Exemple #1
0
/*
 * Attempts to replace iteration over simple anonymous ranges with calls to
 * direct iterators that take low, high and stride as arguments. This is to
 * avoid the cost of constructing ranges, and if the stride is known at compile
 * time, provide a more optimized iterator that uses "<, <=, >, or >=" as the
 * relational operator.
 *
 * This is only meant to replace anonymous range iteration for "simple" bounded
 * ranges. Simple means it's a range of the form "low..high" or "low..high by
 * stride". Anything more complex is ignored with the thinking that this should
 * optimize the most common range iterators, but it could be expanded to handle
 * more cases.
 *
 * An alternative is to update scalar replacement of aggregates to work on
 * ranges, which should be able to achieve similar results as this optimization
 * while handling all ranges, including non-anonymous ranges.
 *
 * Will optimize things like:
 * - "for i in 1..10"
 * - "for i in 1..10+1"
 * - "var lo=1, hi=10;for i in lo..hi"
 * - "for i in 1..10 by 2"
 * - "for (i, j) in zip(1..10 by 2, 1..10 by -2)"
 * - "for (i, j) in zip(A, 1..10 by 2)" // will optimize range iter still
 * - "coforall i in 1..10 by 2"         // works for coforalls as well
 *
 * Will not optimize ranges like:
 * - "for in in (1..)"             // doesn't handle unbounded ranges
 * - "for i in 1..10 by 2 by 2"    // doesn't handle more than one by operator
 * - "for i in 1..10 align 2"      // doesn't handle align operator
 * - "for i in 1..#10"             // doesn't handle # operator
 * - "var r = 1..10"; for i in r"  // not an anonymous range
 * - "forall i in 1..10"           // does not get applied to foralls
 *
 * Note that this function is pretty fragile because it relies on names of
 * functions/iterators as well as the arguments and order of those
 * functions/iterators but there's not really a way around it this early in
 * compilation. If the iterator can't be replaced, it is left unchanged.
 */
static void tryToReplaceWithDirectRangeIterator(Expr* iteratorExpr)
{
  CallExpr* range = NULL;
  Expr* stride = NULL;
  if (CallExpr* call = toCallExpr(iteratorExpr))
  {
    // grab the stride if we have a strided range
    if (call->isNamed("chpl_by"))
    {
      range = toCallExpr(call->get(1)->copy());
      stride = toExpr(call->get(2)->copy());
    }
    // assume the call is the range (checked below) and set default stride
    else
    {
      range = call;
      stride = new SymExpr(new_IntSymbol(1));
    }
    // see if we're looking at a builder for a bounded range. the builder is
    // iteratable since range has these() iterators
    if (range && range->isNamed("chpl_build_bounded_range"))
    {
      // replace the range construction with a direct range iterator
      Expr* low = range->get(1)->copy();
      Expr* high = range->get(2)->copy();
      iteratorExpr->replace(new CallExpr("chpl_direct_range_iter", low, high, stride));
    }
  }
}
//
// Do a breadth first search starting from functions generated for local blocks
// for all function calls in each level of the search, if they directly cause
// communication, add a local temp that isn't wide. If it is a resolved call,
// meaning that it isn't a primitive or external function, clone it and add it
// to the queue of functions to handle at the next iteration of the BFS.
//
static void handleLocalBlocks() {
  Map<FnSymbol*,FnSymbol*> cache; // cache of localized functions
  Vec<BlockStmt*> queue; // queue of blocks to localize

  forv_Vec(BlockStmt, block, gBlockStmts) {
    if (block->parentSymbol) {
      // NOAKES 2014/11/25 Transitional.  Avoid calling blockInfoGet()
      if (block->isLoopStmt() == true) {

      } else if (block->blockInfoGet()) {
        if (block->blockInfoGet()->isPrimitive(PRIM_BLOCK_LOCAL)) {
          queue.add(block);
        }
      }
    }
  }

  forv_Vec(BlockStmt, block, queue) {
    std::vector<CallExpr*> calls;
    collectCallExprs(block, calls);
    for_vector(CallExpr, call, calls) {
      localizeCall(call);
      if (FnSymbol* fn = call->isResolved()) {
        SET_LINENO(fn);
        if (FnSymbol* alreadyLocal = cache.get(fn)) {
          call->baseExpr->replace(new SymExpr(alreadyLocal));
        } else {
          if (!fn->hasFlag(FLAG_EXTERN)) {
            FnSymbol* local = fn->copy();
            local->addFlag(FLAG_LOCAL_FN);
            local->name = astr("_local_", fn->name);
            local->cname = astr("_local_", fn->cname);
            fn->defPoint->insertBefore(new DefExpr(local));
            call->baseExpr->replace(new SymExpr(local));
            queue.add(local->body);
            cache.put(fn, local);
            cache.put(local, local); // to handle recursion
            if (local->retType->symbol->hasFlag(FLAG_WIDE_REF)) {
              CallExpr* ret = toCallExpr(local->body->body.tail);
              INT_ASSERT(ret && ret->isPrimitive(PRIM_RETURN));
              // Capture the return expression in a local temp.
              insertLocalTemp(ret->get(1));
              local->retType = ret->get(1)->typeInfo();
            }
          }
        }
      }
    }
Exemple #3
0
static void removeVoidReturn(BlockStmt* cloneBody) {
  CallExpr* retexpr = toCallExpr(cloneBody->body.tail);
  INT_ASSERT(retexpr && retexpr->isPrimitive(PRIM_RETURN));
  INT_ASSERT(toSymExpr(retexpr->get(1))->symbol() == gVoid);

  retexpr->remove();
}
void deadVariableElimination(FnSymbol* fn) {
  Vec<Symbol*> symSet;
  Vec<SymExpr*> symExprs;
  collectSymbolSetSymExprVec(fn, symSet, symExprs);

