void rtl8225_host_usb_init(struct net_device *dev) { #if 0 write_nic_byte(dev,RFPinsSelect+1,0); write_nic_byte(dev,GPIO,0); write_nic_byte_E(dev,0x53,read_nic_byte_E(dev,0x53) | (1<<7)); write_nic_byte(dev,RFPinsSelect+1,4); write_nic_byte(dev,GPIO,0x20); write_nic_byte(dev,GP_ENABLE,0); /* Config BB & RF */ write_nic_word(dev, RFPinsOutput, 0x80); write_nic_word(dev, RFPinsSelect, 0x80); write_nic_word(dev, RFPinsEnable, 0x80); mdelay(100); mdelay(1000); #endif }
bool FirmwareEnableCPU(struct net_device *dev) { bool rtStatus = true; u8 tmpU1b, CPUStatus = 0; u16 tmpU2b; u32 iCheckTime = 200; /* Enable CPU. */ tmpU1b = read_nic_byte(dev, SYS_CLKR); /* AFE source */ write_nic_byte(dev, SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL)); tmpU2b = read_nic_word(dev, SYS_FUNC_EN); write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN)); /* Poll IMEM Ready after CPU has refilled. */ do { CPUStatus = read_nic_byte(dev, TCR); if (CPUStatus & IMEM_RDY) /* success */ break; udelay(100); } while (iCheckTime--); if (!(CPUStatus & IMEM_RDY)) { RT_TRACE(COMP_ERR, "%s(): failed to enable CPU", __func__); rtStatus = false; } return rtStatus; }
static void rtl8225_host_pci_init(struct net_device *dev) { write_nic_word(dev, RFPinsOutput, 0x480); rtl8185_rf_pins_enable(dev); write_nic_word(dev, RFPinsSelect, 0x88 | SW_CONTROL_GPIO); write_nic_byte(dev, GP_ENABLE, 0); force_pci_posting(dev); mdelay(200); /* bit 6 is for RF on/off detection */ write_nic_word(dev, GP_ENABLE, 0xff & (~(1 << 6))); }
static void PlatformIOWrite2Byte(struct net_device *dev, u32 offset, u16 data) { write_nic_word(dev, offset, data); /* * To make sure write operation is completed, * 2005.11.09, by rcnjko. */ read_nic_word(dev, offset); }
void rtl8225_host_pci_init(struct net_device *dev) { write_nic_word(dev, RFPinsOutput, 0x480); rtl8185_rf_pins_enable(dev); //if(priv->card_8185 == 2 && priv->enable_gpio0 ) /* version D */ //write_nic_word(dev, RFPinsSelect, 0x88); //else write_nic_word(dev, RFPinsSelect, 0x88 | SW_CONTROL_GPIO); /* 0x488 | SW_CONTROL_GPIO */ write_nic_byte(dev, GP_ENABLE, 0); force_pci_posting(dev); mdelay(200); write_nic_word(dev, GP_ENABLE, 0xff & (~(1<<6))); /* bit 6 is for RF on/off detection */ }
static void MlmeDisassociateRequest(struct r8192_priv *priv, u8 *asSta, u8 asRsn) { u8 i; RemovePeerTS(priv->ieee80211, asSta); SendDisassociation( priv->ieee80211, asSta, asRsn ); if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL) { //ShuChen TODO: change media status. //ShuChen TODO: What to do when disassociate. priv->ieee80211->state = IEEE80211_NOLINK; for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22; priv->OpMode = RT_OP_MODE_NO_LINK; { RT_OP_MODE OpMode = priv->OpMode; u8 btMsr = read_nic_byte(priv, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set separate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(priv, MSR, btMsr); } ieee80211_disassociate(priv->ieee80211); write_nic_word(priv, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(priv, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); } }
RT_STATUS FirmwareEnableCPU(struct net_device *dev) { RT_STATUS rtStatus = RT_STATUS_SUCCESS; u8 tmpU1b, CPUStatus = 0; u16 tmpU2b; u32 iCheckTime = 200; RT_TRACE(COMP_FIRMWARE, "-->FirmwareEnableCPU()\n" ); // Enable CPU. tmpU1b = read_nic_byte(dev, SYS_CLKR); write_nic_byte(dev, SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL)); //AFE source tmpU2b = read_nic_word(dev, SYS_FUNC_EN); write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN)); //Polling IMEM Ready after CPU has refilled. do { CPUStatus = read_nic_byte(dev, TCR); if(CPUStatus& IMEM_RDY) { RT_TRACE(COMP_FIRMWARE, "IMEM Ready after CPU has refilled.\n"); break; } //usleep(100); udelay(100); }while(iCheckTime--); if(!(CPUStatus & IMEM_RDY)) return RT_STATUS_FAILURE; RT_TRACE(COMP_FIRMWARE, "<--FirmwareEnableCPU(): rtStatus(%#x)\n", rtStatus); return rtStatus; }
bool FirmwareEnableCPU(struct net_device *dev) { bool rtStatus = true; u8 tmpU1b, CPUStatus = 0; u16 tmpU2b; u32 iCheckTime = 200; RT_TRACE(COMP_FIRMWARE, "-->FirmwareEnableCPU()\n" ); fw_SetRQPN(dev); tmpU1b = read_nic_byte(dev, SYS_CLKR); write_nic_byte(dev, SYS_CLKR, (tmpU1b|SYS_CPU_CLKSEL)); tmpU2b = read_nic_word(dev, SYS_FUNC_EN); write_nic_word(dev, SYS_FUNC_EN, (tmpU2b|FEN_CPUEN)); do { CPUStatus = read_nic_byte(dev, TCR); if(CPUStatus& IMEM_RDY) { RT_TRACE(COMP_FIRMWARE, "IMEM Ready after CPU has refilled.\n"); break; } udelay(100); }while(iCheckTime--); if(!(CPUStatus & IMEM_RDY)) return false; RT_TRACE(COMP_FIRMWARE, "<--FirmwareEnableCPU(): rtStatus(%#x)\n", rtStatus); return rtStatus; }
void StaRateAdaptive87SE(struct net_device *dev) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm = 0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate / 5; if (CurrTxokCnt > 0) { CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt); } else { CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1); } priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; if (CurrRetryRate == 0 && CurrTxokCnt == 0) { priv->TryupingCountNoData++; if (priv->TryupingCountNoData > 30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData = 0; } if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) TryUpTh += 9; if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) TryDownTh += 1; if (priv->bTryuping == true) { if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { bTryDown = true; } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) { bTryUp = true; priv->TryupingCount += TryUpTh; } } else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 108) { if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) { bTryDown = true; } else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) { bTryDown = true; } if (bTryDown && (CurrSignalStrength < -75)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 96) { if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) { bTryDown = true; } else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -75)){ priv->TryDownCountLowData += TryDownTh; } } else if (priv->CurrentOperaRate == 72) { if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 15) && (priv->LastRetryRate < 16)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -80)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 48) { if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) { bTryDown = true; } else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { bTryUp = true; } if (bTryDown && (CurrSignalStrength < -82)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 36) { if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 22) { if (CurrRetryRate > 95) { bTryDown = true; } else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 11) { if (CurrRetryRate > 149) { bTryDown = true; } else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 4) { if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) { bTryDown = true; } else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 2) { if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) { bTryUp = true; } } if (bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if (jiffies % (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; } } if (bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; if (priv->CurrentOperaRate == 22) bUpdateInitialGain = true; if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2)) priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2); priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); } else if(priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); } if (priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; } } } else { if (priv->TryupingCount > 0) priv->TryupingCount --; } if (bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; if (priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount++; if (CurrSignalStrength > priv->LastFailTxRateSS) priv->LastFailTxRateSS = CurrSignalStrength; } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 )) { priv->CurrentOperaRate = 72; } if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); } if (MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } } } else { if (priv->TryDownCountLowData > 0) priv->TryDownCountLowData--; } if (priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount--; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); if (u1bCck == CckTxPwrIdx) { if (u1bOfdm != (OfdmTxPwrIdx + 2)) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } else if (u1bCck < CckTxPwrIdx) { if (!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35: (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } } else if (priv->bEnhanceTxPwr) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); if (u1bCck == CckTxPwrIdx) { priv->bEnhanceTxPwr = false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); } else if (u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr = false; u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2): 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } SetInitialGain: if (bUpdateInitialGain) { if (MgntIsCckRate(priv->CurrentOperaRate)) { if (priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp = priv->InitialGain; if (CurrSignalStrength < -85) priv->InitialGain = priv->RegBModeGainStage; else if (priv->InitialGain > priv->RegBModeGainStage + 1) priv->InitialGain -= 2; else priv->InitialGain--; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else { if (priv->InitialGain < 4) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
