void ui_playlist_widget_update (GtkWidget * widget, gint type, gint at,
 gint count)
{
    PlaylistWidgetData * data = audgui_list_get_user (widget);
    g_return_if_fail (data);

    if (type >= PLAYLIST_UPDATE_STRUCTURE)
    {
        gint diff = aud_playlist_entry_count (data->list) -
         audgui_list_row_count (widget);

        if (diff > 0)
            audgui_list_insert_rows (widget, at, diff);
        else if (diff < 0)
            audgui_list_delete_rows (widget, at, -diff);

        ui_playlist_widget_scroll (widget);
    }

    if (type >= PLAYLIST_UPDATE_METADATA)
        audgui_list_update_rows (widget, at, count);

    audgui_list_update_selection (widget, at, count);
    audgui_list_set_focus (widget, aud_playlist_get_focus (data->list));
    update_queue (widget, data);
}
void ui_playlist_widget_update (GtkWidget * widget, int type, int at,
 int count)
{
    PlaylistWidgetData * data = audgui_list_get_user (widget);
    g_return_if_fail (data);

    if (type == PLAYLIST_UPDATE_STRUCTURE)
    {
        int old_entries = audgui_list_row_count (widget);
        int entries = aud_playlist_entry_count (data->list);

        audgui_list_delete_rows (widget, at, old_entries - (entries - count));
        audgui_list_insert_rows (widget, at, count);

        /* scroll to end of playlist if entries were added there
           (but not if a newly added entry is playing) */
        if (entries > old_entries && at + count == entries &&
         aud_playlist_get_focus (data->list) < old_entries)
            aud_playlist_set_focus (data->list, entries - 1);

        ui_playlist_widget_scroll (widget);
    }
    else if (type == PLAYLIST_UPDATE_METADATA)
        audgui_list_update_rows (widget, at, count);

    audgui_list_update_selection (widget, at, count);
    audgui_list_set_focus (widget, aud_playlist_get_focus (data->list));
    update_queue (widget, data);
}
// looks for the shortest path from one node to other
vector<int> ShortestPathAlgo<ValuesType>::path(Graph<ValuesType> graphic, int beginning, int ending, bool &status){

	// First, we clear all the tools related to the quest
	nodes.clear();
	queue.clear();
	nodes_passed.clear();
	vector<int> zeros(1);
	// Second, we create the priorityqueue that will manage the quest
	create_priorityqueue(graphic,beginning);
	
	

	// There are two options, we can find out out path, or we can run out paths to look for, this information will be inside status var
	while(!(queue.top_node()==ending) ){
		if (queue.size() == 0) {
			status = false;

			return zeros;
		}
			
		update_queue(graphic);

	};
	status = true;
	return nodes[queue.top_position()];
};
Exemple #4
0
void
MapManager::Update(uint32 diff)
{
    i_timer.Update(diff);
    if( !i_timer.Passed() )
        return;

    int i = 0;
    MapMapType::iterator iter;
    std::vector<Map*> update_queue(i_maps.size());

    omp_set_num_threads(sWorld.getConfig(CONFIG_NUMTHREADS));

    for(iter = i_maps.begin(), i = 0; iter != i_maps.end(); ++iter, ++i)
        update_queue[i] = iter->second;
/*
    gomp in gcc <4.4 version cannot parallelise loops using random access iterators
    so until gcc 4.4 isnt standard, we need the update_queue workaround
*/
    // Parallelize map updates.
    #pragma omp parallel for schedule(dynamic) private(i) shared(update_queue)
    for(int i = 0; i < i_maps.size(); ++i)
    {
        checkAndCorrectGridStatesArray();                   // debugging code, should be deleted some day
        update_queue[i]->Update(i_timer.GetCurrent());
    }

    ObjectAccessor::Instance().Update(i_timer.GetCurrent());
    for (TransportSet::iterator iter = m_Transports.begin(); iter != m_Transports.end(); ++iter)
        (*iter)->Update(i_timer.GetCurrent());

    i_timer.SetCurrent(0);
}
Exemple #5
0
/**
 * Run all pending updates.
 *
 * Returns true on success, false on failure.
 */
bool
Control::run_pending_updates()
{
	/* MPD has new current song */
	if (idle_events & MPD_IDLE_PLAYER) {
		if (!get_current_song()) {
			return false;
		}
		/* MPD_IDLE_PLAYER will be subtracted below */
	}

	/* MPD has new status information */
	if (idle_events & (MPD_IDLE_PLAYER | MPD_IDLE_MIXER | MPD_IDLE_OPTIONS | MPD_IDLE_QUEUE)) {
		if (!get_status()) {
			return false;
		}
		set_update_done(MPD_IDLE_PLAYER);
		set_update_done(MPD_IDLE_MIXER);
		set_update_done(MPD_IDLE_OPTIONS);
		/* MPD_IDLE_QUEUE will be subtracted below */
	}

	/* MPD has updates to queue */
	if (idle_events & MPD_IDLE_QUEUE) {
		if (!update_queue()) {
			return false;
		}
		set_update_done(MPD_IDLE_QUEUE);
	}

	/* MPD has updates to a stored playlist */
	if (idle_events & MPD_IDLE_STORED_PLAYLIST) {
		if (!update_playlist_index()) {
			return false;
		}
		if (!update_playlists()) {
			return false;
		}
		set_update_done(MPD_IDLE_STORED_PLAYLIST);
	}

	/* MPD has new song database */
	if (idle_events & MPD_IDLE_DATABASE) {
		if (!update_library()) {
			return false;
		}
		set_update_done(MPD_IDLE_DATABASE);
	}