  Map<Symbol*,Vec<SymExpr*>*> defMap;
  Map<Symbol*,Vec<SymExpr*>*> useMap;
  buildDefUseMaps(symSet, symExprs, defMap, useMap);

  forv_Vec(Symbol, sym, symSet)
  {
    // We're interested only in VarSymbols.
    if (!isVarSymbol(sym))
      continue;

    // A method must have a _this symbol, even if it is not used.
    if (sym == fn->_this)
      continue;

    if (isDeadVariable(sym, defMap, useMap)) {
      for_defs(se, defMap, sym) {
        CallExpr* call = toCallExpr(se->parentExpr);
        INT_ASSERT(call &&
                   (call->isPrimitive(PRIM_MOVE) ||
                    call->isPrimitive(PRIM_ASSIGN)));
        Expr* rhs = call->get(2)->remove();
        if (!isSymExpr(rhs))
          call->replace(rhs);
        else
          call->remove();
      }
      sym->defPoint->remove();
    }
  }
Exemple #5
0
void ReturnByRef::insertAssignmentToFormal(FnSymbol* fn, ArgSymbol* formal)
{
  Expr*     returnPrim  = fn->body->body.tail;

  SET_LINENO(returnPrim);

  CallExpr* returnCall  = toCallExpr(returnPrim);
  Expr*     returnValue = returnCall->get(1)->remove();
  CallExpr* moveExpr    = new CallExpr(PRIM_ASSIGN, formal, returnValue);


  Expr* expr = returnPrim;
  // Walk backwards while the previous element is an autoDestroy call
  while (expr->prev != NULL) {
    bool stop = true;
    if (CallExpr* call = toCallExpr(expr->prev))
      if (FnSymbol* calledFn = call->isResolved())
        if (calledFn->hasFlag(FLAG_AUTO_DESTROY_FN))
          stop = false;

    if (stop) break;

    expr = expr->prev;
  }

  Expr* returnOrFirstAutoDestroy = expr;

  // Add the move to return before the first autoDestroy
  // At this point we could also invoke some other function
  // if that turns out to be necessary. It might well be
  // necessary in order to return array slices by value.
  returnOrFirstAutoDestroy->insertBefore(moveExpr);
}
  forv_Vec(FnSymbol, fn, gFnSymbols)
  {
    if (VarSymbol* ret = toVarSymbol(fn->getReturnSymbol()))
    {
      // The return value of an initCopy function should not be autodestroyed.
      // Normally, the return value of a function is autoCopied, but since
      // autoCopy is typically defined in terms of initCopy, this would lead to
      // infinite recursion.  That is, the return value of initCopy must be
      // handled specially.
      if (fn->hasFlag(FLAG_INIT_COPY_FN))
        ret->removeFlag(FLAG_INSERT_AUTO_DESTROY);

      // This is just a workaround for memory management being handled specially
      // for internally reference-counted types. (sandboxing)
      TypeSymbol* ts = ret->type->symbol;
      if (ts->hasFlag(FLAG_ARRAY) ||
          ts->hasFlag(FLAG_DOMAIN))
        ret->removeFlag(FLAG_INSERT_AUTO_DESTROY);
      // Do we need to add other record-wrapped types here?  Testing will tell.

      // NOTE 1: When the value of a record field is established in a default
      // constructor, it is initialized using a MOVE.  That means that ownership
      // of that value is shared between the formal_tmp and the record field.
      // If the autodestroy flag is left on that formal temp, then it will be
      // destroyed which -- for ref-counted types -- can result in a dangling
      // reference.  So here, we look for that case and remove it.  
      if (fn->hasFlag(FLAG_DEFAULT_CONSTRUCTOR))
      {
        Map<Symbol*,Vec<SymExpr*>*> defMap;
        Map<Symbol*,Vec<SymExpr*>*> useMap;
        buildDefUseMaps(fn, defMap, useMap);

        std::vector<DefExpr*> defs;
        collectDefExprs(fn, defs);

        for_vector(DefExpr, def, defs)
        {
          if (VarSymbol* var = toVarSymbol(def->sym))
          {
            // Examine only those bearing the explicit autodestroy flag.
            if (! var->hasFlag(FLAG_INSERT_AUTO_DESTROY))
              continue;