static void StaRateAdaptive87SE(struct net_device *dev) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm = 0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod = RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate / 5; /* 2 Compute retry ratio. */ if (CurrTxokCnt > 0) { CurrRetryRate = (u16)(CurrRetryCnt * 100 / CurrTxokCnt); } else { /* It may be serious retry. To distinguish serious retry or no packets modified by Bruce */ CurrRetryRate = (u16)(CurrRetryCnt * 100 / 1); } priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; /* 2No Tx packets, return to init_rate or not? */ if (CurrRetryRate == 0 && CurrTxokCnt == 0) { /* * After 9 (30*300ms) seconds in this condition, we try to raise rate. */ priv->TryupingCountNoData++; /* [TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00 */ if (priv->TryupingCountNoData > 30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); /* Reset Fail Record */ priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData = 0; /*Reset trying up times. */ } /* * For Netgear case, I comment out the following signal strength estimation, * which can results in lower rate to transmit when sample is NOT enough (e.g. PING request). * * Restructure rate adaptive as the following main stages: * (1) Add retry threshold in 54M upgrading condition with signal strength. * (2) Add the mechanism to degrade to CCK rate according to signal strength * and retry rate. * (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated * situation, Initial Gain Update is upon on DIG mechanism except CCK rate. * (4) Add the mechanism of trying to upgrade tx rate. * (5) Record the information of upping tx rate to avoid trying upping tx rate constantly. * */ /* * 11Mbps or 36Mbps * Check more times in these rate(key rates). */ if (priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) TryUpTh += 9; /* * Let these rates down more difficult. */ if (MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) TryDownTh += 1; /* 1 Adjust Rate. */ if (priv->bTryuping == true) { /* 2 For Test Upgrading mechanism * Note: * Sometimes the throughput is upon on the capability between the AP and NIC, * thus the low data rate does not improve the performance. * We randomly upgrade the data rate and check if the retry rate is improved. */ /* Upgrading rate did not improve the retry rate, fallback to the original rate. */ if ((CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { /*Not necessary raising rate, fall back rate. */ bTryDown = true; } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { /* * 2For High Power * * Return to highest data rate, if signal strength is good enough. * SignalStrength threshold(-50dbm) is for RTL8186. * Revise SignalStrength threshold to -51dbm. */ /* Also need to check retry rate for safety, by Bruce, 2007-06-05. */ if (priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate) { bTryUp = true; /* Upgrade Tx Rate directly. */ priv->TryupingCount += TryUpTh; } } else if (CurrTxokCnt > 9 && CurrTxokCnt < 100 && CurrRetryRate >= 600) { /* *2 For Serious Retry * * Traffic is not busy but our Tx retry is serious. */ bTryDown = true; /* Let Rate Mechanism to degrade tx rate directly. */ priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 108) { /* 2For 54Mbps */ /* Air Link */ if ((CurrRetryRate > 26) && (priv->LastRetryRate > 25)) { bTryDown = true; } /* Cable Link */ else if ((CurrRetryRate > 17) && (priv->LastRetryRate > 16) && (CurrSignalStrength > -72)) { bTryDown = true; } if (bTryDown && (CurrSignalStrength < -75)) /* cable link */ priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 96) { /* 2For 48Mbps */ /* Air Link */ if (((CurrRetryRate > 48) && (priv->LastRetryRate > 47))) { bTryDown = true; } else if (((CurrRetryRate > 21) && (priv->LastRetryRate > 20)) && (CurrSignalStrength > -74)) { /* Cable Link */ /* Down to rate 36Mbps. */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 8) && (priv->LastRetryRate < 8)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -75)) { priv->TryDownCountLowData += TryDownTh; } } else if (priv->CurrentOperaRate == 72) { /* 2For 36Mbps */ if ((CurrRetryRate > 43) && (priv->LastRetryRate > 41)) { /* Down to rate 24Mbps. */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 15) && (priv->LastRetryRate < 16)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -80)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 48) { /* 2For 24Mbps */ /* Air Link */ if (((CurrRetryRate > 63) && (priv->LastRetryRate > 62))) { bTryDown = true; } else if (((CurrRetryRate > 33) && (priv->LastRetryRate > 32)) && (CurrSignalStrength > -82)) { /* Cable Link */ bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 20) && (priv->LastRetryRate < 21)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } if (bTryDown && (CurrSignalStrength < -82)) priv->TryDownCountLowData += TryDownTh; } else if (priv->CurrentOperaRate == 36) { if (((CurrRetryRate > 85) && (priv->LastRetryRate > 86))) { bTryDown = true; } else if ((CurrRetryRate > (priv->LastRetryRate + 50)) && (priv->FailTxRateCount > 2)) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ((CurrRetryRate < 22) && (priv->LastRetryRate < 23)) { /* TO DO: need to consider (RSSI) */ bTryUp = true; } } else if (priv->CurrentOperaRate == 22) { /* 2For 11Mbps */ if (CurrRetryRate > 95) { bTryDown = true; } else if ((CurrRetryRate < 29) && (priv->LastRetryRate < 30)) { /*TO DO: need to consider (RSSI) */ bTryUp = true; } } else if (priv->CurrentOperaRate == 11) { /* 2For 5.5Mbps */ if (CurrRetryRate > 149) { bTryDown = true; } else if ((CurrRetryRate < 60) && (priv->LastRetryRate < 65)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 4) { /* 2For 2 Mbps */ if ((CurrRetryRate > 99) && (priv->LastRetryRate > 99)) { bTryDown = true; } else if ((CurrRetryRate < 65) && (priv->LastRetryRate < 70)) { bTryUp = true; } } else if (priv->CurrentOperaRate == 2) { /* 2For 1 Mbps */ if ((CurrRetryRate < 70) && (priv->LastRetryRate < 75)) { bTryUp = true; } } if (bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); /* 1 Test Upgrading Tx Rate * Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC. * To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate. */ if (!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if (jiffies % (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; } } /* 1 Rate Mechanism */ if (bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; /* * Check more times if we need to upgrade indeed. * Because the largest value of pHalData->TryupingCount is 0xFFFF and * the largest value of pHalData->FailTxRateCount is 0x14, * this condition will be satisfied at most every 2 min. */ if ((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; /* * When transferring from CCK to OFDM, DIG is an important issue. */ if (priv->CurrentOperaRate == 22) bUpdateInitialGain = true; /* * The difference in throughput between 48Mbps and 36Mbps is 8M. * So, we must be careful in this rate scale. Isaiah 2008-02-15. */ if (((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2)) priv->RateAdaptivePeriod = (RATE_ADAPTIVE_TIMER_PERIOD / 2); /* (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. */ /* (2)If the signal strength is increased, it may be able to upgrade. */ priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */ } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */ } /* Update Fail Tx rate and count. */ if (priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; /* Set lowest power. */ } } } else { if (priv->TryupingCount > 0) priv->TryupingCount--; } if (bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; /* Check if Tx rate can be degraded or Test trying upgrading should fallback. */ if (priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; /* Update fail information. */ if (priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount++; /* Record the Tx fail rate signal strength. */ if (CurrSignalStrength > priv->LastFailTxRateSS) priv->LastFailTxRateSS = CurrSignalStrength; } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); /* Reduce chariot training time at weak signal strength situation. SD3 ED demand. */ if ((CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72)) { priv->CurrentOperaRate = 72; } if (priv->CurrentOperaRate == 36) { priv->bUpdateARFR = true; write_nic_word(dev, ARFR, 0x0F8F); /* bypass 12/9/6 */ } else if (priv->bUpdateARFR) { priv->bUpdateARFR = false; write_nic_word(dev, ARFR, 0x0FFF); /* set 1M ~ 54Mbps. */ } /* * When it is CCK rate, it may need to update initial gain to receive lower power packets. */ if (MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } } } else { if (priv->TryDownCountLowData > 0) priv->TryDownCountLowData--; } /* * Keep the Tx fail rate count to equal to 0x15 at most. * Reduce the fail count at least to 10 sec if tx rate is tending stable. */ if (priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount--; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; /* Mac0x9e increase 2 level in 36M~18M situation */ if ((priv->CurrentOperaRate < 96) && (priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); /* case 1: Never enter High power */ if (u1bCck == CckTxPwrIdx) { if (u1bOfdm != (OfdmTxPwrIdx + 2)) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } else if (u1bCck < CckTxPwrIdx) { /* case 2: enter high power */ if (!