	/* Hack to make has_pending_updates() work smoothly without too much
	 * effort. We don't care about the rest of the events, so we just
	 * pretend they never happened. */
	idle_events = 0;

	return true;
}
Exemple #6
0
/*
 * add semadj values to semaphores, free undo structures.
 * undo structures are not freed when semaphore arrays are destroyed
 * so some of them may be out of date.
 * IMPLEMENTATION NOTE: There is some confusion over whether the
 * set of adjustments that needs to be done should be done in an atomic
 * manner or not. That is, if we are attempting to decrement the semval
 * should we queue up and wait until we can do so legally?
 * The original implementation attempted to do this (queue and wait).
 * The current implementation does not do so. The POSIX standard
 * and SVID should be consulted to determine what behavior is mandated.
 */
void sem_exit (void)
{
	struct sem_queue *q;
	struct sem_undo *u, *un = NULL, **up, **unp;
	struct semid_ds *sma;
	int nsems, i;

	/* If the current process was sleeping for a semaphore,
	 * remove it from the queue.
	 */
	if ((q = current->semsleeping)) {
		if (q->prev)
			remove_from_queue(q->sma,q);
		current->semsleeping = NULL;
	}

	for (up = &current->semundo; (u = *up); *up = u->proc_next, kfree(u)) {
		if (u->semid == -1)
			continue;
		sma = semary[(unsigned int) u->semid % SEMMNI];
		if (sma == IPC_UNUSED || sma == IPC_NOID)
			continue;
		if (sma->sem_perm.seq != (unsigned int) u->semid / SEMMNI)
			continue;
		/* remove u from the sma->undo list */
		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
			if (u == un)
				goto found;
		}
		printk ("sem_exit undo list error id=%d\n", u->semid);
		break;
found:
		*unp = un->id_next;
		/* perform adjustments registered in u */
		nsems = sma->sem_nsems;
		for (i = 0; i < nsems; i++) {
			struct sem * sem = &sma->sem_base[i];
			sem->semval += u->semadj[i];
			if (sem->semval < 0)
				sem->semval = 0; /* shouldn't happen */
			sem->sempid = current->pid;
		}
		sma->sem_otime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
	}
	current->semundo = NULL;
}
Exemple #7
0
void update_handler( void )
{
  static int       pulse_area;
  static int     pulse_mobile;
  static int   pulse_violence;
  static int      pulse_point;
  static int       pulse_room;
  struct timeval        start;  

  gettimeofday( &start, NULL );

  event_update( );
  delete_list( extracted );

  if( --pulse_area <= 0 ) {
    pulse_area = number_range( PULSE_AREA/2, 3*PULSE_AREA/2 );
    area_update( );
    }

  if( --pulse_mobile <= 0 ) {
    pulse_mobile = PULSE_MOBILE;
    action_update( );
    auction_update( );
    regen_update( );
    time_update( );
    }

  if( --pulse_point <= 0 ) {
    pulse_point = number_range( PULSE_TICK/2, 3*PULSE_TICK/2 );
    char_update( );
    obj_update( );
    }

  if( --pulse_room <= 0 ) {
    pulse_room = number_range( PULSE_ROOM/2, 3*PULSE_ROOM/2 );
    room_update( );
    w3_who( );
    }

  if( --pulse_violence <= 0 ) {
    pulse_violence = PULSE_VIOLENCE;
    update_queue( );
    }

  pulse_time[ TIME_UPDATE ] = stop_clock( start );  
}
Exemple #8
0
void
MapManager::Update(uint32 diff)
{
    i_timer.Update(diff);
    if( !i_timer.Passed() )
        return;

#ifdef MULTI_THREAD_MAP
    uint32 i=0;
    MapMapType::iterator iter;
    std::vector<Map*> update_queue(i_maps.size());
    int omp_set_num_threads(sWorld.getConfig(CONFIG_NUMTHREADS));
    for(iter = i_maps.begin(), i=0;iter != i_maps.end(); ++iter, i++)
        update_queue[i]=iter->second;
/*
    gomp in gcc <4.4 version cannot parallelise loops using random access iterators
    so until gcc 4.4 isnt standard, we need the update_queue workaround
*/
#pragma omp parallel for schedule(dynamic) private(i) shared(update_queue)
    for(int32 i = 0; i < i_maps.size(); ++i)
    {
        checkAndCorrectGridStatesArray();                   // debugging code, should be deleted some day
        update_queue[i]->Update(i_timer.GetCurrent());
        sWorld.RecordTimeDiff("UpdateMap %u", update_queue[i]->GetId());
    //  sLog.outError("This is thread %d out of %d threads,updating map %u",omp_get_thread_num(),omp_get_num_threads(),iter->second->GetId());
    }
#else
    for(MapMapType::iterator iter=i_maps.begin(); iter != i_maps.end(); ++iter)
    {
        iter->second->Update(i_timer.GetCurrent());
        sWorld.RecordTimeDiff("UpdateMap %u", iter->second->GetId());
    }
#endif

    for(MapMapType::iterator iter = i_maps.begin(); iter != i_maps.end(); ++iter)
        iter->second->DelayedUpdate(i_timer.GetCurrent());

    ObjectAccessor::Instance().Update(i_timer.GetCurrent());
    sWorld.RecordTimeDiff("UpdateObjectAccessor");
    for (TransportSet::iterator iter = m_Transports.begin(); iter != m_Transports.end(); ++iter)
        (*iter)->Update(i_timer.GetCurrent());
    sWorld.RecordTimeDiff("UpdateTransports");

    i_timer.SetCurrent(0);
}
Exemple #9
0
void MapManager::DoDelayedMovesAndRemoves()
{
    int i = 0;
    std::vector<Map*> update_queue(i_maps.size());
    MapMapType::iterator iter;

    for(iter = i_maps.begin(); iter != i_maps.end(); ++iter, ++i)
        update_queue[i] = iter->second;

    int omp_set_num_threads(sWorld.getConfig(CONFIG_NUMTHREADS));