            // Look for a use in a PRIM_SET_MEMBER where the field is a record
            // type, and remove the flag.
            // (We don't actually check that var is of record type, because
            // chpl__autoDestroy() does nothing when applied to all other types.
            for_uses(se, useMap, var)
            {
              CallExpr* call = toCallExpr(se->parentExpr);
              if (call->isPrimitive(PRIM_SET_MEMBER) &&
                  toSymExpr(call->get(3))->var == var)
                var->removeFlag(FLAG_INSERT_AUTO_DESTROY);
            }
          }
        }

        freeDefUseMaps(defMap, useMap);
      }
Exemple #7
0
// Remove the return statement and the def of 'ret'. Return 'ret'.
// See also removeRetSymbolAndUses().
static Symbol* removeParIterReturn(BlockStmt* cloneBody, Symbol* retsym) {
  CallExpr* retexpr = toCallExpr(cloneBody->body.tail);
  INT_ASSERT(retexpr && retexpr->isPrimitive(PRIM_RETURN));
  if (retsym == NULL) {
    retsym = toSymExpr(retexpr->get(1))->symbol();
    INT_ASSERT(retsym->type->symbol->hasFlag(FLAG_ITERATOR_RECORD));

  } else {
    CallExpr* move = toCallExpr(retsym->getSingleDef()->getStmtExpr());
    INT_ASSERT(move->isPrimitive(PRIM_MOVE) || move->isPrimitive(PRIM_ASSIGN));
    retsym = toSymExpr(move->get(2))->symbol();
    move->remove();
  }

  retexpr->remove();
  return retsym;
}
void ReturnByRef::insertAssignmentToFormal(FnSymbol* fn, ArgSymbol* formal)
{
  Expr*     returnPrim  = fn->body->body.tail;

  SET_LINENO(returnPrim);

  CallExpr* returnCall  = toCallExpr(returnPrim);
  Expr*     returnValue = returnCall->get(1)->remove();
  CallExpr* moveExpr    = new CallExpr(PRIM_MOVE, formal, returnValue);

  returnPrim->insertBefore(moveExpr);
}
Exemple #9
0
void localizeGlobals() {
  if (fNoGlobalConstOpt) return;
  forv_Vec(FnSymbol, fn, gFnSymbols) {
    Map<Symbol*,VarSymbol*> globals;
    std::vector<BaseAST*> asts;
    collect_asts(fn->body, asts);
    for_vector(BaseAST, ast, asts) {
      if (SymExpr* se = toSymExpr(ast)) {
        Symbol* var = se->symbol();
        ModuleSymbol* parentmod = toModuleSymbol(var->defPoint->parentSymbol);
        CallExpr* parentExpr = toCallExpr(se->parentExpr);
        bool inAddrOf = parentExpr && parentExpr->isPrimitive(PRIM_ADDR_OF);
        bool lhsOfMove = parentExpr && isMoveOrAssign(parentExpr) && (parentExpr->get(1) == se);

        // Is var a global constant?
        // Don't replace the var name in its init function since that's
        //      where we're setting the value. Similarly, dont replace them
        //      inside initStringLiterals
        // If the parentSymbol is the rootModule, the var is 'void,'
        //      'false,' '0,' ...
        // Also don't replace it when it's in an addr of primitive.
        if (parentmod &&
            fn != parentmod->initFn &&
            fn != initStringLiterals &&
            !inAddrOf &&
            !lhsOfMove &&
            var->hasFlag(FLAG_CONST) &&
            var->defPoint->parentSymbol != rootModule) {
          VarSymbol* local_global = globals.get(var);
          SET_LINENO(se); // Set the se line number for output
          if (!local_global) {
            const char * newname = astr("local_", var->cname);
            local_global = newTemp(newname, var->type);
            fn->insertAtHead(new CallExpr(PRIM_MOVE, local_global, var));
            fn->insertAtHead(new DefExpr(local_global));

            // Copy string immediates to localized strings so that
            // we can show the string value in comments next to uses.
            if (!llvmCodegen)
              if (VarSymbol* localVarSym = toVarSymbol(var))
                if (Immediate* immediate = localVarSym->immediate)
                  if (immediate->const_kind == CONST_KIND_STRING)
                    local_global->immediate =
                      new Immediate(immediate->v_string, immediate->string_kind);

            globals.put(var, local_global);
          }
          se->replace(new SymExpr(toSymbol(local_global)));
        }
      }
    }
  }
Exemple #10
0
static bool
removeIdentityDefs(Symbol* sym) {
  bool change = false;

  for_defs(def, defMap, sym) {
    CallExpr* move = toCallExpr(def->parentExpr);
    if (move && move->isPrimitive(PRIM_MOVE)) {
      SymExpr* rhs = toSymExpr(move->get(2));
      if (rhs && def->var == rhs->var) {
        move->remove();
        change = true;
      }
    }
  }
Exemple #11
0
static bool
removeIdentityDefs(Symbol* sym) {
  bool change = false;

  for_defs(def, defMap, sym) {
    CallExpr* move = toCallExpr(def->parentExpr);
    if (move && isMoveOrAssign(move)) {
      SymExpr* rhs = toSymExpr(move->get(2));
      if (rhs && def->symbol() == rhs->symbol()) {
        move->remove();
        change = true;
      }
    }
  }
Exemple #12
0
//
// Consider a function that takes a formal of type Record by const ref
// and that returns that value from the function.  The compiler inserts
// a PRIM_MOVE operation.
//
// This work-around inserts an autoCopy to compensate
//
void ReturnByRef::updateAssignmentsFromRefArgToValue(FnSymbol* fn)
{
  std::vector<CallExpr*> callExprs;