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr = true; u1bOfdm = ((u1bOfdm + 2) > 35) ? 35 : (u1bOfdm + 2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } } else if (priv->bEnhanceTxPwr) { /* 54/48/11/5.5/2/1 */ u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); /* case 1: Never enter High power */ if (u1bCck == CckTxPwrIdx) { priv->bEnhanceTxPwr = false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); } /* case 2: enter high power */ else if (u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr = false; u1bOfdm = ((u1bOfdm - 2) > 0) ? (u1bOfdm - 2) : 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); } } /* * We need update initial gain when we set tx rate "from OFDM to CCK" or * "from CCK to OFDM". */ SetInitialGain: if (bUpdateInitialGain) { if (MgntIsCckRate(priv->CurrentOperaRate)) { /* CCK */ if (priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp = priv->InitialGain; if (CurrSignalStrength < -85) /* Low power, OFDM [0x17] = 26. */ /* SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26. */ priv->InitialGain = priv->RegBModeGainStage; else if (priv->InitialGain > priv->RegBModeGainStage + 1) priv->InitialGain -= 2; else priv->InitialGain--; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else { /* OFDM */ if (priv->InitialGain < 4) { priv->InitialGainBackUp = priv->InitialGain; priv->InitialGain++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n", priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } /* Record the related info */ priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
void StaRateAdaptive87SE( struct net_device *dev ) { struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); unsigned long CurrTxokCnt; u16 CurrRetryCnt; u16 CurrRetryRate; //u16 i,idx; unsigned long CurrRxokCnt; bool bTryUp = false; bool bTryDown = false; u8 TryUpTh = 1; u8 TryDownTh = 2; u32 TxThroughput; long CurrSignalStrength; bool bUpdateInitialGain = false; u8 u1bOfdm=0, u1bCck = 0; char OfdmTxPwrIdx, CckTxPwrIdx; priv->RateAdaptivePeriod= RATE_ADAPTIVE_TIMER_PERIOD; CurrRetryCnt = priv->CurrRetryCnt; CurrTxokCnt = priv->NumTxOkTotal - priv->LastTxokCnt; CurrRxokCnt = priv->ieee80211->NumRxOkTotal - priv->LastRxokCnt; CurrSignalStrength = priv->Stats_RecvSignalPower; TxThroughput = (u32)(priv->NumTxOkBytesTotal - priv->LastTxOKBytes); priv->LastTxOKBytes = priv->NumTxOkBytesTotal; priv->CurrentOperaRate = priv->ieee80211->rate/5; //printk("priv->CurrentOperaRate is %d\n",priv->CurrentOperaRate); //2 Compute retry ratio. if (CurrTxokCnt>0) { CurrRetryRate = (u16)(CurrRetryCnt*100/CurrTxokCnt); } else { // It may be serious retry. To distinguish serious retry or no packets modified by Bruce CurrRetryRate = (u16)(CurrRetryCnt*100/1); } // // Added by Roger, 2007.01.02. // For debug information. // //printk("\n(1) pHalData->LastRetryRate: %d \n",priv->LastRetryRate); //printk("(2) RetryCnt = %d \n", CurrRetryCnt); //printk("(3) TxokCnt = %d \n", CurrTxokCnt); //printk("(4) CurrRetryRate = %d \n", CurrRetryRate); //printk("(5) CurrSignalStrength = %d \n",CurrSignalStrength); //printk("(6) TxThroughput is %d\n",TxThroughput); //printk("priv->NumTxOkBytesTotal is %d\n",priv->NumTxOkBytesTotal); priv->LastRetryCnt = priv->CurrRetryCnt; priv->LastTxokCnt = priv->NumTxOkTotal; priv->LastRxokCnt = priv->ieee80211->NumRxOkTotal; priv->CurrRetryCnt = 0; //2No Tx packets, return to init_rate or not? if (CurrRetryRate==0 && CurrTxokCnt == 0) { // //After 9 (30*300ms) seconds in this condition, we try to raise rate. // priv->TryupingCountNoData++; // printk("No Tx packets, TryupingCountNoData(%d)\n", priv->TryupingCountNoData); //[TRC Dell Lab] Extend raised period from 4.5sec to 9sec, Isaiah 2008-02-15 18:00 if (priv->TryupingCountNoData>30) { priv->TryupingCountNoData = 0; priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); // Reset Fail Record priv->LastFailTxRate = 0; priv->LastFailTxRateSS = -200; priv->FailTxRateCount = 0; } goto SetInitialGain; } else { priv->TryupingCountNoData=0; //Reset trying up times. } // // For Netgear case, I comment out the following signal strength estimation, // which can results in lower rate to transmit when sample is NOT enough (e.g. PING request). // 2007.04.09, by Roger. // // // Restructure rate adaptive as the following main stages: // (1) Add retry threshold in 54M upgrading condition with signal strength. // (2) Add the mechanism to degrade to CCK rate according to signal strength // and retry rate. // (3) Remove all Initial Gain Updates over OFDM rate. To avoid the complicated // situation, Initial Gain Update is upon on DIG mechanism except CCK rate. // (4) Add the mehanism of trying to upgrade tx rate. // (5) Record the information of upping tx rate to avoid trying upping tx rate constantly. // By Bruce, 2007-06-05. // // // 11Mbps or 36Mbps // Check more times in these rate(key rates). // if(priv->CurrentOperaRate == 22 || priv->CurrentOperaRate == 72) { TryUpTh += 9; } // // Let these rates down more difficult. // if(MgntIsCckRate(priv->CurrentOperaRate) || priv->CurrentOperaRate == 36) { TryDownTh += 1; } //1 Adjust Rate. if (priv->bTryuping == true) { //2 For Test Upgrading mechanism // Note: // Sometimes the throughput is upon on the capability bwtween the AP and NIC, // thus the low data rate does not improve the performance. // We randomly upgrade the data rate and check if the retry rate is improved. // Upgrading rate did not improve the retry rate, fallback to the original rate. if ( (CurrRetryRate > 25) && TxThroughput < priv->LastTxThroughput) { //Not necessary raising rate, fall back rate. bTryDown = true; //printk("case1-1: Not necessary raising rate, fall back rate....\n"); //printk("case1-1: pMgntInfo->CurrentOperaRate =%d, TxThroughput = %d, LastThroughput = %d\n", // priv->CurrentOperaRate, TxThroughput, priv->LastTxThroughput); } else { priv->bTryuping = false; } } else if (CurrSignalStrength > -47 && (CurrRetryRate < 50)) { //2For High Power // // Added by Roger, 2007.04.09. // Return to highest data rate, if signal strength is good enough. // SignalStrength threshold(-50dbm) is for RTL8186. // Revise SignalStrength threshold to -51dbm. // // Also need to check retry rate for safety, by Bruce, 2007-06-05. if(priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate ) { bTryUp = true; // Upgrade Tx Rate directly. priv->TryupingCount += TryUpTh; } // printk("case2: StaRateAdaptive87SE: Power(%d) is high enough!!. \n", CurrSignalStrength); } else if(CurrTxokCnt > 9 && CurrTxokCnt< 100 && CurrRetryRate >= 600) { //2 For Serious Retry // // Traffic is not busy but our Tx retry is serious. // bTryDown = true; // Let Rate Mechanism to degrade tx rate directly. priv->TryDownCountLowData += TryDownTh; // printk("case3: RA: Tx Retry is serious. Degrade Tx Rate to %d directly...