    // Parallelize map updates.
    #pragma omp parallel for schedule(dynamic) private(i) shared(update_queue)
    for(i = 0 ; i < i_maps.size() ; ++i)
    {
         update_queue[i]->DoDelayedMovesAndRemoves();
    }
}
Exemple #10
0
void
MapManager::Update(uint32 diff)
{
    i_timer.Update(diff);
    if ( !i_timer.Passed() )
        return;

    MapMapType::iterator iter = i_maps.begin();
    std::vector<Map*> update_queue(i_maps.size());

    int omp_set_num_threads(sWorld.getConfig(CONFIG_UINT32_NUMTHREADS));

    for (uint32 i = 0; iter != i_maps.end(); ++iter, ++i)
        update_queue[i] = iter->second;

    uint32 i = 0;
    #pragma omp parallel for schedule(dynamic) private(i) shared(update_queue)
    for (i = 0; i < i_maps.size(); ++i)
        update_queue[i]->Update(i_timer.GetCurrent());

    for (TransportSet::iterator iter = m_Transports.begin(); iter != m_Transports.end(); ++iter)
        (*iter)->Update(i_timer.GetCurrent());

    //remove all maps which can be unloaded
    iter = i_maps.begin();
    while(iter != i_maps.end())
    {
        Map * pMap = iter->second;
        //check if map can be unloaded
        if(pMap->CanUnload((uint32)i_timer.GetCurrent()))
        {
            pMap->UnloadAll(true);
            delete pMap;

            i_maps.erase(iter++);
        }
        else
            ++iter;
    }

    i_timer.SetCurrent(0);
}
Exemple #11
0
void MapManager::Update(uint32 diff)
{
    i_timer.Update(diff);
    if( !i_timer.Passed() )
        return;

    MapMapType::iterator iter = i_maps.begin();
    std::vector<Map*> update_queue(i_maps.size());

    int omp_set_num_threads(sWorld.getConfig(CONFIG_UINT32_NUMTHREADS));

    for (uint32 i = 0; iter != i_maps.end(); ++iter, ++i)
    update_queue[i] = iter->second;

    #pragma omp parallel for schedule(dynamic) private(i) shared(update_queue)
    for (uint32 i = 0; i < i_maps.size(); ++i)
        update_queue[i]->Update(i_timer.GetCurrent());

    for (TransportSet::iterator iter = m_Transports.begin(); iter != m_Transports.end(); ++iter)
        (*iter)->Update(i_timer.GetCurrent());

    i_timer.SetCurrent(0);
}
Exemple #12
0
/*
 * simulated_cache - simulate the cache based on the given parameters from command line
 */
cache_output_param simulated_cache(cache* sim_cache, cache_built_param params, cache_output_param output, unsigned long long int address) {
	
	int line_index;
	int replace_line_index = -1; // flag - represent the line in the set to be replaced
	int last_hits = output.hits; // number of hits in last trace used to determine whether it's hit or miss in this trace


	// get the params of the cache
	int lines_num = params.E;
	long long int tag_size = 64 - (params.b) - (params.s);

	// get the tags and set index in input address
	unsigned long long int input_tag = address >> (params.b + params.s);
	unsigned long long int input_setIndex = address << (tag_size) >> (tag_size + params.b);

	// find the set in the cache to be accessed
	cache_set target_set = sim_cache -> sets[input_setIndex];
	cache_line line;

	/*
	 * implement the cache policies
	 */
	for (line_index = 0; line_index < lines_num; line_index++) {
		
		line = target_set.lines[line_index];

		/*
		 * if the line is valid, go on check the line tag
		 * otherwise, the line is empty, just fetch a new line in this line
		 */
		if (line.valid) {

			/*
			 * if the line's flag is equal to the input flag, it's a hit. Add the line index into the set's accessed queue
			 * otherwise, it's a miss. Fetch a new line to replace a possible empty line
			 */
			if (line.tag == input_tag) {

				output.hits++;
				printf("Got a hit. Hit %d.\n", output.hits);
				update_queue(sim_cache, input_setIndex, line_index);

			}
		}

	}

	/*
	 * if this trace is a miss and there is a empty line, fetch a new line and put into the empty line
	 * if this trace is a miss and there is no empty line, fetch a new line and put into the LRU line, it's a miss + evict
	 */
	if (last_hits == output.hits) {

		output.misses++;
		printf("Got a miss. Misses %d.\n", output.misses);

		replace_line_index = find_empty_line(sim_cache, input_setIndex, lines_num);

		if(replace_line_index != -1) {

			sim_cache -> sets[input_setIndex].lines[replace_line_index].valid = 1;
			sim_cache -> sets[input_setIndex].lines[replace_line_index].tag = input_tag;
			sim_cache -> sets[input_setIndex].used_line_queue.rear++;
			sim_cache -> sets[input_setIndex].used_line_queue.indexes[sim_cache -> sets[input_setIndex].used_line_queue.rear] = replace_line_index;

		} else {

			replace_line_index = find_evict_line(sim_cache, input_setIndex, lines_num);
			sim_cache -> sets[input_setIndex].lines[replace_line_index].tag = input_tag;
			output.evicts++;
			sim_cache -> sets[input_setIndex].used_line_queue.rear++;
			sim_cache -> sets[input_setIndex].used_line_queue.indexes[sim_cache -> sets[input_setIndex].used_line_queue.rear] = replace_line_index;
			printf("Got a evict. Evicts %d.\n", output.evicts);

		}

	}

	return output;