  collectCallExprs(fn, callExprs);

  for (size_t i = 0; i < callExprs.size(); i++)
  {
    CallExpr* move = callExprs[i];

    if (move->isPrimitive(PRIM_MOVE) == true)
    {
      SymExpr* lhs = toSymExpr(move->get(1));
      SymExpr* rhs = toSymExpr(move->get(2));

      if (lhs != NULL && rhs != NULL)
      {
        VarSymbol* symLhs = toVarSymbol(lhs->symbol());
        ArgSymbol* symRhs = toArgSymbol(rhs->symbol());

        if (symLhs != NULL && symRhs != NULL)
        {
          if (isUserDefinedRecord(symLhs->type) == true &&
              symRhs->type                      == symLhs->type)
          {
            if (symLhs->hasFlag(FLAG_ARG_THIS) == false &&
                (symRhs->intent == INTENT_REF ||
                 symRhs->intent == INTENT_CONST_REF))
            {
              SET_LINENO(move);

              CallExpr* autoCopy = NULL;

              rhs->remove();
              autoCopy = new CallExpr(autoCopyMap.get(symRhs->type), rhs);
              move->insertAtTail(autoCopy);
            }
          }
        }
      }
    }
  }
}
Exemple #13
0
void ReturnByRef::updateAssignmentsFromRefTypeToValue(FnSymbol* fn)
{
  std::vector<CallExpr*> callExprs;

  collectCallExprs(fn, callExprs);

  Map<Symbol*,Vec<SymExpr*>*> defMap;
  Map<Symbol*,Vec<SymExpr*>*> useMap;
  buildDefUseMaps(fn, defMap, useMap);

  for (size_t i = 0; i < callExprs.size(); i++)
  {
    CallExpr* move = callExprs[i];

    if (move->isPrimitive(PRIM_MOVE) == true)
    {
      SymExpr*  symLhs  = toSymExpr (move->get(1));
      CallExpr* callRhs = toCallExpr(move->get(2));

      if (symLhs && callRhs && callRhs->isPrimitive(PRIM_DEREF))
      {
        VarSymbol* varLhs = toVarSymbol(symLhs->symbol());
        SymExpr*   symRhs = toSymExpr(callRhs->get(1));
        VarSymbol* varRhs = toVarSymbol(symRhs->symbol());

        // MPF 2016-10-02: It seems to me that this code should also handle the
        // case that symRhs is an ArgSymbol, but adding that caused problems
        // in the handling of out argument intents.

        if (varLhs != NULL && varRhs != NULL)
        {
          if (isUserDefinedRecord(varLhs->type) == true &&
              varRhs->type                      == varLhs->type->refType)
          {

            // HARSHBARGER 2015-12-11:
            // `init_untyped_var` in the `normalize` pass may insert an
            // initCopy, which means that we should not insert an autocopy
            // for that same variable.
            bool initCopied = false;
            for_uses(use, useMap, varLhs) {
              if (CallExpr* call = toCallExpr(use->parentExpr)) {
                if (FnSymbol* parentFn = call->isResolved()) {
                  if (parentFn->hasFlag(FLAG_INIT_COPY_FN)) {
                    initCopied = true;
                    break;
                  }
                }
              }
            }

            if (!initCopied) {
              SET_LINENO(move);

              SymExpr*  lhsCopy0 = symLhs->copy();
              SymExpr*  lhsCopy1 = symLhs->copy();
              FnSymbol* autoCopy = autoCopyMap.get(varLhs->type);
              CallExpr* copyExpr = new CallExpr(autoCopy, lhsCopy0);
              CallExpr* moveExpr = new CallExpr(PRIM_MOVE,lhsCopy1, copyExpr);

              move->insertAfter(moveExpr);
            }
          }
        }
      }
// Returns true if the symbol is read in the containing expression,
// false otherwise.  If the operand is used as an address,
// that does not count as a 'read', so false is returned in that case.
static bool isUse(SymExpr* se)
{
  if (toGotoStmt(se->parentExpr))
    return false;

  if (toCondStmt(se->parentExpr))
    return true;

  if (toBlockStmt(se->parentExpr))
    return true;

  if (isDefExpr(se->parentExpr))
    return false;

  CallExpr* call = toCallExpr(se->parentExpr);

  if (FnSymbol* fn = call->resolvedFunction())
  {
    // Skip the "base" symbol.
    if (se->symbol() == fn)
      return false;