\n", priv->CurrentOperaRate); } else if ( priv->CurrentOperaRate == 108 ) { //2For 54Mbps // Air Link if ( (CurrRetryRate>26)&&(priv->LastRetryRate>25)) // if ( (CurrRetryRate>40)&&(priv->LastRetryRate>39)) { //Down to rate 48Mbps. bTryDown = true; } // Cable Link else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72)) // else if ( (CurrRetryRate>17)&&(priv->LastRetryRate>16) && (CurrSignalStrength > -72)) { //Down to rate 48Mbps. bTryDown = true; } if(bTryDown && (CurrSignalStrength < -75)) //cable link { priv->TryDownCountLowData += TryDownTh; } //printk("case4---54M \n"); } else if ( priv->CurrentOperaRate == 96 ) { //2For 48Mbps //Air Link if ( ((CurrRetryRate>48) && (priv->LastRetryRate>47))) // if ( ((CurrRetryRate>65) && (priv->LastRetryRate>64))) { //Down to rate 36Mbps. bTryDown = true; } //Cable Link else if ( ((CurrRetryRate>21) && (priv->LastRetryRate>20)) && (CurrSignalStrength > -74)) { //Down to rate 36Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<8) && (priv->LastRetryRate<8) ) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<28) && (priv->LastRetryRate<8) ) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -75)) { priv->TryDownCountLowData += TryDownTh; } //printk("case5---48M \n"); } else if ( priv->CurrentOperaRate == 72 ) { //2For 36Mbps if ( (CurrRetryRate>43) && (priv->LastRetryRate>41)) // if ( (CurrRetryRate>60) && (priv->LastRetryRate>59)) { //Down to rate 24Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<15) && (priv->LastRetryRate<16)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<35) && (priv->LastRetryRate<36)) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -80)) { priv->TryDownCountLowData += TryDownTh; } //printk("case6---36M \n"); } else if ( priv->CurrentOperaRate == 48 ) { //2For 24Mbps // Air Link if ( ((CurrRetryRate>63) && (priv->LastRetryRate>62))) // if ( ((CurrRetryRate>83) && (priv->LastRetryRate>82))) { //Down to rate 18Mbps. bTryDown = true; } //Cable Link else if ( ((CurrRetryRate>33) && (priv->LastRetryRate>32)) && (CurrSignalStrength > -82) ) // else if ( ((CurrRetryRate>50) && (priv->LastRetryRate>49)) && (CurrSignalStrength > -82) ) { //Down to rate 18Mbps. bTryDown = true; } else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<20) && (priv->LastRetryRate<21)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<40) && (priv->LastRetryRate<41)) { bTryUp = true; } if(bTryDown && (CurrSignalStrength < -82)) { priv->TryDownCountLowData += TryDownTh; } //printk("case7---24M \n"); } else if ( priv->CurrentOperaRate == 36 ) { //2For 18Mbps // original (109, 109) //[TRC Dell Lab] (90, 91), Isaiah 2008-02-18 23:24 // (85, 86), Isaiah 2008-02-18 24:00 if ( ((CurrRetryRate>85) && (priv->LastRetryRate>86))) // if ( ((CurrRetryRate>115) && (priv->LastRetryRate>116))) { //Down to rate 11Mbps. bTryDown = true; } //[TRC Dell Lab] Isaiah 2008-02-18 23:24 else if((CurrRetryRate> (priv->LastRetryRate + 50 )) && (priv->FailTxRateCount >2 )) // else if((CurrRetryRate> (priv->LastRetryRate + 70 )) && (priv->FailTxRateCount >2 )) { bTryDown = true; priv->TryDownCountLowData += TryDownTh; } else if ( (CurrRetryRate<22) && (priv->LastRetryRate<23)) //TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<42) && (priv->LastRetryRate<43)) { bTryUp = true; } //printk("case8---18M \n"); } else if ( priv->CurrentOperaRate == 22 ) { //2For 11Mbps if (CurrRetryRate>95) // if (CurrRetryRate>155) { bTryDown = true; } else if ( (CurrRetryRate<29) && (priv->LastRetryRate <30) )//TO DO: need to consider (RSSI) // else if ( (CurrRetryRate<49) && (priv->LastRetryRate <50) ) { bTryUp = true; } //printk("case9---11M \n"); } else if ( priv->CurrentOperaRate == 11 ) { //2For 5.5Mbps if (CurrRetryRate>149) // if (CurrRetryRate>189) { bTryDown = true; } else if ( (CurrRetryRate<60) && (priv->LastRetryRate < 65)) // else if ( (CurrRetryRate<80) && (priv->LastRetryRate < 85)) { bTryUp = true; } //printk("case10---5.5M \n"); } else if ( priv->CurrentOperaRate == 4 ) { //2For 2 Mbps if((CurrRetryRate>99) && (priv->LastRetryRate>99)) // if((CurrRetryRate>199) && (priv->LastRetryRate>199)) { bTryDown = true; } else if ( (CurrRetryRate < 65) && (priv->LastRetryRate < 70)) // else if ( (CurrRetryRate < 85) && (priv->LastRetryRate < 90)) { bTryUp = true; } //printk("case11---2M \n"); } else if ( priv->CurrentOperaRate == 2 ) { //2For 1 Mbps if( (CurrRetryRate<70) && (priv->LastRetryRate<75)) // if( (CurrRetryRate<90) && (priv->LastRetryRate<95)) { bTryUp = true; } //printk("case12---1M \n"); } if(bTryUp && bTryDown) printk("StaRateAdaptive87B(): Tx Rate tried upping and downing simultaneously!\n"); //1 Test Upgrading Tx Rate // Sometimes the cause of the low throughput (high retry rate) is the compatibility between the AP and NIC. // To test if the upper rate may cause lower retry rate, this mechanism randomly occurs to test upgrading tx rate. if(!bTryUp && !bTryDown && (priv->TryupingCount == 0) && (priv->TryDownCountLowData == 0) && priv->CurrentOperaRate != priv->ieee80211->current_network.HighestOperaRate && priv->FailTxRateCount < 2) { if(jiffies% (CurrRetryRate + 101) == 0) { bTryUp = true; priv->bTryuping = true; //printk("StaRateAdaptive87SE(): Randomly try upgrading...\n"); } } //1 Rate Mechanism if(bTryUp) { priv->TryupingCount++; priv->TryDownCountLowData = 0; { // printk("UP: pHalData->TryupingCount = %d\n", priv->TryupingCount); // printk("UP: TryUpTh(%d)+ (FailTxRateCount(%d))^2 =%d\n", // TryUpTh, priv->FailTxRateCount, (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount) ); // printk("UP: pHalData->bTryuping=%d\n", priv->bTryuping); } // // Check more times if we need to upgrade indeed. // Because the largest value of pHalData->TryupingCount is 0xFFFF and // the largest value of pHalData->FailTxRateCount is 0x14, // this condition will be satisfied at most every 2 min. // if((priv->TryupingCount > (TryUpTh + priv->FailTxRateCount * priv->FailTxRateCount)) || (CurrSignalStrength > priv->LastFailTxRateSS) || priv->bTryuping) { priv->TryupingCount = 0; // // When transferring from CCK to OFDM, DIG is an important issue. // if(priv->CurrentOperaRate == 22) bUpdateInitialGain = true; // The difference in throughput between 48Mbps and 36Mbps is 8M. // So, we must be carefully in this rate scale. Isaiah 2008-02-15. // if( ((priv->CurrentOperaRate == 72) || (priv->CurrentOperaRate == 48) || (priv->CurrentOperaRate == 36)) && (priv->FailTxRateCount > 2) ) priv->RateAdaptivePeriod= (RATE_ADAPTIVE_TIMER_PERIOD/2); // (1)To avoid upgrade frequently to the fail tx rate, add the FailTxRateCount into the threshold. // (2)If the signal strength is increased, it may be able to upgrade. priv->CurrentOperaRate = GetUpgradeTxRate(dev, priv->CurrentOperaRate); // printk("StaRateAdaptive87SE(): Upgrade Tx Rate to %d\n", priv->CurrentOperaRate); //[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00 if(priv->CurrentOperaRate ==36) { priv->bUpdateARFR=true; write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6 // printk("UP: ARFR=0xF8F\n"); } else if(priv->bUpdateARFR) { priv->bUpdateARFR=false; write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps. // printk("UP: ARFR=0xFFF\n"); } // Update Fail Tx rate and count. if(priv->LastFailTxRate != priv->CurrentOperaRate) { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 0; priv->LastFailTxRateSS = -200; // Set lowest power. } } } else { if(priv->TryupingCount > 0) priv->TryupingCount --; } if(bTryDown) { priv->TryDownCountLowData++; priv->TryupingCount = 0; { // printk("DN: pHalData->TryDownCountLowData = %d\n",priv->TryDownCountLowData); // printk("DN: TryDownTh =%d\n", TryDownTh); // printk("DN: pHalData->bTryuping=%d\n", priv->bTryuping); } //Check if Tx rate can be degraded or Test trying upgrading should fallback. if(priv->TryDownCountLowData > TryDownTh || priv->bTryuping) { priv->TryDownCountLowData = 0; priv->bTryuping = false; // Update fail information. if(priv->LastFailTxRate == priv->CurrentOperaRate) { priv->FailTxRateCount ++; // Record the Tx fail rate signal strength. if(CurrSignalStrength > priv->LastFailTxRateSS) { priv->LastFailTxRateSS = CurrSignalStrength; } } else { priv->LastFailTxRate = priv->CurrentOperaRate; priv->FailTxRateCount = 1; priv->LastFailTxRateSS = CurrSignalStrength; } priv->CurrentOperaRate = GetDegradeTxRate(dev, priv->CurrentOperaRate); // Reduce chariot training time at weak signal strength situation. SD3 ED demand. //[TRC Dell Lab] Revise Signal Threshold from -75 to -80 , Isaiah 2008-02-18 20:00 if( (CurrSignalStrength < -80) && (priv->CurrentOperaRate > 72 )) { priv->CurrentOperaRate = 72; // printk("DN: weak signal strength (%d), degrade to 36Mbps\n", CurrSignalStrength); } //[TRC Dell Lab] Bypass 12/9/6, Isaiah 2008-02-18 20:00 if(priv->CurrentOperaRate ==36) { priv->bUpdateARFR=true; write_nic_word(dev, ARFR, 0x0F8F); //bypass 12/9/6 // printk("DN: ARFR=0xF8F\n"); } else if(priv->bUpdateARFR) { priv->bUpdateARFR=false; write_nic_word(dev, ARFR, 0x0FFF); //set 1M ~ 54Mbps. // printk("DN: ARFR=0xFFF\n"); } // // When it is CCK rate, it may need to update initial gain to receive lower power packets. // if(MgntIsCckRate(priv->CurrentOperaRate)) { bUpdateInitialGain = true; } // printk("StaRateAdaptive87SE(): Degrade Tx Rate to %d\n", priv->CurrentOperaRate); } } else { if(priv->TryDownCountLowData > 0) priv->TryDownCountLowData --; } // Keep the Tx fail rate count to equal to 0x15 at most. // Reduce the fail count at least to 10 sec if tx rate is tending stable. if(priv->FailTxRateCount >= 0x15 || (!bTryUp && !bTryDown && priv->TryDownCountLowData == 0 && priv->TryupingCount && priv->FailTxRateCount > 0x6)) { priv->FailTxRateCount --; } OfdmTxPwrIdx = priv->chtxpwr_ofdm[priv->ieee80211->current_network.channel]; CckTxPwrIdx = priv->chtxpwr[priv->ieee80211->current_network.channel]; //[TRC Dell Lab] Mac0x9e increase 2 level in 36M~18M situation, Isaiah 2008-02-18 24:00 if((priv->CurrentOperaRate < 96) &&(priv->CurrentOperaRate > 22)) { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); // case 1: Never enter High power if(u1bCck == CckTxPwrIdx ) { if(u1bOfdm != (OfdmTxPwrIdx+2) ) { priv->bEnhanceTxPwr= true; u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); // printk("Enhance OFDM_TXAGC : +++++ u1bOfdm= 0x%x\n", u1bOfdm); } } // case 2: enter high power else if(u1bCck < CckTxPwrIdx) { if(!priv->bEnhanceTxPwr) { priv->bEnhanceTxPwr= true; u1bOfdm = ((u1bOfdm+2) > 35) ? 