}
Exemple #13
0
int sys_semop (int semid, struct sembuf *tsops, unsigned nsops)
{
	int i, id, size, error;
	struct semid_ds *sma;
	struct sembuf sops[SEMOPM], *sop;
	struct sem_undo *un;
	int undos = 0, alter = 0;

	if (nsops < 1 || semid < 0)
		return -EINVAL;
	if (nsops > SEMOPM)
		return -E2BIG;
	if (!tsops)
		return -EFAULT;
	if ((i = verify_area (VERIFY_READ, tsops, nsops * sizeof(*tsops))))
		return i;
	memcpy_fromfs (sops, tsops, nsops * sizeof(*tsops));
	id = (unsigned int) semid % SEMMNI;
	if ((sma = semary[id]) == IPC_UNUSED || sma == IPC_NOID)
		return -EINVAL;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		return -EIDRM;
	for (i = 0; i < nsops; i++) {
		sop = &sops[i];
		if (sop->sem_num >= sma->sem_nsems)
			return -EFBIG;
		if (sop->sem_flg & SEM_UNDO)
			undos++;
		if (sop->sem_op)
			alter++;
	}
	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
		return -EACCES;
	error = try_semop(sma, sops, nsops);
	if (error < 0)
		return error;
	if (undos) {
		/* Make sure we have an undo structure
		 * for this process and this semaphore set.
		 */
		for (un = current->semundo; un; un = un->proc_next)
			if (un->semid == semid)
				break;
		if (!un) {
			size = sizeof(struct sem_undo) + sizeof(short)*sma->sem_nsems;
			un = (struct sem_undo *) kmalloc(size, GFP_ATOMIC);
			if (!un)
				return -ENOMEM;
			memset(un, 0, size);
			un->semadj = (short *) &un[1];
			un->semid = semid;
			un->proc_next = current->semundo;
			current->semundo = un;
			un->id_next = sma->undo;
			sma->undo = un;
		}
	} else
		un = NULL;
	if (error == 0) {
		/* the operations go through immediately */
		error = do_semop(sma, sops, nsops, un, current->pid);
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		return error;
	} else {
		/* We need to sleep on this operation, so we put the current
		 * task into the pending queue and go to sleep.
		 */
		struct sem_queue queue;

		queue.sma = sma;
		queue.sops = sops;
		queue.nsops = nsops;
		queue.undo = un;
		queue.pid = current->pid;
		queue.status = 0;
		insert_into_queue(sma,&queue);
		queue.sleeper = NULL;
		current->semsleeping = &queue;
		interruptible_sleep_on(&queue.sleeper);
		current->semsleeping = NULL;
		/* When we wake up, either the operation is finished,
		 * or some kind of error happened.
		 */
		if (!queue.prev) {
			/* operation is finished, update_queue() removed us */
			return queue.status;
		} else {
			remove_from_queue(sma,&queue);
			return -EINTR;
		}
	}
}
Exemple #14
0
int sys_semctl (int semid, int semnum, int cmd, union semun arg)
{
	struct semid_ds *buf = NULL;
	struct semid_ds tbuf;
	int i, id, val = 0;
	struct semid_ds *sma;
	struct ipc_perm *ipcp;
	struct sem *curr = NULL;
	struct sem_undo *un;
	unsigned int nsems;
	ushort *array = NULL;
	ushort sem_io[SEMMSL];

	if (semid < 0 || semnum < 0 || cmd < 0)
		return -EINVAL;

	switch (cmd) {
	case IPC_INFO:
	case SEM_INFO:
	{
		struct seminfo seminfo, *tmp = arg.__buf;
		seminfo.semmni = SEMMNI;
		seminfo.semmns = SEMMNS;
		seminfo.semmsl = SEMMSL;
		seminfo.semopm = SEMOPM;
		seminfo.semvmx = SEMVMX;
		seminfo.semmnu = SEMMNU;
		seminfo.semmap = SEMMAP;
		seminfo.semume = SEMUME;
		seminfo.semusz = SEMUSZ;
		seminfo.semaem = SEMAEM;
		if (cmd == SEM_INFO) {
			seminfo.semusz = used_semids;
			seminfo.semaem = used_sems;
		}
		i = verify_area(VERIFY_WRITE, tmp, sizeof(struct seminfo));
		if (i)
			return i;
		memcpy_tofs (tmp, &seminfo, sizeof(struct seminfo));
		return max_semid;
	}

	case SEM_STAT:
		buf = arg.buf;
		i = verify_area (VERIFY_WRITE, buf, sizeof (*buf));
		if (i)
			return i;
		if (semid > max_semid)
			return -EINVAL;
		sma = semary[semid];
		if (sma == IPC_UNUSED || sma == IPC_NOID)
			return -EINVAL;
		if (ipcperms (&sma->sem_perm, S_IRUGO))
			return -EACCES;
		id = (unsigned int) sma->sem_perm.seq * SEMMNI + semid;
		tbuf.sem_perm   = sma->sem_perm;
		tbuf.sem_otime  = sma->sem_otime;
		tbuf.sem_ctime  = sma->sem_ctime;
		tbuf.sem_nsems  = sma->sem_nsems;
		memcpy_tofs (buf, &tbuf, sizeof(*buf));
		return id;
	}

	id = (unsigned int) semid % SEMMNI;
	sma = semary [id];
	if (sma == IPC_UNUSED || sma == IPC_NOID)
		return -EINVAL;
	ipcp = &sma->sem_perm;
	nsems = sma->sem_nsems;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		return -EIDRM;

	switch (cmd) {
	case GETVAL:
	case GETPID:
	case GETNCNT:
	case GETZCNT:
	case SETVAL:
		if (semnum >= nsems)
			return -EINVAL;
		curr = &sma->sem_base[semnum];
		break;
	}