    // A "normal" call.
    ArgSymbol* arg = actual_to_formal(se);

    if (arg->intent == INTENT_OUT ||
        (arg->intent & INTENT_FLAG_REF))
      return false;
  }

  else
  {
    INT_ASSERT(call->primitive);
    const bool isFirstActual = call->get(1) == se;

    switch(call->primitive->tag)
    {
     default:
      return true;

     case PRIM_MOVE:
     case PRIM_ASSIGN:
     case PRIM_ADD_ASSIGN:
     case PRIM_SUBTRACT_ASSIGN:
     case PRIM_MULT_ASSIGN:
     case PRIM_DIV_ASSIGN:
     case PRIM_MOD_ASSIGN:
     case PRIM_LSH_ASSIGN:
     case PRIM_RSH_ASSIGN:
     case PRIM_AND_ASSIGN:
     case PRIM_OR_ASSIGN:
     case PRIM_XOR_ASSIGN:
      if (isFirstActual)
      {
        return false;
      }
      return true;

     case PRIM_ADDR_OF:
     case PRIM_SET_REFERENCE:
      return false; // See Note #2.

     case PRIM_PRIVATE_BROADCAST:
      // The operand is used by name (it must be a manifest constant).
      // Thus it acts more like an address than a value.
      return false;

     case PRIM_CHPL_COMM_GET:
     case PRIM_CHPL_COMM_PUT:
     case PRIM_CHPL_COMM_ARRAY_GET:
     case PRIM_CHPL_COMM_ARRAY_PUT:
     case PRIM_CHPL_COMM_GET_STRD:
     case PRIM_CHPL_COMM_PUT_STRD:
      // ('comm_get/put' locAddr locale widePtr len)
      // The first and third operands are treated as addresses.
      // The second and fourth are values
      if (se == call->get(2) || se == call->get(4))
      {
        return true;
      }
      return false;

     case PRIM_CHPL_COMM_REMOTE_PREFETCH:
      // comm prefetch locale widePtr len
      // second argument is an address
      // first and third are values.
      if (isFirstActual || se == call->get(3))
      {
        return true;
      }
      return false;

     case PRIM_SET_MEMBER:
      // The first operand works like a reference, and the second is a field
      // name.  Only the third is a replaceable use.
      if (se == call->get(3))
      {
        return true;
      }
      return false;

     case PRIM_GET_MEMBER:
     case PRIM_GET_MEMBER_VALUE:
      if (isFirstActual)
      {
        return false;
      }
      return true;

     case PRIM_ARRAY_SET:
     case PRIM_ARRAY_SET_FIRST:
     case PRIM_ARRAY_GET:
     case PRIM_ARRAY_GET_VALUE:
      // The first operand is treated like a reference.
      if (isFirstActual)
      {
        return false;
      }
      return true;

     case PRIM_SET_UNION_ID:
      // The first operand is treated like a reference.
      if (isFirstActual)
      {
        return false;
      }

      return true;
    }
  }

  return true;
}
Exemple #15
0
//
// Attempts to replace references with the variables the references point to,
// provided the references have a single definition.
//
// For example:
// var foo : int;
// ref A : int;
// (move A (addr-of foo))
//
// (move B (deref A))     --->    (move B foo)
//
void
eliminateSingleAssignmentReference(Map<Symbol*,Vec<SymExpr*>*>& defMap,
                                   Map<Symbol*,Vec<SymExpr*>*>& useMap,
                                   Symbol* var) {
  if (CallExpr* move = findRefDef(defMap, var)) {
    if (CallExpr* rhs = toCallExpr(move->get(2))) {
      if (rhs->isPrimitive(PRIM_ADDR_OF) || rhs->isPrimitive(PRIM_SET_REFERENCE)) {
        bool stillAlive = false;
        for_uses(se, useMap, var) {
          CallExpr* parent = toCallExpr(se->parentExpr);
          SET_LINENO(se);
          if (parent && (parent->isPrimitive(PRIM_DEREF) || isDerefMove(parent))) {
            SymExpr* se = toSymExpr(rhs->get(1)->copy());
            INT_ASSERT(se);
            Expr* toReplace = parent;
            if (isMoveOrAssign(parent)) {
              toReplace = parent->get(2);
            }
            toReplace->replace(se);
            ++s_ref_repl_count;
            addUse(useMap, se);
          } else if (parent &&
                     (parent->isPrimitive(PRIM_GET_MEMBER_VALUE) ||
                      parent->isPrimitive(PRIM_GET_MEMBER) ||
                      parent->isPrimitive(PRIM_GET_MEMBER_VALUE) ||
                      parent->isPrimitive(PRIM_GET_MEMBER))) {
            SymExpr* se = toSymExpr(rhs->get(1)->copy());
            INT_ASSERT(se);
            parent->get(1)->replace(se);
            ++s_ref_repl_count;
            addUse(useMap, se);
          }
          else if (parent && (parent->isPrimitive(PRIM_MOVE) || parent->isPrimitive(PRIM_SET_REFERENCE))) {
            CallExpr* rhsCopy = rhs->copy();
            if (parent->isPrimitive(PRIM_SET_REFERENCE)) {
              // Essentially a pointer copy like a (move refA refB)
              parent = toCallExpr(parent->parentExpr);
              INT_ASSERT(parent && isMoveOrAssign(parent));
            }
            parent->get(2)->replace(rhsCopy);
            ++s_ref_repl_count;
            SymExpr* se = toSymExpr(rhsCopy->get(1));
            INT_ASSERT(se);
            addUse(useMap, se);
            // BHARSH TODO: Is it possible to handle the following case safely
            // for PRIM_ASSIGN?
            //
            // ref i_foo : T;
            // (move i_foo (set reference bar))
            // (= call_tmp i_foo)
            //
            // Should that turn into (= call_tmp bar)?
          } else if (parent && parent->isPrimitive(PRIM_ASSIGN) && parent->get(1) == se) {
            // for_defs should handle this case
          } else if (parent && parent->isResolved()) {
            stillAlive = true;
            // TODO -- a reference argument can be passed directly
          } else {
            stillAlive = true;
          }
        }
        for_defs(se, defMap, var) {
          CallExpr* parent = toCallExpr(se->parentExpr);
          SET_LINENO(se);
          if (parent == move)
            continue;
          if (parent && isMoveOrAssign(parent)) {
            SymExpr* se = toSymExpr(rhs->get(1)->copy());
            INT_ASSERT(se);
            parent->get(1)->replace(se);
            ++s_ref_repl_count;
            addDef(defMap, se);
          } else
            stillAlive = true;
        }
        if (!stillAlive) {
          var->defPoint->remove();
          Vec<SymExpr*>* defs = defMap.get(var);
          if (defs == NULL) {
            INT_FATAL(var, "Expected var to be defined");
          }
          // Remove the first definition from the AST.
          defs->v[0]->getStmtExpr()->remove();
        }
      } else if (rhs->isPrimitive(PRIM_GET_MEMBER) ||
Exemple #16
0
BlockStmt* ParamForLoop::buildParamForLoop(VarSymbol* indexVar,
                                           Expr*      range,
                                           BlockStmt* stmts)
{
  VarSymbol*   lowVar     = newParamVar();
  VarSymbol*   highVar    = newParamVar();
  VarSymbol*   strideVar  = newParamVar();

