>1 || ctx->block_count==0) { tth_process_block_hash(ctx); } for(; it < ctx->block_count && (it&ctx->block_count)==0; it <<= 1) pos += 3; last_message = (unsigned char*)(ctx->stack + pos); for(it <<= 1; it <= ctx->block_count; it <<= 1) { /* merge tth sums in the tree */ pos += 3; if(it&ctx->block_count) { tiger_init(&ctx->tiger); ctx->tiger.message[ ctx->tiger.length++ ] = 1; tiger_update(&ctx->tiger, (unsigned char*)(ctx->stack + pos), 24); tiger_update(&ctx->tiger, last_message, 24); tiger_final(&ctx->tiger, msg); bswap_3x64(msg); last_message = msg; } } memcpy(result, last_message, 24); return; }
int main(int argc, char **argv) { TIGER *tiger; TIGER_RECORD *record; uint x; DBUG_ENTER("main"); DBUG_PROCESS(argv[0]); //DBUG_PUSH("d:t"); if(!(tiger = tiger_init(0))) { fprintf(stderr, "Couldn't allocate TIGER\n"); exit(1); } tiger_open(tiger, argv[1], 'r'); tiger_dump(tiger); for(x=0; x<5 && (record = tiger_read_next(tiger, RT2)); x++) { tiger_record_dump(record); tiger_record_free(record); } tiger_free(tiger); DBUG_RETURN(0); }
bool run() { tiger_ctx ctx; tiger_init(&ctx, 1); tiger_update(&ctx, buf.get(), sz); tiger_end(&ctx, res0, TIGER_SZ_DIGEST); return std::equal(res, res + TIGER_SZ_DIGEST, res0); }
void TigerHash::Reset() { CoreAssert(this != NULL); delete [] m_hash; m_hash = NULL; delete [] m_hashString; m_hashString = NULL; tiger_init(&m_state); }
static void tth_process_block_hash(tth_ctx *ctx) { uint64_t it; unsigned pos = 0; unsigned char msg[24]; for(it=1; it & ctx->block_count; it <<= 1) { tiger_final(&ctx->tiger, msg); bswap_3x64(msg); tiger_init(&ctx->tiger); ctx->tiger.message[ ctx->tiger.length++ ] = 1; tiger_update(&ctx->tiger, (unsigned char*)(ctx->stack + pos), 24); /* note: we can cut this step, if the previous tiger_final saves directly to ctx->tiger.message+25; */ tiger_update(&ctx->tiger, msg, 24); pos += 3; } tiger_final(&ctx->tiger, (unsigned char*)(ctx->stack + pos)); bswap_3x64( ctx->stack + pos ); ctx->block_count++; }
void tth_update(tth_ctx *ctx, const unsigned char* msg, unsigned size) { unsigned rest = 1025 - (unsigned)ctx->tiger.length; for(;;) { if(size<rest) rest = size; tiger_update(&ctx->tiger, msg, rest); msg += rest; size -= rest; if(ctx->tiger.length<1025) { return; } /* process block hash */ tth_process_block_hash(ctx); /* init block hash */ tiger_init(&ctx->tiger); ctx->tiger.message[ ctx->tiger.length++ ] = 0; rest = 1024; } }
void tth_init(tth_ctx *ctx) { tiger_init(&ctx->tiger); ctx->tiger.message[ ctx->tiger.length++ ] = 0; ctx->block_count = 0; }
int CHashManager::HashFile(char *pszFile) { FILE *fp = NULL; unsigned char pBuf[SIZE_HASH_BUFFER]; unsigned long uRead = 0; unsigned char pTemp[256]; char szTemp[RH_MAX_BUFFER]; int i = 0; printf("File: <"); printf(pszFile); printf(">"); printf(CPS_NEWLINE); fp = fopen(pszFile, "rb"); if(fp == NULL) return RH_CANNOT_OPEN_FILE; if(m_bAlgorithm[HASHID_CRC16]) crc16_init(&m_crc16); if(m_bAlgorithm[HASHID_CRC16CCITT]) crc16ccitt_init(&m_crc16ccitt); if(m_bAlgorithm[HASHID_CRC32]) crc32Init(&m_crc32); if(m_bAlgorithm[HASHID_FCS_16]) fcs16_init(&m_fcs16); if(m_bAlgorithm[HASHID_FCS_32]) fcs32_init(&m_fcs32); if(m_bAlgorithm[HASHID_GHASH_32_3] || m_bAlgorithm[HASHID_GHASH_32_5]) m_ghash.Init(); if(m_bAlgorithm[HASHID_GOST]) gosthash_reset(&m_gost); if(m_bAlgorithm[HASHID_HAVAL]) haval_start(&m_haval); if(m_bAlgorithm[HASHID_MD2]) m_md2.Init(); if(m_bAlgorithm[HASHID_MD4]) MD4Init(&m_md4); if(m_bAlgorithm[HASHID_MD5]) MD5Init(&m_md5, 0); if(m_bAlgorithm[HASHID_SHA1]) sha1_begin(&m_sha1); if(m_bAlgorithm[HASHID_SHA2_256]) sha256_begin(&m_sha256); if(m_bAlgorithm[HASHID_SHA2_384]) sha384_begin(&m_sha384); if(m_bAlgorithm[HASHID_SHA2_512]) sha512_begin(&m_sha512); if(m_bAlgorithm[HASHID_SIZE_32]) sizehash32_begin(&m_uSizeHash32); if(m_bAlgorithm[HASHID_TIGER]) tiger_init(&m_tiger); while(1) { uRead = fread(pBuf, 1, SIZE_HASH_BUFFER, fp); if(uRead != 