	switch (cmd) {
	case GETVAL:
	case GETPID:
	case GETNCNT:
	case GETZCNT:
	case GETALL:
		if (ipcperms (ipcp, S_IRUGO))
			return -EACCES;
		switch (cmd) {
		case GETVAL : return curr->semval;
		case GETPID : return curr->sempid;
		case GETNCNT: return count_semncnt(sma,semnum);
		case GETZCNT: return count_semzcnt(sma,semnum);
		case GETALL:
			array = arg.array;
			i = verify_area (VERIFY_WRITE, array, nsems*sizeof(ushort));
			if (i)
				return i;
		}
		break;
	case SETVAL:
		val = arg.val;
		if (val > SEMVMX || val < 0)
			return -ERANGE;
		break;
	case IPC_RMID:
		if (suser() || current->euid == ipcp->cuid || current->euid == ipcp->uid) {
			freeary (id);
			return 0;
		}
		return -EPERM;
	case SETALL: /* arg is a pointer to an array of ushort */
		array = arg.array;
		if ((i = verify_area (VERIFY_READ, array, nsems*sizeof(ushort))))
			return i;
		memcpy_fromfs (sem_io, array, nsems*sizeof(ushort));
		for (i = 0; i < nsems; i++)
			if (sem_io[i] > SEMVMX)
				return -ERANGE;
		break;
	case IPC_STAT:
		buf = arg.buf;
		if ((i = verify_area (VERIFY_WRITE, buf, sizeof(*buf))))
			return i;
		break;
	case IPC_SET:
		buf = arg.buf;
		if ((i = verify_area (VERIFY_READ, buf, sizeof (*buf))))
			return i;
		memcpy_fromfs (&tbuf, buf, sizeof (*buf));
		break;
	}

	if (semary[id] == IPC_UNUSED || semary[id] == IPC_NOID)
		return -EIDRM;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		return -EIDRM;

	switch (cmd) {
	case GETALL:
		if (ipcperms (ipcp, S_IRUGO))
			return -EACCES;
		for (i = 0; i < sma->sem_nsems; i++)
			sem_io[i] = sma->sem_base[i].semval;
		memcpy_tofs (array, sem_io, nsems*sizeof(ushort));
		break;
	case SETVAL:
		if (ipcperms (ipcp, S_IWUGO))
			return -EACCES;
		for (un = sma->undo; un; un = un->id_next)
			un->semadj[semnum] = 0;
		curr->semval = val;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		break;
	case IPC_SET:
		if (suser() || current->euid == ipcp->cuid || current->euid == ipcp->uid) {
			ipcp->uid = tbuf.sem_perm.uid;
			ipcp->gid = tbuf.sem_perm.gid;
			ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
				| (tbuf.sem_perm.mode & S_IRWXUGO);
			sma->sem_ctime = CURRENT_TIME;
			return 0;
		}
		return -EPERM;
	case IPC_STAT:
		if (ipcperms (ipcp, S_IRUGO))
			return -EACCES;
		tbuf.sem_perm   = sma->sem_perm;
		tbuf.sem_otime  = sma->sem_otime;
		tbuf.sem_ctime  = sma->sem_ctime;
		tbuf.sem_nsems  = sma->sem_nsems;
		memcpy_tofs (buf, &tbuf, sizeof(*buf));
		break;
	case SETALL:
		if (ipcperms (ipcp, S_IWUGO))
			return -EACCES;
		for (i = 0; i < nsems; i++)
			sma->sem_base[i].semval = sem_io[i];
		for (un = sma->undo; un; un = un->id_next)
			for (i = 0; i < nsems; i++)
				un->semadj[i] = 0;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		break;
	default:
		return -EINVAL;
	}
	return 0;
}
Exemple #15
0
asmlinkage int sys_semop (int semid, struct sembuf *tsops, unsigned nsops)
{
	int id, size, error = -EINVAL;
	struct semid_ds *sma;
	struct sembuf sops[SEMOPM], *sop;
	struct sem_undo *un;
	int undos = 0, decrease = 0, alter = 0;
	struct sem_queue queue;

	lock_kernel();
	if (nsops < 1 || semid < 0)
		goto out;
	error = -E2BIG;
	if (nsops > SEMOPM)
		goto out;
	error = -EFAULT;
	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops)))
		goto out;
	id = (unsigned int) semid % SEMMNI;
	error = -EINVAL;
	if ((sma = semary[id]) == IPC_UNUSED || sma == IPC_NOID)
		goto out;
	error = -EIDRM;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		goto out;

		error = -EFBIG;
	for (sop = sops; sop < sops + nsops; sop++) {
		if (sop->sem_num >= sma->sem_nsems)
			goto out;
		if (sop->sem_flg & SEM_UNDO)
			undos++;
		if (sop->sem_op < 0)
			decrease = 1;
                if (sop->sem_op > 0)
                        alter = 1;
	}
        alter |= decrease;

	error = -EACCES;
	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
		goto out;
	if (undos) {
		/* Make sure we have an undo structure
		 * for this process and this semaphore set.
		 */
		for (un = current->semundo; un; un = un->proc_next)
			if (un->semid == semid)
				break;
		if (!un) {
			size = sizeof(struct sem_undo) + sizeof(short)*sma->sem_nsems;
			un = (struct sem_undo *) kmalloc(size, GFP_ATOMIC);
			if (!un) {
				error = -ENOMEM;
				goto out;
			}
			memset(un, 0, size);
			un->semadj = (short *) &un[1];
			un->semid = semid;
			un->proc_next = current->semundo;
			current->semundo = un;
			un->id_next = sma->undo;
			sma->undo = un;
		}
	} else
		un = NULL;

	error = try_atomic_semop (sma, sops, nsops, un, current->pid, 0);
	if (error <= 0)
                goto update;

        /* We need to sleep on this operation, so we put the current
         * task into the pending queue and go to sleep.
         */
                
        queue.sma = sma;
        queue.sops = sops;
        queue.nsops = nsops;
        queue.undo = un;
        queue.pid = current->pid;
        queue.alter = decrease;
        current->semsleeping = &queue;
        if (alter)
                append_to_queue(sma ,&queue);
        else
                prepend_to_queue(sma ,&queue);

        for (;;) {
                queue.status = -EINTR;
                queue.sleeper = NULL;
                interruptible_sleep_on(&queue.sleeper);

