Exemple #1
0
void Light::SetIntensitySortValue(const BoundingBox& box)
{
    // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
    switch (lightType_)
    {
    case LIGHT_DIRECTIONAL:
        sortValue_ = 1.0f / GetIntensityDivisor();
        break;

    case LIGHT_SPOT:
        {
            Vector3 centerPos = box.Center();
            Vector3 lightPos = node_->GetWorldPosition();
            Vector3 lightDir = node_->GetWorldDirection();
            Ray lightRay(lightPos, lightDir);

            Vector3 centerProj = lightRay.Project(centerPos);
            float centerDistance = (centerProj - lightPos).Length();
            Ray centerRay(centerProj, centerPos - centerProj);
            float centerAngle = centerRay.HitDistance(box) / centerDistance;

            // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
            Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
                centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
            Vector3 cornerProj = lightRay.Project(cornerPos);
            float cornerDistance = (cornerProj - lightPos).Length();
            float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;

            float spotAngle = Min(centerAngle, cornerAngle);
            float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
            float spotFactor = Min(spotAngle / maxAngle, 1.0f);
            // We do not know the actual range attenuation ramp, so take only spot attenuation into account
            float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
            sortValue_ = 1.0f / GetIntensityDivisor(att);
        }
        break;

    case LIGHT_POINT:
        {
            Vector3 centerPos = box.Center();
            Vector3 lightPos = node_->GetWorldPosition();
            Vector3 lightDir = (centerPos - lightPos).Normalized();
            Ray lightRay(lightPos, lightDir);
            float distance = lightRay.HitDistance(box);
            float normDistance = distance / range_;
            float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
            sortValue_ = 1.0f / (Max(color_.SumRGB(), 0.0f) * att + M_EPSILON);
        }
        break;
    }
}
Exemple #2
0
void Octant::Initialize(const BoundingBox& box)
{
    worldBoundingBox_ = box;
    center_ = box.Center();
    halfSize_ = 0.5f * box.Size();
    cullingBox_ = BoundingBox(worldBoundingBox_.min_ - halfSize_, worldBoundingBox_.max_ + halfSize_);
}
void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
{
    ATOMIC_PROFILE(PhysicsBoxQuery);

    result.Clear();

    btBoxShape boxShape(ToBtVector3(box.HalfSize()));
    UniquePtr<btRigidBody> tempRigidBody(new btRigidBody(1.0f, 0, &boxShape));
    tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
    tempRigidBody->activate();
    world_->addRigidBody(tempRigidBody.Get());

    PhysicsQueryCallback callback(result, collisionMask);
    world_->contactTest(tempRigidBody.Get(), callback);

    world_->removeRigidBody(tempRigidBody.Get());
}
Exemple #4
0
void Light::SetupShadowViews(Camera* mainCamera, Vector<AutoPtr<ShadowView> >& shadowViews, size_t& useIndex)
{
    size_t numViews = NumShadowViews();
    if (!numViews)
        return;

    if (shadowViews.Size() < useIndex + numViews)
        shadowViews.Resize(useIndex + numViews);

    int numVerticalSplits = (lightType == LIGHT_POINT || (lightType == LIGHT_DIRECTIONAL && NumShadowSplits() > 2)) ? 2 : 1;
    int actualShadowMapSize = shadowRect.Height() / numVerticalSplits;

    for (size_t i = 0; i < numViews; ++i)
    {
        if (!shadowViews[useIndex + i])
            shadowViews[useIndex + i] = new ShadowView();

        ShadowView* view = shadowViews[useIndex + i].Get();
        view->Clear();
        view->light = this;
        Camera& shadowCamera = view->shadowCamera;

        switch (lightType)
        {
        case LIGHT_DIRECTIONAL:
            {
                IntVector2 topLeft(shadowRect.left, shadowRect.top);
                if (i & 1)
                    topLeft.x += actualShadowMapSize;
                if (i & 2)
                    topLeft.y += actualShadowMapSize;
                view->viewport = IntRect(topLeft.x, topLeft.y, topLeft.x + actualShadowMapSize, topLeft.y + actualShadowMapSize);

                float splitStart = Max(mainCamera->NearClip(), (i == 0) ? 0.0f : ShadowSplit(i - 1));
                float splitEnd = Min(mainCamera->FarClip(), ShadowSplit(i));
                float extrusionDistance = mainCamera->FarClip();
                
                // Calculate initial position & rotation
                shadowCamera.SetTransform(mainCamera->WorldPosition() - extrusionDistance * WorldDirection(), WorldRotation());

                // Calculate main camera shadowed frustum in light's view space
                Frustum splitFrustum = mainCamera->WorldSplitFrustum(splitStart, splitEnd);
                const Matrix3x4& lightView = shadowCamera.ViewMatrix();
                Frustum lightViewFrustum = splitFrustum.Transformed(lightView);

                // Fit the frustum inside a bounding box
                BoundingBox shadowBox;
                shadowBox.Define(lightViewFrustum);

                // If shadow camera is far away from the frustum, can bring it closer for better depth precision
                /// \todo The minimum distance is somewhat arbitrary
                float minDistance = mainCamera->FarClip() * 0.25f;
                if (shadowBox.min.z > minDistance)
                {
                    float move = shadowBox.min.z - minDistance;
                    shadowCamera.Translate(Vector3(0.0f, 0.f, move));
                    shadowBox.min.z -= move,
                    shadowBox.max.z -= move;
                }

                shadowCamera.SetOrthographic(true);
                shadowCamera.SetFarClip(shadowBox.max.z);