35: (u1bOfdm+2); write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); //RT_TRACE(COMP_RATE, DBG_TRACE, ("Enhance OFDM_TXAGC(2) : +++++ u1bOfdm= 0x%x\n", u1bOfdm)); } } } else if(priv->bEnhanceTxPwr) //54/48/11/5.5/2/1 { u1bCck = read_nic_byte(dev, CCK_TXAGC); u1bOfdm = read_nic_byte(dev, OFDM_TXAGC); // case 1: Never enter High power if(u1bCck == CckTxPwrIdx ) { priv->bEnhanceTxPwr= false; write_nic_byte(dev, OFDM_TXAGC, OfdmTxPwrIdx); //printk("Recover OFDM_TXAGC : ===== u1bOfdm= 0x%x\n", OfdmTxPwrIdx); } // case 2: enter high power else if(u1bCck < CckTxPwrIdx) { priv->bEnhanceTxPwr= false; u1bOfdm = ((u1bOfdm-2) > 0) ? (u1bOfdm-2): 0; write_nic_byte(dev, OFDM_TXAGC, u1bOfdm); //RT_TRACE(COMP_RATE, DBG_TRACE, ("Recover OFDM_TXAGC(2): ===== u1bOfdm= 0x%x\n", u1bOfdm)); } } // // We need update initial gain when we set tx rate "from OFDM to CCK" or // "from CCK to OFDM". // SetInitialGain: if(bUpdateInitialGain) { if(MgntIsCckRate(priv->CurrentOperaRate)) // CCK { if(priv->InitialGain > priv->RegBModeGainStage) { priv->InitialGainBackUp= priv->InitialGain; if(CurrSignalStrength < -85) // Low power, OFDM [0x17] = 26. { //SD3 SYs suggest that CurrSignalStrength < -65, ofdm 0x17=26. priv->InitialGain = priv->RegBModeGainStage; } else if(priv->InitialGain > priv->RegBModeGainStage + 1) { priv->InitialGain -= 2; } else { priv->InitialGain --; } printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } else // OFDM { if(priv->InitialGain < 4) { priv->InitialGainBackUp= priv->InitialGain; priv->InitialGain ++; printk("StaRateAdaptive87SE(): update init_gain to index %d for date rate %d\n",priv->InitialGain, priv->CurrentOperaRate); UpdateInitialGain(dev); } } } //Record the related info priv->LastRetryRate = CurrRetryRate; priv->LastTxThroughput = TxThroughput; priv->ieee80211->rate = priv->CurrentOperaRate * 5; }
bool SetZebraRFPowerState8185(struct net_device *dev, RT_RF_POWER_STATE eRFPowerState) { struct r8180_priv *priv = ieee80211_priv(dev); u8 btCR9346, btConfig3; bool bActionAllowed = true, bTurnOffBB = true; u8 u1bTmp; int i; bool bResult = true; u8 QueueID; if (priv->SetRFPowerStateInProgress == true) return false; priv->SetRFPowerStateInProgress = true; btCR9346 = read_nic_byte(dev, CR9346); write_nic_byte(dev, CR9346, (btCR9346 | 0xC0)); btConfig3 = read_nic_byte(dev, CONFIG3); write_nic_byte(dev, CONFIG3, (btConfig3 | CONFIG3_PARM_En)); switch (eRFPowerState) { case eRfOn: write_nic_word(dev, 0x37C, 0x00EC); /* turn on AFE */ write_nic_byte(dev, 0x54, 0x00); write_nic_byte(dev, 0x62, 0x00); /* turn on RF */ RF_WriteReg(dev, 0x0, 0x009f); udelay(500); RF_WriteReg(dev, 0x4, 0x0972); udelay(500); /* turn on RF again */ RF_WriteReg(dev, 0x0, 0x009f); udelay(500); RF_WriteReg(dev, 0x4, 0x0972); udelay(500); /* turn on BB */ write_phy_ofdm(dev, 0x10, 0x40); write_phy_ofdm(dev, 0x12, 0x40); /* Avoid power down at init time. */ write_nic_byte(dev, CONFIG4, priv->RFProgType); u1bTmp = read_nic_byte(dev, 0x24E); write_nic_byte(dev, 0x24E, (u1bTmp & (~(BIT5 | BIT6)))); break; case eRfSleep: for (QueueID = 0, i = 0; QueueID < 6;) { if (get_curr_tx_free_desc(dev, QueueID) == priv->txringcount) { QueueID++; continue; } else { priv->TxPollingTimes++; if (priv->TxPollingTimes >= LPS_MAX_SLEEP_WAITING_TIMES_87SE) { bActionAllowed = false; break; } else udelay(10); } } if (bActionAllowed) { /* turn off BB RXIQ matrix to cut off rx signal */ write_phy_ofdm(dev, 0x10, 0x00); write_phy_ofdm(dev, 0x12, 0x00); /* turn off RF */ RF_WriteReg(dev, 0x4, 0x0000); RF_WriteReg(dev, 0x0, 0x0000); /* turn off AFE except PLL */ write_nic_byte(dev, 0x62, 0xff); write_nic_byte(dev, 0x54, 0xec); mdelay(1); { int i = 0; while (true) { u8 tmp24F = read_nic_byte(dev, 0x24f); if ((tmp24F == 0x01) || (tmp24F == 0x09)) { bTurnOffBB = true; break; } else { udelay(10); i++; priv->TxPollingTimes++; if (priv->TxPollingTimes >= LPS_MAX_SLEEP_WAITING_TIMES_87SE) { bTurnOffBB = false; break; } else udelay(10); } } } if (bTurnOffBB) { /* turn off BB */ u1bTmp = read_nic_byte(dev, 0x24E); write_nic_byte(dev, 0x24E, (u1bTmp | BIT5 | BIT6)); /* turn off AFE PLL */ write_nic_byte(dev, 0x54, 0xFC); write_nic_word(dev, 0x37C, 0x00FC); } } break; case eRfOff: for (QueueID = 0, i = 0; QueueID < 6;) { if (get_curr_tx_free_desc(dev, QueueID) == priv->txringcount) { QueueID++; continue; } else { udelay(10); i++; } if (i >= MAX_DOZE_WAITING_TIMES_85B) break; } /* turn off BB RXIQ matrix to cut off rx signal */ write_phy_ofdm(dev, 0x10, 0x00); write_phy_ofdm(dev, 0x12, 0x00); /* turn off RF */ RF_WriteReg(dev, 0x4, 0x0000); RF_WriteReg(dev, 0x0, 0x0000); /* turn off AFE except PLL */ write_nic_byte(dev, 0x62, 0xff); write_nic_byte(dev, 0x54, 0xec); mdelay(1); { int i = 0; while (true) { u8 tmp24F = read_nic_byte(dev, 0x24f); if ((tmp24F == 0x01) || (tmp24F == 0x09)) { bTurnOffBB = true; break; } else { bTurnOffBB = false; udelay(10); i++; } if (i > MAX_POLLING_24F_TIMES_87SE) break; } } if (bTurnOffBB) { /* turn off BB */ u1bTmp = read_nic_byte(dev, 0x24E); write_nic_byte(dev, 0x24E, (u1bTmp | BIT5 | BIT6)); /* turn off AFE PLL (80M) */ write_nic_byte(dev, 0x54, 0xFC); write_nic_word(dev, 0x37C, 0x00FC); } break; } btConfig3 &= ~(CONFIG3_PARM_En); write_nic_byte(dev, CONFIG3, btConfig3); btCR9346 &= ~(0xC0); write_nic_byte(dev, CR9346, btCR9346); if (bResult && bActionAllowed) priv->eRFPowerState = eRFPowerState; priv->SetRFPowerStateInProgress = false; return bResult && bActionAllowed; }
static void MgntDisconnectIBSS( struct net_device* dev ) { struct r8192_priv *priv = ieee80211_priv(dev); //RT_OP_MODE OpMode; u8 i; bool bFilterOutNonAssociatedBSSID = false; //IEEE80211_DEBUG(IEEE80211_DL_TRACE, "XXXXXXXXXX MgntDisconnect IBSS\n"); priv->ieee80211->state = IEEE80211_NOLINK; // PlatformZeroMemory( pMgntInfo->Bssid, 6 ); for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i]= 0x55; priv->OpMode = RT_OP_MODE_NO_LINK; write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); { RT_OP_MODE OpMode = priv->OpMode; //LED_CTL_MODE LedAction = LED_CTL_NO_LINK; u8 btMsr = read_nic_byte(dev, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; //LedAction = LED_CTL_LINK; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set seperate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; //LedAction = LED_CTL_LINK; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(dev, MSR, btMsr); // LED control //Adapter->HalFunc.LedControlHandler(Adapter, LedAction); } ieee80211_stop_send_beacons(priv->ieee80211); // If disconnect, clear RCR CBSSID bit bFilterOutNonAssociatedBSSID = false; { u32 RegRCR, Type; Type = bFilterOutNonAssociatedBSSID; RegRCR = read_nic_dword(dev,RCR); priv->ReceiveConfig = RegRCR; if (Type == true) RegRCR |= (RCR_CBSSID); else if (Type == false) RegRCR &= (~RCR_CBSSID); { write_nic_dword(dev, RCR,RegRCR); priv->ReceiveConfig = RegRCR; } } //MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE ); notify_wx_assoc_event(priv->ieee80211); }
static void MgntDisconnectIBSS(struct r8192_priv *priv) { u8 i; bool bFilterOutNonAssociatedBSSID = false; priv->ieee80211->state = IEEE80211_NOLINK; for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i]= 0x55; priv->OpMode = RT_OP_MODE_NO_LINK; write_nic_word(priv, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(priv, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); { RT_OP_MODE OpMode = priv->OpMode; u8 btMsr = read_nic_byte(priv, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set separate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(priv, MSR, btMsr); } ieee80211_stop_send_beacons(priv->ieee80211); // If disconnect, clear RCR CBSSID bit bFilterOutNonAssociatedBSSID = false; { u32 RegRCR, Type; Type = bFilterOutNonAssociatedBSSID; RegRCR = read_nic_dword(priv, RCR); priv->ReceiveConfig = RegRCR; if (Type == true) RegRCR |= (RCR_CBSSID); else if (Type == false) RegRCR &= (~RCR_CBSSID); { write_nic_dword(priv, RCR, RegRCR); priv->ReceiveConfig = RegRCR; } } notify_wx_assoc_event(priv->ieee80211); }
static void write_rtl8225(struct net_device *dev, u8 adr, u16 data) { int i; u16 out, select; u8 bit; u32 bangdata = (data << 4) | (adr & 0xf); out = read_nic_word(dev, RFPinsOutput) & 0xfff3; write_nic_word(dev, RFPinsEnable, (read_nic_word(dev, RFPinsEnable) | 0x7)); select = read_nic_word(dev, RFPinsSelect); write_nic_word(dev, RFPinsSelect, select | 0x7 | SW_CONTROL_GPIO); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN); force_pci_posting(dev); udelay(2); write_nic_word(dev, RFPinsOutput, out); force_pci_posting(dev); udelay(10); for (i = 15; i >= 0; i--) { bit = (bangdata & (1 << i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); i--; bit = (bangdata & (1 << i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out); } write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN); write_nic_word(dev, RFPinsSelect, select | SW_CONTROL_GPIO); rtl8185_rf_pins_enable(dev); }