                /*
                 * If queue.status == 1 we where woken up and
                 * have to retry else we simply return.
                 * If an interrupt occurred we have to clean up the
                 * queue
                 *
                 */
                if (queue.status == 1)
                {
                        error = try_atomic_semop (sma, sops, nsops, un,
                                                  current->pid,0);
                        if (error <= 0) 
                                break;
                } else {
                        error = queue.status;;
                        if (queue.prev) /* got Interrupt */
                                break;
                        /* Everything done by update_queue */
                        current->semsleeping = NULL;
                        goto out;
                }
        }
        current->semsleeping = NULL;
        remove_from_queue(sma,&queue);
update:
        if (alter)
                update_queue (sma);
out:
	unlock_kernel();
	return error;
}
Exemple #16
0
asmlinkage int sys_semctl (int semid, int semnum, int cmd, union semun arg)
{
	struct semid_ds *buf = NULL;
	struct semid_ds tbuf;
	int i, id, val = 0;
	struct semid_ds *sma;
	struct ipc_perm *ipcp;
	struct sem *curr = NULL;
	struct sem_undo *un;
	unsigned int nsems;
	ushort *array = NULL;
	ushort sem_io[SEMMSL];
	int err = -EINVAL;

	lock_kernel();
	if (semid < 0 || semnum < 0 || cmd < 0)
		goto out;

	switch (cmd) {
	case IPC_INFO:
	case SEM_INFO:
	{
		struct seminfo seminfo, *tmp = arg.__buf;
		seminfo.semmni = SEMMNI;
		seminfo.semmns = SEMMNS;
		seminfo.semmsl = SEMMSL;
		seminfo.semopm = SEMOPM;
		seminfo.semvmx = SEMVMX;
		seminfo.semmnu = SEMMNU;
		seminfo.semmap = SEMMAP;
		seminfo.semume = SEMUME;
		seminfo.semusz = SEMUSZ;
		seminfo.semaem = SEMAEM;
		if (cmd == SEM_INFO) {
			seminfo.semusz = used_semids;
			seminfo.semaem = used_sems;
		}
		err = -EFAULT;
		if (copy_to_user (tmp, &seminfo, sizeof(struct seminfo))) 
			goto out;
		err = max_semid;
		goto out;
	}

	case SEM_STAT:
		buf = arg.buf;
		err = -EINVAL;
		if (semid > max_semid)
			goto out;
		sma = semary[semid];
		if (sma == IPC_UNUSED || sma == IPC_NOID)
			goto out;
		err = -EACCES;
		if (ipcperms (&sma->sem_perm, S_IRUGO))
			goto out;
		id = (unsigned int) sma->sem_perm.seq * SEMMNI + semid;
		tbuf.sem_perm   = sma->sem_perm;
		tbuf.sem_otime  = sma->sem_otime;
		tbuf.sem_ctime  = sma->sem_ctime;
		tbuf.sem_nsems  = sma->sem_nsems;
		err = -EFAULT;
		if (copy_to_user (buf, &tbuf, sizeof(*buf)) == 0)
			err = id;
		goto out;
	}

	id = (unsigned int) semid % SEMMNI;
	sma = semary [id];
	err = -EINVAL;
	if (sma == IPC_UNUSED || sma == IPC_NOID)
		goto out;
	ipcp = &sma->sem_perm;
	nsems = sma->sem_nsems;
	err = -EIDRM;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		goto out;

	switch (cmd) {
	case GETVAL:
	case GETPID:
	case GETNCNT:
	case GETZCNT:
	case SETVAL:
		err = -EINVAL;
		if (semnum >= nsems)
			goto out;
		curr = &sma->sem_base[semnum];
		break;
	}

	switch (cmd) {
	case GETVAL:
	case GETPID:
	case GETNCNT:
	case GETZCNT:
	case GETALL:
		err = -EACCES;
		if (ipcperms (ipcp, S_IRUGO))
			goto out;
		switch (cmd) {
		case GETVAL : err = curr->semval; goto out;
		case GETPID : err = curr->sempid & 0xffff; goto out;
		case GETNCNT: err = count_semncnt(sma,semnum); goto out;
		case GETZCNT: err = count_semzcnt(sma,semnum); goto out;
		case GETALL:
			array = arg.array;
			break;
		}
		break;
	case SETVAL:
		val = arg.val;
		err = -ERANGE;
		if (val > SEMVMX || val < 0)
			goto out;
		break;
	case IPC_RMID:
		if (current->euid == ipcp->cuid || 
		    current->euid == ipcp->uid || capable(CAP_SYS_ADMIN)) {
			freeary (id);
			err = 0;
			goto out;
		}
		err = -EPERM;
		goto out;
	case SETALL: /* arg is a pointer to an array of ushort */
		array = arg.array;
		err = -EFAULT;
		if (copy_from_user (sem_io, array, nsems*sizeof(ushort)))
		       goto out;
		err = 0;
		for (i = 0; i < nsems; i++)
			if (sem_io[i] > SEMVMX) {
				err = -ERANGE;
				goto out;
			}
		break;
	case IPC_STAT:
		buf = arg.buf;
		break;
	case IPC_SET:
		buf = arg.buf;
		err = copy_from_user (&tbuf, buf, sizeof (*buf));
		if (err)
			err = -EFAULT;
		break;
	}

	err = -EIDRM;
	if (semary[id] == IPC_UNUSED || semary[id] == IPC_NOID)
		goto out;
	if (sma->sem_perm.seq != (unsigned int) semid / SEMMNI)
		goto out;