                Vector3 center = shadowBox.Center();
                Vector3 size = shadowBox.Size();
                shadowCamera.SetOrthoSize(Vector2(size.x, size.y));
                shadowCamera.SetZoom(1.0f);

                // Center shadow camera to the view space bounding box
                Vector3 pos(shadowCamera.WorldPosition());
                Quaternion rot(shadowCamera.WorldRotation());
                Vector3 adjust(center.x, center.y, 0.0f);
                shadowCamera.Translate(rot * adjust, TS_WORLD);

                // Snap to whole texels
                {
                    Vector3 viewPos(rot.Inverse() * shadowCamera.WorldPosition());
                    float invSize = 1.0f / actualShadowMapSize;
                    Vector2 texelSize(size.x * invSize, size.y * invSize);
                    Vector3 snap(-fmodf(viewPos.x, texelSize.x), -fmodf(viewPos.y, texelSize.y), 0.0f);
                    shadowCamera.Translate(rot * snap, TS_WORLD);
                }
            }
            break;

        case LIGHT_POINT:
            {
                static const Quaternion pointLightFaceRotations[] = {
                    Quaternion(0.0f, 90.0f, 0.0f),
                    Quaternion(0.0f, -90.0f, 0.0f),
                    Quaternion(-90.0f, 0.0f, 0.0f),
                    Quaternion(90.0f, 0.0f, 0.0f),
                    Quaternion(0.0f, 0.0f, 0.0f),
                    Quaternion(0.0f, 180.0f, 0.0f)
                };

                IntVector2 topLeft(shadowRect.left, shadowRect.top);
                if (i & 1)
                    topLeft.y += actualShadowMapSize;
                topLeft.x += ((unsigned)i >> 1) * actualShadowMapSize;
                view->viewport = IntRect(topLeft.x, topLeft.y, topLeft.x + actualShadowMapSize, topLeft.y + actualShadowMapSize);

                shadowCamera.SetTransform(WorldPosition(), pointLightFaceRotations[i]);
                shadowCamera.SetFov(90.0f);
                // Adjust zoom to avoid edge sampling artifacts (there is a matching adjustment in the shadow sampling)
                shadowCamera.SetZoom(0.99f);
                shadowCamera.SetFarClip(Range());
                shadowCamera.SetNearClip(Range() * 0.01f);
                shadowCamera.SetOrthographic(false);
                shadowCamera.SetAspectRatio(1.0f);
            }
            break;

        case LIGHT_SPOT:
            view->viewport = shadowRect;
            shadowCamera.SetTransform(WorldPosition(), WorldRotation());
            shadowCamera.SetFov(fov);
            shadowCamera.SetZoom(1.0f);
            shadowCamera.SetFarClip(Range());
            shadowCamera.SetNearClip(Range() * 0.01f);
            shadowCamera.SetOrthographic(false);
            shadowCamera.SetAspectRatio(1.0f);
            break;
        }
    }

    // Setup shadow matrices now as camera positions have been finalized
    if (lightType != LIGHT_POINT)
    {
        shadowMatrices.Resize(numViews);
        
        for (size_t i = 0; i < numViews; ++i)
        {
            ShadowView* view = shadowViews[useIndex + i].Get();

            Camera& shadowCamera = view->shadowCamera;
            float width = (float)shadowMap->Width();
            float height = (float)shadowMap->Height();
            Vector3 offset((float)view->viewport.left / width, (float)view->viewport.top / height, 0.0f);
            Vector3 scale(0.5f * (float)view->viewport.Width() / width, 0.5f * (float)view->viewport.Height() / height, 1.0f);

            offset.x += scale.x;
            offset.y += scale.y;
            scale.y = -scale.y;

            // OpenGL has different depth range
            #ifdef TURSO3D_OPENGL
            offset.z = 0.5f;
            scale.z = 0.5f;
            #endif
            
            Matrix4 texAdjust(Matrix4::IDENTITY);
            texAdjust.SetTranslation(offset);
            texAdjust.SetScale(scale);

            shadowMatrices[i] = texAdjust * shadowCamera.ProjectionMatrix() * shadowCamera.ViewMatrix();
        }
    }
    else
    {
        // Point lights use an extra constant instead
        shadowMatrices.Clear();

        Vector2 textureSize((float)shadowMap->Width(), (float)shadowMap->Height());
        pointShadowParameters = Vector4(actualShadowMapSize / textureSize.x, actualShadowMapSize / textureSize.y,
            (float)shadowRect.left / textureSize.x, (float)shadowRect.top / textureSize.y);
    }

    // Calculate shadow mapping constants
    Camera& shadowCamera = shadowViews[useIndex]->shadowCamera;
    float nearClip = shadowCamera.NearClip();
    float farClip = shadowCamera.FarClip();
    float q = farClip / (farClip - nearClip);
    float r = -q * nearClip;
    shadowParameters = Vector4(0.5f / (float)shadowMap->Width(), 0.5f / (float)shadowMap->Height(), q, r);
    
    useIndex += numViews;
}