  LabelSymbol* breakLabel = new LabelSymbol("_breakLabel");
  LabelSymbol* continueLabel  = new LabelSymbol("_unused_continueLabel");

  CallExpr*    call       = toCallExpr(range);
  Expr*        low        = NULL;
  Expr*        high       = NULL;
  Expr*        stride     = NULL;

  BlockStmt*   outer      = new BlockStmt();

  if (call && call->isNamed("chpl_by"))
  {
    stride = call->get(2)->remove();
    call   = toCallExpr(call->get(1));
  }
  else
  {
    stride = new SymExpr(new_IntSymbol(1));
  }

  if (call && call->isNamed("chpl_build_bounded_range"))
  {
    low    = call->get(1)->remove();
    high   = call->get(1)->remove();
  }
  else
  {
    USR_FATAL(range, "iterators for param-for-loops must be bounded literal ranges");
  }

  outer->insertAtTail(new DefExpr(indexVar, new_IntSymbol((int64_t) 0)));

  outer->insertAtTail(new DefExpr(lowVar));
  outer->insertAtTail(new CallExpr(PRIM_MOVE, lowVar,    low));

  outer->insertAtTail(new DefExpr(highVar));
  outer->insertAtTail(new CallExpr(PRIM_MOVE, highVar,   high));

  outer->insertAtTail(new DefExpr(strideVar));
  outer->insertAtTail(new CallExpr(PRIM_MOVE, strideVar, stride));

  outer->insertAtTail(new ParamForLoop(indexVar,
                                       lowVar,
                                       highVar,
                                       strideVar,
                                       continueLabel,
                                       breakLabel,
                                       stmts));

  // this continueLabel will be replaced by a per-iteration one.
  outer->insertAtTail(new DefExpr(continueLabel));
  outer->insertAtTail(new DefExpr(breakLabel));

  return buildChapelStmt(outer);
}
Exemple #17
0
static bool inferRefToConst(Symbol* sym) {
  INT_ASSERT(sym->isRef());

  bool isConstRef = sym->qualType().getQual() == QUAL_CONST_REF;
  const bool wasRefToConst = sym->hasFlag(FLAG_REF_TO_CONST);

  ConstInfo* info = infoMap[sym];

  // If this ref isn't const, then it can't point to a const thing
  if (info == NULL) {
    return false;
  } else if (info->finalizedRefToConst || wasRefToConst || !isConstRef) {
    return wasRefToConst;
  }

  bool isFirstCall = false;
  if (info->alreadyCalled == false) {
    isFirstCall = true;
    info->alreadyCalled = true;
  }

  bool isRefToConst = true;

  if (isArgSymbol(sym)) {
    // Check each call and set isRefToConst to false if any actual is not a ref
    // to a const.
    FnSymbol* fn = toFnSymbol(sym->defPoint->parentSymbol);
    if (fn->hasFlag(FLAG_VIRTUAL) ||
        fn->hasFlag(FLAG_EXPORT)  ||
        fn->hasFlag(FLAG_EXTERN)) {
      // Not sure how to best handle virtual calls, so simply set false for now
      //
      // For export or extern functions, return false because we don't have
      // all the information about how the function is called.
      isRefToConst = false;
    } else {
      // Need this part to be re-entrant in case of recursive functions
      while (info->fnUses != NULL && isRefToConst) {
        SymExpr* se = info->fnUses;
        info->fnUses = se->symbolSymExprsNext;