	switch (cmd) {
	case GETALL:
		err = -EACCES;
		if (ipcperms (ipcp, S_IRUGO))
			goto out;
		for (i = 0; i < sma->sem_nsems; i++)
			sem_io[i] = sma->sem_base[i].semval;
		if (copy_to_user (array, sem_io, nsems*sizeof(ushort)))
			err = -EFAULT;
		break;
	case SETVAL:
		err = -EACCES;
		if (ipcperms (ipcp, S_IWUGO))
			goto out;
		for (un = sma->undo; un; un = un->id_next)
			un->semadj[semnum] = 0;
		curr->semval = val;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		break;
	case IPC_SET:
		if (current->euid == ipcp->cuid || 
		    current->euid == ipcp->uid || capable(CAP_SYS_ADMIN)) {
			ipcp->uid = tbuf.sem_perm.uid;
			ipcp->gid = tbuf.sem_perm.gid;
			ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
				| (tbuf.sem_perm.mode & S_IRWXUGO);
			sma->sem_ctime = CURRENT_TIME;
			err = 0;
			goto out;
		}
		err = -EPERM;
		goto out;
	case IPC_STAT:
		err = -EACCES;
		if (ipcperms (ipcp, S_IRUGO))
			goto out;
		tbuf.sem_perm   = sma->sem_perm;
		tbuf.sem_otime  = sma->sem_otime;
		tbuf.sem_ctime  = sma->sem_ctime;
		tbuf.sem_nsems  = sma->sem_nsems;
		if (copy_to_user (buf, &tbuf, sizeof(*buf)))
			err = -EFAULT;
		break;
	case SETALL:
		err = -EACCES;
		if (ipcperms (ipcp, S_IWUGO))
			goto out;
		for (i = 0; i < nsems; i++)
			sma->sem_base[i].semval = sem_io[i];
		for (un = sma->undo; un; un = un->id_next)
			for (i = 0; i < nsems; i++)
				un->semadj[i] = 0;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		break;
	default:
		err = -EINVAL;
		goto out;
	}
	err = 0;
out:
	unlock_kernel();
	return err;
}
Exemple #17
0
asmlinkage long sys_semtimedop (int semid, struct sembuf *tsops,
			unsigned nsops, const struct timespec *timeout)
{
	int error = -EINVAL;
	struct sem_array *sma;
	struct sembuf fast_sops[SEMOPM_FAST];
	struct sembuf* sops = fast_sops, *sop;
	struct sem_undo *un;
	int undos = 0, decrease = 0, alter = 0;
	struct sem_queue queue;
	unsigned long jiffies_left = 0;

	if (nsops < 1 || semid < 0)
		return -EINVAL;
	if (nsops > sc_semopm)
		return -E2BIG;
	if(nsops > SEMOPM_FAST) {
		sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
		if(sops==NULL)
			return -ENOMEM;
	}
	if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
		error=-EFAULT;
		goto out_free;
	}
	if (timeout) {
		struct timespec _timeout;
		if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
			error = -EFAULT;
			goto out_free;
		}
		if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
		    _timeout.tv_nsec >= 1000000000L) {
			error = -EINVAL;
			goto out_free;
		}
		jiffies_left = timespec_to_jiffies(&_timeout);
	}
	sma = sem_lock(semid);
	error=-EINVAL;
	if(sma==NULL)
		goto out_free;
	error = -EIDRM;
	if (sem_checkid(sma,semid))
		goto out_unlock_free;
	error = -EFBIG;
	for (sop = sops; sop < sops + nsops; sop++) {
		if (sop->sem_num >= sma->sem_nsems)
			goto out_unlock_free;
		if (sop->sem_flg & SEM_UNDO)
			undos++;
		if (sop->sem_op < 0)
			decrease = 1;
		if (sop->sem_op > 0)
			alter = 1;
	}
	alter |= decrease;

	error = -EACCES;
	if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
		goto out_unlock_free;
	if (undos) {
		/* Make sure we have an undo structure
		 * for this process and this semaphore set.
		 */
		un=current->semundo;
		while(un != NULL) {
			if(un->semid==semid)
				break;
			if(un->semid==-1)
				un=freeundos(sma,un);
			 else
				un=un->proc_next;
		}
		if (!un) {
			error = alloc_undo(sma,&un,semid,alter);
			if(error)
				goto out_free;
		}
	} else
		un = NULL;

	error = try_atomic_semop (sma, sops, nsops, un, current->tgid, 0);
	if (error <= 0)
		goto update;

	/* We need to sleep on this operation, so we put the current
	 * task into the pending queue and go to sleep.
	 */
		
	queue.sma = sma;
	queue.sops = sops;
	queue.nsops = nsops;
	queue.undo = un;
	queue.pid = current->tgid;
	queue.alter = decrease;
	queue.id = semid;
	if (alter)
		append_to_queue(sma ,&queue);
	else
		prepend_to_queue(sma ,&queue);
	current->semsleeping = &queue;

	for (;;) {
		struct sem_array* tmp;
		queue.status = -EINTR;
		queue.sleeper = current;
		current->state = TASK_INTERRUPTIBLE;
		sem_unlock(semid);

		if (timeout)
			jiffies_left = schedule_timeout(jiffies_left);
		else
			schedule();

		tmp = sem_lock(semid);
		if(tmp==NULL) {
			if(queue.prev != NULL)
				BUG();
			current->semsleeping = NULL;
			error = -EIDRM;
			goto out_free;
		}
		/*
		 * If queue.status == 1 we where woken up and
		 * have to retry else we simply return.
		 * If an interrupt occurred we have to clean up the
		 * queue
		 *
		 */
		if (queue.status == 1)
		{
			error = try_atomic_semop (sma, sops, nsops, un,
						  current->tgid, 0);
			if (error <= 0) 
				break;
		} else {
			error = queue.status;
			if (error == -EINTR && timeout && jiffies_left == 0)
				error = -EAGAIN;
			if (queue.prev) /* got Interrupt */
				break;
			/* Everything done by update_queue */
			current->semsleeping = NULL;
			goto out_unlock_free;
		}
	}
	current->semsleeping = NULL;
	remove_from_queue(sma,&queue);
update:
	if (alter)
		update_queue (sma);
out_unlock_free:
	sem_unlock(semid);
out_free:
	if(sops != fast_sops)
		kfree(sops);
	return error;
}
Exemple #18
0
static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
{
	struct sem_array *sma;
	struct sem* curr;
	int err;
	ushort fast_sem_io[SEMMSL_FAST];
	ushort* sem_io = fast_sem_io;
	int nsems;