0) { if(m_bAlgorithm[HASHID_CRC16]) crc16_update(&m_crc16, pBuf, uRead); if(m_bAlgorithm[HASHID_CRC16CCITT]) crc16ccitt_update(&m_crc16ccitt, pBuf, uRead); if(m_bAlgorithm[HASHID_CRC32]) crc32Update(&m_crc32, pBuf, uRead); if(m_bAlgorithm[HASHID_FCS_16]) fcs16_update(&m_fcs16, pBuf, uRead); if(m_bAlgorithm[HASHID_FCS_32]) fcs32_update(&m_fcs32, pBuf, uRead); if(m_bAlgorithm[HASHID_GHASH_32_3] || m_bAlgorithm[HASHID_GHASH_32_5]) m_ghash.Update(pBuf, uRead); if(m_bAlgorithm[HASHID_GOST]) gosthash_update(&m_gost, pBuf, uRead); if(m_bAlgorithm[HASHID_HAVAL]) haval_hash(&m_haval, pBuf, uRead); if(m_bAlgorithm[HASHID_MD2]) m_md2.Update(pBuf, uRead); if(m_bAlgorithm[HASHID_MD4]) MD4Update(&m_md4, pBuf, uRead); if(m_bAlgorithm[HASHID_MD5]) MD5Update(&m_md5, pBuf, uRead); if(m_bAlgorithm[HASHID_SHA1]) sha1_hash(pBuf, uRead, &m_sha1); if(m_bAlgorithm[HASHID_SHA2_256]) sha256_hash(pBuf, uRead, &m_sha256); if(m_bAlgorithm[HASHID_SHA2_384]) sha384_hash(pBuf, uRead, &m_sha384); if(m_bAlgorithm[HASHID_SHA2_512]) sha512_hash(pBuf, uRead, &m_sha512); if(m_bAlgorithm[HASHID_SIZE_32]) sizehash32_hash(&m_uSizeHash32, uRead); if(m_bAlgorithm[HASHID_TIGER]) tiger_process(&m_tiger, pBuf, uRead); } if(uRead != SIZE_HASH_BUFFER) break; } fclose(fp); fp = NULL; // SizeHash-32 is the first hash, because it's the simplest one, // the fastest, and most widely used one. ;-) if(m_bAlgorithm[HASHID_SIZE_32]) { sizehash32_end(&m_uSizeHash32); printf(SZ_SIZEHASH_32); printf(SZ_HASHPRE); printf("%08X", m_uSizeHash32); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_CRC16]) { crc16_final(&m_crc16); printf(SZ_CRC16); printf(SZ_HASHPRE); printf("%04X", m_crc16); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_CRC16CCITT]) { crc16ccitt_final(&m_crc16ccitt); printf(SZ_CRC16CCITT); printf(SZ_HASHPRE); printf("%04X", m_crc16ccitt); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_CRC32]) { crc32Finish(&m_crc32); printf(SZ_CRC32); printf(SZ_HASHPRE); printf("%08X", m_crc32); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_FCS_16]) { fcs16_final(&m_fcs16); printf(SZ_FCS_16); printf(SZ_HASHPRE); printf("%04X", m_fcs16); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_FCS_32]) { fcs32_final(&m_fcs32); printf(SZ_FCS_32); printf(SZ_HASHPRE); printf("%08X", m_fcs32); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_GHASH_32_3]) { m_ghash.FinalToStr(szTemp, 3); printf(SZ_GHASH_32_3); printf(SZ_HASHPRE); printf(szTemp); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_GHASH_32_5]) { m_ghash.FinalToStr(szTemp, 5); printf(SZ_GHASH_32_5); printf(SZ_HASHPRE); printf(szTemp); printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_GOST]) { gosthash_final(&m_gost, pTemp); printf(SZ_GOST); printf(SZ_HASHPRE); for(i = 0; i < 32; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_HAVAL]) { haval_end(&m_haval, pTemp); printf(SZ_HAVAL); printf(SZ_HASHPRE); for(i = 0; i < 32; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_MD2]) { m_md2.TruncatedFinal(pTemp, 16); printf(SZ_MD2); printf(SZ_HASHPRE); for(i = 0; i < 16; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_MD4]) { MD4Final(pTemp, &m_md4); printf(SZ_MD4); printf(SZ_HASHPRE); for(i = 0; i < 16; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_MD5]) { MD5Final(&m_md5); printf(SZ_MD5); printf(SZ_HASHPRE); for(i = 0; i < 16; i++) { fmtFixHashOutput(i); printf("%02X", m_md5.digest[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_SHA1]) { sha1_end(pTemp, &m_sha1); printf(SZ_SHA1); printf(SZ_HASHPRE); for(i = 0; i < 20; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_SHA2_256]) { sha256_end(pTemp, &m_sha256); printf(SZ_SHA2_256); printf(SZ_HASHPRE); for(i = 0; i < 32; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_SHA2_384]) { sha384_end(pTemp, &m_sha384); printf(SZ_SHA2_384); printf(SZ_HASHPRE); for(i = 0; i < 48; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_SHA2_512]) { sha512_end(pTemp, &m_sha512); printf(SZ_SHA2_512); printf(SZ_HASHPRE); for(i = 0; i < 64; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[i]); } printf(CPS_NEWLINE); } if(m_bAlgorithm[HASHID_TIGER]) { tiger_done(&m_tiger, pTemp); printf(SZ_TIGER); printf(SZ_HASHPRE); for(i = 0; i < 8; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[7-i]); } for(i = 8; i < 16; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[23-i]); } for(i = 16; i < 24; i++) { fmtFixHashOutput(i); printf("%02X", pTemp[39-i]); } printf(CPS_NEWLINE); } return RH_SUCCESS; }