void rtl8225z2_rf_init(struct net_device *dev) { struct r8180_priv *priv = ieee80211_priv(dev); int i; short channel = 1; u16 brsr; u32 data,addr; priv->chan = channel; rtl8180_set_anaparam(dev, RTL8225_ANAPARAM_ON); if(priv->card_type == USB) rtl8225_host_usb_init(dev); else rtl8225_host_pci_init(dev); write_nic_dword(dev, RF_TIMING, 0x000a8008); brsr = read_nic_word(dev, BRSR); write_nic_word(dev, BRSR, 0xffff); write_nic_dword(dev, RF_PARA, 0x100044); #if 1 //0->1 rtl8180_set_mode(dev, EPROM_CMD_CONFIG); write_nic_byte(dev, CONFIG3, 0x44); rtl8180_set_mode(dev, EPROM_CMD_NORMAL); #endif rtl8185_rf_pins_enable(dev); // mdelay(1000); write_rtl8225(dev, 0x0, 0x2bf); mdelay(1); write_rtl8225(dev, 0x1, 0xee0); mdelay(1); write_rtl8225(dev, 0x2, 0x44d); mdelay(1); write_rtl8225(dev, 0x3, 0x441); mdelay(1); write_rtl8225(dev, 0x4, 0x8c3);mdelay(1); write_rtl8225(dev, 0x5, 0xc72);mdelay(1); // } write_rtl8225(dev, 0x6, 0xe6); mdelay(1); write_rtl8225(dev, 0x7, ((priv->card_type == USB)? 0x82a : rtl8225_chan[channel])); mdelay(1); write_rtl8225(dev, 0x8, 0x3f); mdelay(1); write_rtl8225(dev, 0x9, 0x335); mdelay(1); write_rtl8225(dev, 0xa, 0x9d4); mdelay(1); write_rtl8225(dev, 0xb, 0x7bb); mdelay(1); write_rtl8225(dev, 0xc, 0x850); mdelay(1); write_rtl8225(dev, 0xd, 0xcdf); mdelay(1); write_rtl8225(dev, 0xe, 0x2b); mdelay(1); write_rtl8225(dev, 0xf, 0x114); mdelay(100); //if(priv->card_type != USB) /* maybe not needed even for 8185 */ // write_rtl8225(dev, 0x7, rtl8225_chan[channel]); write_rtl8225(dev, 0x0, 0x1b7); for(i=0;i<95;i++){ write_rtl8225(dev, 0x1, (u8)(i+1)); #if 0 if(priv->phy_ver == 1) /* version A */ write_rtl8225(dev, 0x2, rtl8225a_rxgain[i]); else #endif /* version B & C & D*/ write_rtl8225(dev, 0x2, rtl8225z2_rxgain[i]); } write_rtl8225(dev, 0x3, 0x80); write_rtl8225(dev, 0x5, 0x4); write_rtl8225(dev, 0x0, 0xb7); write_rtl8225(dev, 0x2, 0xc4d); if(priv->card_type == USB){ // force_pci_posting(dev); mdelay(200); write_rtl8225(dev, 0x2, 0x44d); // force_pci_posting(dev); mdelay(100); }//End of if(priv->card_type == USB) /* FIXME!! rtl8187 we have to check if calibrarion * is successful and eventually cal. again (repeat * the two write on reg 2) */ // Check for calibration status, 2005.11.17, data = read_rtl8225(dev, 6); if (!(data&0x00000080)) { write_rtl8225(dev, 0x02, 0x0c4d); force_pci_posting(dev); mdelay(200); write_rtl8225(dev, 0x02, 0x044d); force_pci_posting(dev); mdelay(100); data = read_rtl8225(dev, 6); if (!(data&0x00000080)) { DMESGW("RF Calibration Failed!!!!\n"); } } //force_pci_posting(dev); mdelay(200); //200 for 8187 // //if(priv->card_type != USB){ // write_rtl8225(dev, 0x2, 0x44d); // write_rtl8225(dev, 0x7, rtl8225_chan[channel]); // write_rtl8225(dev, 0x2, 0x47d); // // force_pci_posting(dev); // mdelay(100); // // write_rtl8225(dev, 0x2, 0x44d); // //} write_rtl8225(dev, 0x0, 0x2bf); if(priv->card_type != USB) rtl8185_rf_pins_enable(dev); //set up ZEBRA AGC table, 2005.11.17, for(i=0;i<128;i++){ data = rtl8225_agc[i]; addr = i + 0x80; //enable writing AGC table write_phy_ofdm(dev, 0xb, data); mdelay(1); write_phy_ofdm(dev, 0xa, addr); mdelay(1); } #if 0 for(i=0;i<128;i++){ write_phy_ofdm(dev, 0xb, rtl8225_agc[i]); mdelay(1); write_phy_ofdm(dev, 0xa, (u8)i+ 0x80); mdelay(1); } #endif force_pci_posting(dev); mdelay(1); write_phy_ofdm(dev, 0x0, 0x1); mdelay(1); write_phy_ofdm(dev, 0x1, 0x2); mdelay(1); write_phy_ofdm(dev, 0x2, ((priv->card_type == USB)? 0x42 : 0x62)); mdelay(1); write_phy_ofdm(dev, 0x3, 0x0); mdelay(1); write_phy_ofdm(dev, 0x4, 0x0); mdelay(1); write_phy_ofdm(dev, 0x5, 0x0); mdelay(1); write_phy_ofdm(dev, 0x6, 0x40); mdelay(1); write_phy_ofdm(dev, 0x7, 0x0); mdelay(1); write_phy_ofdm(dev, 0x8, 0x40); mdelay(1); write_phy_ofdm(dev, 0x9, 0xfe); mdelay(1); write_phy_ofdm(dev, 0xa, 0x8); mdelay(1); //write_phy_ofdm(dev, 0x18, 0xef); // } //} write_phy_ofdm(dev, 0xb, 0x80); mdelay(1); write_phy_ofdm(dev, 0xc, 0x1);mdelay(1); //if(priv->card_type != USB) write_phy_ofdm(dev, 0xd, 0x43); write_phy_ofdm(dev, 0xe, 0xd3);mdelay(1); #if 0 if(priv->card_8185 == 1){ if(priv->card_8185_Bversion) write_phy_ofdm(dev, 0xf, 0x20);/*ver B*/ else write_phy_ofdm(dev, 0xf, 0x28);/*ver C*/ }else{ #endif write_phy_ofdm(dev, 0xf, 0x38);mdelay(1); /*ver D & 8187*/ // } // if(priv->card_8185 == 1 && priv->card_8185_Bversion) // write_phy_ofdm(dev, 0x10, 0x04);/*ver B*/ // else write_phy_ofdm(dev, 0x10, 0x84);mdelay(1); /*ver C & D & 8187*/ write_phy_ofdm(dev, 0x11, 0x07);mdelay(1); /*agc resp time 700*/ // if(priv->card_8185 == 2){ /* Ver D & 8187*/ write_phy_ofdm(dev, 0x12, 0x20);mdelay(1); write_phy_ofdm(dev, 0x13, 0x20);mdelay(1); #if 0 }else{
u32 read_rtl8225(struct net_device *dev, u8 adr) { u32 data2Write = ((u32)(adr & 0x1f)) << 27; u32 dataRead; u32 mask; u16 oval,oval2,oval3,tmp; // ThreeWireReg twreg; // ThreeWireReg tdata; int i; short bit, rw; u8 wLength = 6; u8 rLength = 12; u8 low2high = 0; oval = read_nic_word(dev, RFPinsOutput); oval2 = read_nic_word(dev, RFPinsEnable); oval3 = read_nic_word(dev, RFPinsSelect); write_nic_word(dev, RFPinsEnable, (oval2|0xf)); write_nic_word(dev, RFPinsSelect, (oval3|0xf)); dataRead = 0; oval &= ~0xf; write_nic_word(dev, RFPinsOutput, oval | BB_HOST_BANG_EN ); udelay(4); write_nic_word(dev, RFPinsOutput, oval ); udelay(5); rw = 0; mask = (low2high) ? 0x01 : (((u32)0x01)<<(32-1)); for(i = 0; i < wLength/2; i++) { bit = ((data2Write&mask) != 0) ? 1 : 0; write_nic_word(dev, RFPinsOutput, bit|oval | rw); udelay(1); write_nic_word(dev, RFPinsOutput, bit|oval | BB_HOST_BANG_CLK | rw); udelay(2); write_nic_word(dev, RFPinsOutput, bit|oval | BB_HOST_BANG_CLK | rw); udelay(2); mask = (low2high) ? (mask<<1): (mask>>1); if(i == 2) { rw = BB_HOST_BANG_RW; write_nic_word(dev, RFPinsOutput, bit|oval | BB_HOST_BANG_CLK | rw); udelay(2); write_nic_word(dev, RFPinsOutput, bit|oval | rw); udelay(2); break; } bit = ((data2Write&mask) != 0) ? 1: 0; write_nic_word(dev, RFPinsOutput, oval|bit|rw| BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, oval|bit|rw| BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, oval| bit |rw); udelay(1); mask = (low2high) ? (mask<<1) : (mask>>1); } //twreg.struc.clk = 0; //twreg.struc.data = 0; write_nic_word(dev, RFPinsOutput, rw|oval); udelay(2); mask = (low2high) ? 0x01 : (((u32)0x01) << (12-1)); for(i = 0; i < rLength; i++) { write_nic_word(dev, RFPinsOutput, rw|oval); udelay(1); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); tmp = read_nic_word(dev, RFPinsInput); dataRead |= (tmp & BB_HOST_BANG_CLK ? mask : 0); write_nic_word(dev, RFPinsOutput, (rw|oval)); udelay(2); mask = (low2high) ? (mask<<1) : (mask>>1); } write_nic_word(dev, RFPinsOutput, BB_HOST_BANG_EN|BB_HOST_BANG_RW|oval); udelay(2); write_nic_word(dev, RFPinsEnable, oval2); write_nic_word(dev, RFPinsSelect, oval3); // Set To SW Switch write_nic_word(dev, RFPinsOutput, 0x3a0); return dataRead; }
static void MlmeDisassociateRequest( struct net_device* dev, u8* asSta, u8 asRsn ) { struct r8192_priv *priv = ieee80211_priv(dev); u8 i; RemovePeerTS(priv->ieee80211, asSta); SendDisassociation( priv->ieee80211, asSta, asRsn ); if(memcpy(priv->ieee80211->current_network.bssid,asSta,6) == NULL) { //ShuChen TODO: change media status. //ShuChen TODO: What to do when disassociate. priv->ieee80211->state = IEEE80211_NOLINK; //pMgntInfo->AsocTimestamp = 0; for(i=0;i<6;i++) priv->ieee80211->current_network.bssid[i] = 0x22; // pMgntInfo->mBrates.Length = 0; // Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) ); priv->OpMode = RT_OP_MODE_NO_LINK; { RT_OP_MODE OpMode = priv->OpMode; //LED_CTL_MODE LedAction = LED_CTL_NO_LINK; u8 btMsr = read_nic_byte(dev, MSR); btMsr &= 0xfc; switch(OpMode) { case RT_OP_MODE_INFRASTRUCTURE: btMsr |= MSR_LINK_MANAGED; //LedAction = LED_CTL_LINK; break; case RT_OP_MODE_IBSS: btMsr |= MSR_LINK_ADHOC; // led link set seperate break; case RT_OP_MODE_AP: btMsr |= MSR_LINK_MASTER; //LedAction = LED_CTL_LINK; break; default: btMsr |= MSR_LINK_NONE; break; } write_nic_byte(dev, MSR, btMsr); // LED control //Adapter->HalFunc.LedControlHandler(Adapter, LedAction); } ieee80211_disassociate(priv->ieee80211); write_nic_word(dev, BSSIDR, ((u16*)priv->ieee80211->current_network.bssid)[0]); write_nic_dword(dev, BSSIDR+2, ((u32*)(priv->ieee80211->current_network.bssid+2))[0]); } }