        CallExpr* call = toCallExpr(se->parentExpr);
        INT_ASSERT(call && call->isResolved());

        Symbol* actual = toSymExpr(formal_to_actual(call, sym))->symbol();

        if (actual->isRef()) {
          // I don't think we technically need to skip if the actual is the
          // same symbol as the formal, but it makes things simpler.
          if (actual != sym && !inferRefToConst(actual)) {
            isRefToConst = false;
          }
        } else {
          // Passing a non-ref actual to a reference formal is currently
          // considered to be the same as an addr-of
          if (actual->qualType().getQual() != QUAL_CONST_VAL) {
            isRefToConst = false;
          }
        }
      }
    }
  }

  while (info->hasMore() && isRefToConst) {
    SymExpr* use = info->next();

    CallExpr* call = toCallExpr(use->parentExpr);
    if (call == NULL) continue;

    if (isMoveOrAssign(call)) {
      if (use == call->get(1)) {
        if (SymExpr* se = toSymExpr(call->get(2))) {
          if (se->isRef() && !inferRefToConst(se->symbol())) {
            isRefToConst = false;
          }
        }
        else {
          CallExpr* RHS = toCallExpr(call->get(2));
          INT_ASSERT(RHS);
          if (RHS->isPrimitive(PRIM_ADDR_OF) ||
              RHS->isPrimitive(PRIM_SET_REFERENCE)) {
            SymExpr* src = toSymExpr(RHS->get(1));
            if (src->isRef()) {
              if (!inferRefToConst(src->symbol())) {
                isRefToConst = false;
              }
            } else {
              if (src->symbol()->qualType().getQual() != QUAL_CONST_VAL) {
                isRefToConst = false;
              }
            }
          } else {
            isRefToConst = false;
          }
        }
      }
    }
    else if (call->isResolved()) {
      isRefToConst = true;
    }
    else {
      isRefToConst = isSafeRefPrimitive(use);
    }
  }

  if (isFirstCall) {
    if (isRefToConst) {
      INT_ASSERT(info->finalizedRefToConst == false);
      sym->addFlag(FLAG_REF_TO_CONST);
    }

    info->reset();
    info->finalizedRefToConst = true;
  } else if (!isRefToConst) {
    info->finalizedRefToConst = true;
  }

  return isRefToConst;
}
Exemple #18
0
// Note: This function is currently not recursive
static bool inferConst(Symbol* sym) {
  INT_ASSERT(!sym->isRef());
  const bool wasConstVal = sym->qualType().getQual() == QUAL_CONST_VAL;

  ConstInfo* info = infoMap[sym];

  // 'info' may be null if the argument is never used. In that case we can
  // consider 'sym' to be a const-ref. By letting the rest of the function
  // proceed, we'll fix up the qualifier for such symbols at the end.
  if (info == NULL) {
    return true;
  } else if (info->finalizedConstness || wasConstVal) {
    return wasConstVal;
  }

  bool isConstVal = true;
  int numDefs = 0;

  while (info->hasMore() && isConstVal) {
    SymExpr* use = info->next();

    CallExpr* call = toCallExpr(use->parentExpr);
    if (call == NULL) {
      // Could be a DefExpr, or the condition for a while loop.
      // BHARSH: I'm not sure of all the possibilities
      continue;
    }

    CallExpr* parent = toCallExpr(call->parentExpr);

    if (call->isResolved()) {
      ArgSymbol* form = actual_to_formal(use);

      //
      // If 'sym' is constructed through a _retArg, we can consider that to
      // be a single 'def'.
      //
      if (form->hasFlag(FLAG_RETARG)) {
        numDefs += 1;
      }
      else if (form->isRef()) {
        if (!inferConstRef(form)) {
          isConstVal = false;
        }
      }
    }
    else if (parent && isMoveOrAssign(parent)) {
      if (call->isPrimitive(PRIM_ADDR_OF) ||
          call->isPrimitive(PRIM_SET_REFERENCE)) {
        Symbol* LHS = toSymExpr(parent->get(1))->symbol();
        INT_ASSERT(LHS->isRef());

        if (onlyUsedForRetarg(LHS, parent)) {
          numDefs += 1;
        }
        else if (!inferConstRef(LHS)) {
          isConstVal = false;
        }
      }
    }
    else if (isMoveOrAssign(call)) {
      if (use == call->get(1)) {
        numDefs += 1;
      }
    } else {
      // To be safe, exit the loop with 'false' if we're unsure of how to
      // handle a primitive.
      isConstVal = false;
    }

    if (numDefs > 1) {
      isConstVal = false;
    }
  }

  if (isConstVal && !info->finalizedConstness) {
    if (ArgSymbol* arg = toArgSymbol(sym)) {
      INT_ASSERT(arg->intent & INTENT_FLAG_IN);
      arg->intent = INTENT_CONST_IN;
    } else {
      INT_ASSERT(isVarSymbol(sym));
      sym->qual = QUAL_CONST_VAL;
    }
  }

  info->reset();
  info->finalizedConstness = true;

  return isConstVal;
}
Exemple #19
0
//
// Returns 'true' if 'sym' is (or should be) a const-ref.
// If 'sym' can be a const-ref, but is not, this function will change either
// the intent or qual of the Symbol to const-ref.
//
static bool inferConstRef(Symbol* sym) {
  INT_ASSERT(sym->isRef());
  bool wasConstRef = sym->qualType().getQual() == QUAL_CONST_REF;

  if (sym->defPoint->parentSymbol->hasFlag(FLAG_EXTERN)) {
    return wasConstRef;
  }