	sma = sem_lock(semid);
	if(sma==NULL)
		return -EINVAL;

	nsems = sma->sem_nsems;

	err=-EIDRM;
	if (sem_checkid(sma,semid))
		goto out_unlock;

	err = -EACCES;
	if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
		goto out_unlock;

	switch (cmd) {
	case GETALL:
	{
		ushort *array = arg.array;
		int i;

		if(nsems > SEMMSL_FAST) {
			sem_unlock(semid);			
			sem_io = ipc_alloc(sizeof(ushort)*nsems);
			if(sem_io == NULL)
				return -ENOMEM;
			err = sem_revalidate(semid, sma, nsems, S_IRUGO);
			if(err)
				goto out_free;
		}

		for (i = 0; i < sma->sem_nsems; i++)
			sem_io[i] = sma->sem_base[i].semval;
		sem_unlock(semid);
		err = 0;
		if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
			err = -EFAULT;
		goto out_free;
	}
	case SETALL:
	{
		int i;
		struct sem_undo *un;

		sem_unlock(semid);

		if(nsems > SEMMSL_FAST) {
			sem_io = ipc_alloc(sizeof(ushort)*nsems);
			if(sem_io == NULL)
				return -ENOMEM;
		}

		if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
			err = -EFAULT;
			goto out_free;
		}

		for (i = 0; i < nsems; i++) {
			if (sem_io[i] > SEMVMX) {
				err = -ERANGE;
				goto out_free;
			}
		}
		err = sem_revalidate(semid, sma, nsems, S_IWUGO);
		if(err)
			goto out_free;

		for (i = 0; i < nsems; i++)
			sma->sem_base[i].semval = sem_io[i];
		for (un = sma->undo; un; un = un->id_next)
			for (i = 0; i < nsems; i++)
				un->semadj[i] = 0;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		err = 0;
		goto out_unlock;
	}
	case IPC_STAT:
	{
		struct semid64_ds tbuf;
		memset(&tbuf,0,sizeof(tbuf));
		kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
		tbuf.sem_otime  = sma->sem_otime;
		tbuf.sem_ctime  = sma->sem_ctime;
		tbuf.sem_nsems  = sma->sem_nsems;
		sem_unlock(semid);
		if (copy_semid_to_user (arg.buf, &tbuf, version))
			return -EFAULT;
		return 0;
	}
	/* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
	}
	err = -EINVAL;
	if(semnum < 0 || semnum >= nsems)
		goto out_unlock;

	curr = &sma->sem_base[semnum];

	switch (cmd) {
	case GETVAL:
		err = curr->semval;
		goto out_unlock;
	case GETPID:
		err = curr->sempid & 0xffff;
		goto out_unlock;
	case GETNCNT:
		err = count_semncnt(sma,semnum);
		goto out_unlock;
	case GETZCNT:
		err = count_semzcnt(sma,semnum);
		goto out_unlock;
	case SETVAL:
	{
		int val = arg.val;
		struct sem_undo *un;
		err = -ERANGE;
		if (val > SEMVMX || val < 0)
			goto out_unlock;

		for (un = sma->undo; un; un = un->id_next)
			un->semadj[semnum] = 0;
		curr->semval = val;
		curr->sempid = current->tgid;
		sma->sem_ctime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
		err = 0;
		goto out_unlock;
	}
	}
out_unlock:
	sem_unlock(semid);
out_free:
	if(sem_io != fast_sem_io)
		ipc_free(sem_io, sizeof(ushort)*nsems);
	return err;
}
Exemple #19
0
/*
 * add semadj values to semaphores, free undo structures.
 * undo structures are not freed when semaphore arrays are destroyed
 * so some of them may be out of date.
 * IMPLEMENTATION NOTE: There is some confusion over whether the
 * set of adjustments that needs to be done should be done in an atomic
 * manner or not. That is, if we are attempting to decrement the semval
 * should we queue up and wait until we can do so legally?
 * The original implementation attempted to do this (queue and wait).
 * The current implementation does not do so. The POSIX standard
 * and SVID should be consulted to determine what behavior is mandated.
 */
void sem_exit (void)
{
	struct sem_queue *q;
	struct sem_undo *u, *un = NULL, **up, **unp;
	struct sem_array *sma;
	int nsems, i;

	/* If the current process was sleeping for a semaphore,
	 * remove it from the queue.
	 */
	if ((q = current->semsleeping)) {
		int semid = q->id;
		sma = sem_lock(semid);
		current->semsleeping = NULL;

		if (q->prev) {
			if(sma==NULL)
				BUG();
			remove_from_queue(q->sma,q);
		}
		if(sma!=NULL)
			sem_unlock(semid);
	}

	for (up = &current->semundo; (u = *up); *up = u->proc_next, kfree(u)) {
		int semid = u->semid;
		if(semid == -1)
			continue;
		sma = sem_lock(semid);
		if (sma == NULL)
			continue;

		if (u->semid == -1)
			goto next_entry;

		if (sem_checkid(sma,u->semid))
			goto next_entry;

		/* remove u from the sma->undo list */
		for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
			if (u == un)
				goto found;
		}
		printk ("sem_exit undo list error id=%d\n", u->semid);
		goto next_entry;
found:
		*unp = un->id_next;
		/* perform adjustments registered in u */
		nsems = sma->sem_nsems;
		for (i = 0; i < nsems; i++) {
			struct sem * sem = &sma->sem_base[i];
			sem->semval += u->semadj[i];
			if (sem->semval < 0)
				sem->semval = 0; /* shouldn't happen */
			sem->sempid = current->tgid;
		}
		sma->sem_otime = CURRENT_TIME;
		/* maybe some queued-up processes were waiting for this */
		update_queue(sma);
next_entry:
		sem_unlock(semid);
	}
	current->semundo = NULL;
}