void write_rtl8225(struct net_device *dev, u8 adr, u16 data) { int i; u16 out,select; u8 bit; u32 bangdata = (data << 4) | (adr & 0xf); struct r8180_priv *priv = ieee80211_priv(dev); out = read_nic_word(dev, RFPinsOutput) & 0xfff3; write_nic_word(dev,RFPinsEnable, (read_nic_word(dev,RFPinsEnable) | 0x7)); select = read_nic_word(dev, RFPinsSelect); write_nic_word(dev, RFPinsSelect, select | 0x7 | ((priv->card_type == USB) ? 0 : SW_CONTROL_GPIO)); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN );//| 0x1fff); force_pci_posting(dev); udelay(2); write_nic_word(dev, RFPinsOutput, out); force_pci_posting(dev); udelay(10); for(i=15; i>=0;i--){ bit = (bangdata & (1<<i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); i--; bit = (bangdata & (1<<i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out); } write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | ((priv->card_type == USB) ? 4 : BB_HOST_BANG_EN)); write_nic_word(dev, RFPinsSelect, select | ((priv->card_type == USB) ? 0 : SW_CONTROL_GPIO)); if(priv->card_type == USB) mdelay(2); else rtl8185_rf_pins_enable(dev); }
void rtl8225z2_rf_init(struct net_device *dev) { struct r8180_priv *priv = ieee80211_priv(dev); int i; short channel = 1; u16 brsr; u32 data, addr; priv->chan = channel; rtl8225_host_pci_init(dev); write_nic_dword(dev, RF_TIMING, 0x000a8008); brsr = read_nic_word(dev, BRSR); write_nic_word(dev, BRSR, 0xffff); write_nic_dword(dev, RF_PARA, 0x100044); rtl8180_set_mode(dev, EPROM_CMD_CONFIG); write_nic_byte(dev, CONFIG3, 0x44); rtl8180_set_mode(dev, EPROM_CMD_NORMAL); rtl8185_rf_pins_enable(dev); write_rtl8225(dev, 0x0, 0x2bf); mdelay(1); write_rtl8225(dev, 0x1, 0xee0); mdelay(1); write_rtl8225(dev, 0x2, 0x44d); mdelay(1); write_rtl8225(dev, 0x3, 0x441); mdelay(1); write_rtl8225(dev, 0x4, 0x8c3); mdelay(1); write_rtl8225(dev, 0x5, 0xc72); mdelay(1); write_rtl8225(dev, 0x6, 0xe6); mdelay(1); write_rtl8225(dev, 0x7, rtl8225_chan[channel]); mdelay(1); write_rtl8225(dev, 0x8, 0x3f); mdelay(1); write_rtl8225(dev, 0x9, 0x335); mdelay(1); write_rtl8225(dev, 0xa, 0x9d4); mdelay(1); write_rtl8225(dev, 0xb, 0x7bb); mdelay(1); write_rtl8225(dev, 0xc, 0x850); mdelay(1); write_rtl8225(dev, 0xd, 0xcdf); mdelay(1); write_rtl8225(dev, 0xe, 0x2b); mdelay(1); write_rtl8225(dev, 0xf, 0x114); mdelay(100); write_rtl8225(dev, 0x0, 0x1b7); for (i = 0; i < 95; i++) { write_rtl8225(dev, 0x1, (u8)(i + 1)); write_rtl8225(dev, 0x2, rtl8225z2_rxgain[i]); } write_rtl8225(dev, 0x3, 0x80); write_rtl8225(dev, 0x5, 0x4); write_rtl8225(dev, 0x0, 0xb7); write_rtl8225(dev, 0x2, 0xc4d); /* FIXME!! rtl8187 we have to check if calibrarion * is successful and eventually cal. again (repeat * the two write on reg 2) */ data = read_rtl8225(dev, 6); if (!(data & 0x00000080)) { write_rtl8225(dev, 0x02, 0x0c4d); force_pci_posting(dev); mdelay(200); write_rtl8225(dev, 0x02, 0x044d); force_pci_posting(dev); mdelay(100); data = read_rtl8225(dev, 6); if (!(data & 0x00000080)) DMESGW("RF Calibration Failed!!!!\n"); } mdelay(200); write_rtl8225(dev, 0x0, 0x2bf); for (i = 0; i < 128; i++) { data = rtl8225_agc[i]; addr = i + 0x80; /* enable writing AGC table */ write_phy_ofdm(dev, 0xb, data); mdelay(1); write_phy_ofdm(dev, 0xa, addr); mdelay(1); } force_pci_posting(dev); mdelay(1); write_phy_ofdm(dev, 0x00, 0x01); mdelay(1); write_phy_ofdm(dev, 0x01, 0x02); mdelay(1); write_phy_ofdm(dev, 0x02, 0x62); mdelay(1); write_phy_ofdm(dev, 0x03, 0x00); mdelay(1); write_phy_ofdm(dev, 0x04, 0x00); mdelay(1); write_phy_ofdm(dev, 0x05, 0x00); mdelay(1); write_phy_ofdm(dev, 0x06, 0x40); mdelay(1); write_phy_ofdm(dev, 0x07, 0x00); mdelay(1); write_phy_ofdm(dev, 0x08, 0x40); mdelay(1); write_phy_ofdm(dev, 0x09, 0xfe); mdelay(1); write_phy_ofdm(dev, 0x0a, 0x08); mdelay(1); write_phy_ofdm(dev, 0x0b, 0x80); mdelay(1); write_phy_ofdm(dev, 0x0c, 0x01); mdelay(1); write_phy_ofdm(dev, 0x0d, 0x43); write_phy_ofdm(dev, 0x0e, 0xd3); mdelay(1); write_phy_ofdm(dev, 0x0f, 0x38); mdelay(1); write_phy_ofdm(dev, 0x10, 0x84); mdelay(1); write_phy_ofdm(dev, 0x11, 0x07); mdelay(1); write_phy_ofdm(dev, 0x12, 0x20); mdelay(1); write_phy_ofdm(dev, 0x13, 0x20); mdelay(1); write_phy_ofdm(dev, 0x14, 0x00); mdelay(1); write_phy_ofdm(dev, 0x15, 0x40); mdelay(1); write_phy_ofdm(dev, 0x16, 0x00); mdelay(1); write_phy_ofdm(dev, 0x17, 0x40); mdelay(1); write_phy_ofdm(dev, 0x18, 0xef); mdelay(1); write_phy_ofdm(dev, 0x19, 0x19); mdelay(1); write_phy_ofdm(dev, 0x1a, 0x20); mdelay(1); write_phy_ofdm(dev, 0x1b, 0x15); mdelay(1); write_phy_ofdm(dev, 0x1c, 0x04); mdelay(1); write_phy_ofdm(dev, 0x1d, 0xc5); mdelay(1); write_phy_ofdm(dev, 0x1e, 0x95); mdelay(1); write_phy_ofdm(dev, 0x1f, 0x75); mdelay(1); write_phy_ofdm(dev, 0x20, 0x1f); mdelay(1); write_phy_ofdm(dev, 0x21, 0x17); mdelay(1); write_phy_ofdm(dev, 0x22, 0x16); mdelay(1); write_phy_ofdm(dev, 0x23, 0x80); mdelay(1); /* FIXME maybe not needed */ write_phy_ofdm(dev, 0x24, 0x46); mdelay(1); write_phy_ofdm(dev, 0x25, 0x00); mdelay(1); write_phy_ofdm(dev, 0x26, 0x90); mdelay(1); write_phy_ofdm(dev, 0x27, 0x88); mdelay(1); rtl8225z2_set_gain(dev, 4); write_phy_cck(dev, 0x0, 0x98); mdelay(1); write_phy_cck(dev, 0x3, 0x20); mdelay(1); write_phy_cck(dev, 0x4, 0x7e); mdelay(1); write_phy_cck(dev, 0x5, 0x12); mdelay(1); write_phy_cck(dev, 0x6, 0xfc); mdelay(1); write_phy_cck(dev, 0x7, 0x78); mdelay(1); write_phy_cck(dev, 0x8, 0x2e); mdelay(1); write_phy_cck(dev, 0x10, 0x93); mdelay(1); write_phy_cck(dev, 0x11, 0x88); mdelay(1); write_phy_cck(dev, 0x12, 0x47); mdelay(1); write_phy_cck(dev, 0x13, 0xd0); write_phy_cck(dev, 0x19, 0x00); write_phy_cck(dev, 0x1a, 0xa0); write_phy_cck(dev, 0x1b, 0x08); write_phy_cck(dev, 0x40, 0x86); /* CCK Carrier Sense Threshold */ write_phy_cck(dev, 0x41, 0x8d); mdelay(1); write_phy_cck(dev, 0x42, 0x15); mdelay(1); write_phy_cck(dev, 0x43, 0x18); mdelay(1); write_phy_cck(dev, 0x44, 0x36); mdelay(1); write_phy_cck(dev, 0x45, 0x35); mdelay(1); write_phy_cck(dev, 0x46, 0x2e); mdelay(1); write_phy_cck(dev, 0x47, 0x25); mdelay(1); write_phy_cck(dev, 0x48, 0x1c); mdelay(1); write_phy_cck(dev, 0x49, 0x12); mdelay(1); write_phy_cck(dev, 0x4a, 0x09); mdelay(1); write_phy_cck(dev, 0x4b, 0x04); mdelay(1); write_phy_cck(dev, 0x4c, 0x05); mdelay(1); write_nic_byte(dev, 0x5b, 0x0d); mdelay(1); rtl8225z2_SetTXPowerLevel(dev, channel); /* RX antenna default to A */ write_phy_cck(dev, 0x11, 0x9b); mdelay(1); /* B: 0xDB */ write_phy_ofdm(dev, 0x26, 0x90); mdelay(1); /* B: 0x10 */ rtl8185_tx_antenna(dev, 0x03); /* B: 0x00 */ /* switch to high-speed 3-wire * last digit. 2 for both cck and ofdm */ write_nic_dword(dev, 0x94, 0x15c00002); rtl8185_rf_pins_enable(dev); rtl8225_rf_set_chan(dev, priv->chan); }
static u32 read_rtl8225(struct net_device *dev, u8 adr) { u32 data2Write = ((u32)(adr & 0x1f)) << 27; u32 dataRead; u32 mask; u16 oval, oval2, oval3, tmp; int i; short bit, rw; u8 wLength = 6; u8 rLength = 12; u8 low2high = 0; oval = read_nic_word(dev, RFPinsOutput); oval2 = read_nic_word(dev, RFPinsEnable); oval3 = read_nic_word(dev, RFPinsSelect); write_nic_word(dev, RFPinsEnable, (oval2|0xf)); write_nic_word(dev, RFPinsSelect, (oval3|0xf)); dataRead = 0; oval &= ~0xf; write_nic_word(dev, RFPinsOutput, oval | BB_HOST_BANG_EN); udelay(4); write_nic_word(dev, RFPinsOutput, oval); udelay(5); rw = 0; mask = (low2high) ? 0x01 : (((u32)0x01)<<(32-1)); for (i = 0; i < wLength/2; i++) { bit = ((data2Write&mask) != 0) ? 1 : 0; write_nic_word(dev, RFPinsOutput, bit | oval | rw); udelay(1); write_nic_word(dev, RFPinsOutput, bit | oval | BB_HOST_BANG_CLK | rw); udelay(2); write_nic_word(dev, RFPinsOutput, bit | oval | BB_HOST_BANG_CLK | rw); udelay(2); mask = (low2high) ? (mask<<1) : (mask>>1); if (i == 2) { rw = BB_HOST_BANG_RW; write_nic_word(dev, RFPinsOutput, bit | oval | BB_HOST_BANG_CLK | rw); udelay(2); write_nic_word(dev, RFPinsOutput, bit | oval | rw); udelay(2); break; } bit = ((data2Write&mask) != 0) ? 1 : 0; write_nic_word(dev, RFPinsOutput, oval | bit | rw | BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, oval | bit | rw | BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, oval | bit | rw); udelay(1); mask = (low2high) ? (mask<<1) : (mask>>1); } write_nic_word(dev, RFPinsOutput, rw|oval); udelay(2); mask = (low2high) ? 0x01 : (((u32)0x01) << (12-1)); /* * We must set data pin to HW controlled, otherwise RF can't driver it * and value RF register won't be able to read back properly. */ write_nic_word(dev, RFPinsEnable, (oval2 & (~0x01))); for (i = 0; i < rLength; i++) { write_nic_word(dev, RFPinsOutput, rw|oval); udelay(1); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); write_nic_word(dev, RFPinsOutput, rw|oval|BB_HOST_BANG_CLK); udelay(2); tmp = read_nic_word(dev, RFPinsInput); dataRead |= (tmp & BB_HOST_BANG_CLK ? mask : 0); write_nic_word(dev, RFPinsOutput, (rw|oval)); udelay(2); mask = (low2high) ? (mask<<1) : (mask>>1); } write_nic_word(dev, RFPinsOutput, BB_HOST_BANG_EN | BB_HOST_BANG_RW | oval); udelay(2); write_nic_word(dev, RFPinsEnable, oval2); write_nic_word(dev, RFPinsSelect, oval3); /* Set To SW Switch */ write_nic_word(dev, RFPinsOutput, 0x3a0); return dataRead; }
void write_rtl8225(struct net_device *dev, u8 adr, u16 data) { #ifdef THOMAS_3WIRE struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct usb_device *udev = priv->udev; int status; data = (data << 4) | (u16)(adr & 0x0f); // // OUT a vendor request to ask 8051 do HW three write operation. // //printk("before write rtl8225 , data = %x\n",data); status = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), 0x04, RTL8187_REQT_WRITE, 0x0000, 0x1304, &data, 2, HZ / 2); if (status < 0) { printk("write_rtl8225 TimeOut! status:%x\n", status); } /*mdelay(1); u16 Tmpdata; status = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), 0x04, RTL8187_REQT_READ, 0x0000, 0x1304, &Tmpdata, 2, HZ / 2); if (status < 0) { printk("read_rtl8225 TimeOut! status:%x\n", status); } printk("after read rtl8225 , data = %x\n",Tmpdata);*/ #else #ifdef USE_8051_3WIRE struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev); struct usb_device *udev = priv->udev; //u8 bit; u16 wReg80, wReg82, wReg84; wReg80 = read_nic_word(dev, RFPinsOutput); wReg80 &= 0xfff3; wReg82 = read_nic_word(dev, RFPinsEnable); wReg84 = read_nic_word(dev, RFPinsSelect); // <RJ_NOTE> 3-wire should be controled by HW when we finish SW 3-wire programming. 2005.08.10, by rcnjko. //wReg84 &= 0xfff0; wReg84 &= 0xfff8; //modified by david according to windows segment code. // We must set SW enabled before terminating HW 3-wire, 2005.07.29, by rcnjko. write_nic_word(dev, RFPinsEnable, (wReg82|0x0007)); // Set To Output Enable write_nic_word(dev, RFPinsSelect, (wReg84|0x0007)); // Set To SW Switch force_pci_posting(dev); udelay(10); // write_nic_word(dev, 0x80, (BB_HOST_BANG_EN|wReg80)); // Set SI_EN (RFLE) force_pci_posting(dev); udelay(2); //twreg.struc.enableB = 0; write_nic_word(dev, 0x80, (wReg80)); // Clear SI_EN (RFLE) force_pci_posting(dev); udelay(10); usb_control_msg(udev, usb_sndctrlpipe(udev, 0), RTL8187_REQ_SET_REGS, RTL8187_REQT_WRITE, adr, 0x8225, &data, 2, HZ / 2); write_nic_word(dev, 0x80, (BB_HOST_BANG_EN|wReg80)); force_pci_posting(dev); udelay(10); write_nic_word(dev, 0x80, (wReg80|0x0004)); write_nic_word(dev, 0x84, (wReg84|0x0000));// Set To SW Switch if(priv->card_type == USB) mdelay(2); else rtl8185_rf_pins_enable(dev); #else int i; u16 out,select; u8 bit; u32 bangdata = (data << 4) | (adr & 0xf); struct r8180_priv *priv = ieee80211_priv(dev); out = read_nic_word(dev, RFPinsOutput) & 0xfff3; write_nic_word(dev,RFPinsEnable, (read_nic_word(dev,RFPinsEnable) | 0x7)); select = read_nic_word(dev, RFPinsSelect); write_nic_word(dev, RFPinsSelect, select | 0x7 | ((priv->card_type == USB) ? 0 : SW_CONTROL_GPIO)); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN );//| 0x1fff); force_pci_posting(dev); udelay(2); write_nic_word(dev, RFPinsOutput, out); force_pci_posting(dev); udelay(10); for(i=15; i>=0;i--){ bit = (bangdata & (1<<i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); i--; bit = (bangdata & (1<<i)) >> i; write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out | BB_HOST_BANG_CLK); write_nic_word(dev, RFPinsOutput, bit | out); } write_nic_word(dev, RFPinsOutput, out | BB_HOST_BANG_EN); force_pci_posting(dev); udelay(10); write_nic_word(dev, RFPinsOutput, out | ((priv->card_type == USB) ? 4 : BB_HOST_BANG_EN)); write_nic_word(dev, RFPinsSelect, select | ((priv->card_type == USB) ? 0 : SW_CONTROL_GPIO)); if(priv->card_type == USB) mdelay(2); else rtl8185_rf_pins_enable(dev); #endif #endif /*THOMAS_3WIRE*/ }
void rtl8225_rf_init(struct net_device *dev) { struct r8180_priv *priv = ieee80211_priv(dev); int i; short channel = 1; u16 brsr; priv->chan = channel; rtl8180_set_anaparam(dev, RTL8225_ANAPARAM_ON); if(priv->card_type == USB) rtl8225_host_usb_init(dev); else rtl8225_host_pci_init(dev); write_nic_dword(dev, RF_TIMING, 0x000a8008); brsr = read_nic_word(dev, BRSR); write_nic_word(dev, BRSR, 0xffff); #if 0 if(priv->card_8185 == 1){/* version C or B */ if(priv->card_8185_Bversion) /* version B*/ write_nic_dword(dev, RF_PARA, 0x44); else /* version C */ write_nic_dword(dev, RF_PARA, 0x100044); }else{ /* version D */ if(priv->enable_gpio0) write_nic_dword(dev, RF_PARA, 0x20100044); else /* also USB */ write_nic_dword(dev, RF_PARA, 0x100044); } #endif write_nic_dword(dev, RF_PARA, 0x100044); #if 1 //0->1 rtl8180_set_mode(dev, EPROM_CMD_CONFIG); write_nic_byte(dev, CONFIG3, 0x44); rtl8180_set_mode(dev, EPROM_CMD_NORMAL); #endif if(priv->card_type == USB){ rtl8185_rf_pins_enable(dev); mdelay(1000); } write_rtl8225(dev, 0x0, 0x67); mdelay(1); write_rtl8225(dev, 0x1, 0xfe0); mdelay(1); write_rtl8225(dev, 0x2, 0x44d); mdelay(1); write_rtl8225(dev, 0x3, 0x441); mdelay(1); if(priv->card_type == USB) write_rtl8225(dev, 0x4, 0x486); else write_rtl8225(dev, 0x4, 0x8be); mdelay(1); #if 0 }else if(priv->phy_ver == 1){
/*----------------------------------------------------------------------------- * Function: cmpk_message_handle_tx() * * Overview: Driver internal module can call the API to send message to * firmware side. For example, you can send a debug command packet. * Or you can send a request for FW to modify RLX4181 LBUS HW bank. * Otherwise, you can change MAC/PHT/RF register by firmware at * run time. We do not support message more than one segment now. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 05/06/2008 amy porting from windows code. * *---------------------------------------------------------------------------*/ extern RT_STATUS cmpk_message_handle_tx( struct net_device *dev, u8* codevirtualaddress, u32 packettype, u32 buffer_len) { RT_STATUS rt_status = RT_STATUS_SUCCESS; #ifdef RTL8192U return rt_status; #else struct r8192_priv *priv = ieee80211_priv(dev); u16 frag_threshold; u16 frag_length = 0, frag_offset = 0; //u16 total_size; //int i; unsigned int flags; rt_firmware *pfirmware = priv->pFirmware; struct sk_buff *skb; unsigned char *seg_ptr; cb_desc *tcb_desc; u8 bLastIniPkt; PTX_FWINFO_8190PCI pTxFwInfo = NULL; struct buffer* buflist; tx_desc_819x_pci *pdesc = NULL; ptx_ring tail; ptx_ring begin; u32 *buf; int count; int i; int remain; int buflen; spin_lock_irqsave(&priv->tx_lock,flags); RT_TRACE(COMP_CMDPKT,"%s(),buffer_len is %d\n",__FUNCTION__,buffer_len); firmware_init_param(dev); //Fragmentation might be required frag_threshold = pfirmware->cmdpacket_frag_thresold; do { if((buffer_len - frag_offset) > frag_threshold) { frag_length = frag_threshold ; bLastIniPkt = 0; } else { frag_length =(u16)(buffer_len - frag_offset); bLastIniPkt = 1; } tail=priv->txcmdringtail; begin=priv->txcmdring; buflist = priv->txcmdbufstail; count = priv->txringcount; pdesc = (tx_desc_819x_pci *)(tail->desc); if(!buflist){ printk("TX CMD buffer error, cannot TX CMD frames. \n"); rt_status = RT_STATUS_FAILURE; goto Failed; } buf=buflist->buf; buflen=priv->txfwbuffersize; if(pdesc->OWN) { printk("No more TX desc, returning \n"); priv->stats.txrdu++; rt_status = RT_STATUS_FAILURE; goto Failed; } /* Allocate skb buffer to contain firmware info and tx descriptor info * add 4 to avoid packet appending overflow. * */ #ifdef RTL8192U skb = dev_alloc_skb(USB_HWDESC_HEADER_LEN + frag_length + 4); #else skb = dev_alloc_skb(frag_length + priv->ieee80211->tx_headroom + 4); #endif if(skb == NULL) { rt_status = RT_STATUS_FAILURE; goto Failed; } memcpy((unsigned char *)(skb->cb),&dev,sizeof(dev)); tcb_desc = (cb_desc*)(skb->cb + MAX_DEV_ADDR_SIZE); tcb_desc->queue_index = TXCMD_QUEUE; tcb_desc->bCmdOrInit = packettype; tcb_desc->bLastIniPkt = bLastIniPkt; #ifdef RTL8192U skb_reserve(skb, USB_HWDESC_HEADER_LEN); #endif seg_ptr = skb_put(skb, frag_length + priv->ieee80211->tx_headroom); remain=skb->len; pTxFwInfo = (PTX_FWINFO_8190PCI)seg_ptr; memset(pTxFwInfo,0,sizeof(TX_FWINFO_8190PCI)); memset(pTxFwInfo,0x12,8); seg_ptr +=sizeof(TX_FWINFO_8190PCI); memset(pdesc,0,12); pdesc->LINIP = tcb_desc->bLastIniPkt; pdesc->FirstSeg = 1;//first segment; pdesc->LastSeg = 1;//first segment; pdesc->CmdInit = DESC_PACKET_TYPE_NORMAL; pdesc->Offset = sizeof(TX_FWINFO_8190PCI) + 8; pdesc->PktSize = (u16)(frag_length+pdesc->Offset); pdesc->QueueSelect = QSLT_CMD; pdesc->TxFWInfoSize = 0x08; pdesc->RATid = (u8)DESC_PACKET_TYPE_INIT; pdesc->TxBufferSize = skb->len; pdesc->TxBuffAddr = buflist->dma; pdesc->OWN = 1; /* * Transform from little endian to big endian * and pending zero */ memcpy(seg_ptr,codevirtualaddress,frag_length); for(i=0;i<buflen&& remain >0;i++,remain--){ ((u8*)buf)[i]=skb->data[i]; //copy data into descriptor pointed DMAble buffer if(remain == 4 && i+4 >= buflen) break; /* ensure the last desc has at least 4 bytes payload */ } if(remain == 0) dev_kfree_skb_any(skb); #if 0 { int k; printk("------------tx cmd------------\n"); for(k = 0; k<i; k++) printk(" 0x%x",((u8*)buf)[k]); printk("\n"); } { int m; printk("-------------cmd desc----------\n"); for(m=0;m<32;m++) printk(" 0x%x",((u8*)pdesc)[m]); printk("\n"); } #endif if(((tail->desc) - (begin->desc))/8 == count-1) tail=begin; else tail=tail->next; buflist=buflist->next; mb(); priv->txcmdringtail=tail; priv->txcmdbufstail=buflist; codevirtualaddress += frag_length; frag_offset += frag_length; write_nic_word(dev,TPPoll,TPPoll_CQ); }while(frag_offset < buffer_len); Failed: spin_unlock_irqrestore(&priv->tx_lock,flags); return rt_status; #endif } /* CMPK_Message_Handle_Tx */