  ConstInfo* info = infoMap[sym];

  // 'info' may be null if the argument is never used. In that case we can
  // consider 'sym' to be a const-ref. By letting the rest of the function
  // proceed, we'll fix up the qualifier for such symbols at the end.
  if (info == NULL) {
    return true;
  } else if (info->finalizedConstness || wasConstRef) {
    return wasConstRef;
  }

  bool isFirstCall = false;
  if (info->alreadyCalled == false) {
    isFirstCall = true;
    info->alreadyCalled = true;
  }

  bool isConstRef = true;

  while (info->hasMore() && isConstRef) {
    SymExpr* use = info->next();

    CallExpr* call = toCallExpr(use->parentExpr);
    INT_ASSERT(call);

    CallExpr* parent = toCallExpr(call->parentExpr);

    if (call->isResolved()) {
      ArgSymbol* form = actual_to_formal(use);
      if (form->isRef() && !inferConstRef(form)) {
        isConstRef = false;
      }
    }
    else if (parent && isMoveOrAssign(parent)) {
      if (!canRHSBeConstRef(parent, use)) {
        isConstRef = false;
      }
    }
    else if (call->isPrimitive(PRIM_MOVE)) {
      //
      // Handles three cases:
      // 1) MOVE use value - writing to a reference, so 'use' cannot be const
      // 2) MOVE ref use - if the LHS is not const, use cannot be const either
      // 3) MOVE value use - a dereference of 'use'
      //
      if (use == call->get(1)) {
        // CASE 1
        if (!call->get(2)->isRef()) {
          isConstRef = false;
        }
      } else {
        // 'use' is the RHS of a MOVE
        if (call->get(1)->isRef()) {
          // CASE 2
          SymExpr* se = toSymExpr(call->get(1));
          INT_ASSERT(se);
          if (!inferConstRef(se->symbol())) {
            isConstRef = false;
          }
        }
        // else CASE 3: do nothing because isConstRef is already true
      }
    }
    else if (call->isPrimitive(PRIM_ASSIGN)) {
      if (use == call->get(1)) {
        isConstRef = false;
      }
    }
    else if (call->isPrimitive(PRIM_SET_MEMBER) ||
             call->isPrimitive(PRIM_SET_SVEC_MEMBER)) {
      // BHARSH 2016-11-02
      // In the expr (set_member base member rhs),
      // If use == base, I take the conservative approach and decide that 'use'
      // is not a const-ref. I'm not sure that we've decided what const means
      // for fields yet, so this seems safest.
      //
      // If use == rhs, then we would need to do analysis for the member field.
      // That's beyond the scope of what I'm attempting at the moment, so to
      // be safe we'll return false for that case.
      if (use == call->get(1) || use == call->get(3)) {
        isConstRef = false;
      } else {
        // use == member
        // If 'rhs' is not a ref, then we're writing into 'use'. Otherwise it's
        // a pointer copy and we don't care if 'rhs' is writable.
        if (!call->get(3)->isRef()) {
          isConstRef = false;
        }
      }
    } else {
      // To be safe, exit the loop with 'false' if we're unsure of how to
      // handle a primitive.
      isConstRef = false;
    }
  }

  if (isFirstCall) {
    if (isConstRef) {
      INT_ASSERT(info->finalizedConstness == false);
      if (ArgSymbol* arg = toArgSymbol(sym)) {
        arg->intent = INTENT_CONST_REF;
      } else {
        INT_ASSERT(isVarSymbol(sym));
        sym->qual = QUAL_CONST_REF;
      }
    }

    info->reset();
    info->finalizedConstness = true;
  } else if (!isConstRef) {
    info->finalizedConstness = true;
  }

  return isConstRef;
}
Exemple #20
0
/*
 * Attempts to replace iteration over simple anonymous ranges with calls to
 * direct iterators that take low, high and stride as arguments. This is to
 * avoid the cost of constructing ranges, and if the stride is known at compile
 * time, provide a more optimized iterator that uses "<, <=, >, or >=" as the
 * relational operator.
 *
 * This is only meant to replace anonymous range iteration for "simple" ranges.
 * Simple means it's a range of the form "low..high", "low..high by stride", or
 * "low..#count". Anything more complex is ignored with the thinking that this
 * should optimize the most common range iterators, but it could be expanded to
 * handle more cases.
 *
 * An alternative is to update scalar replacement of aggregates to work on
 * ranges, which should be able to achieve similar results as this optimization
 * while handling all ranges, including non-anonymous ranges.
 *
 * This function will optimize things like:
 * - "for i in 1..10"
 * - "for i in 1..10+1"
 * - "var lo=1, hi=10;for i in lo..hi"
 * - "for i in 1..10 by 2"
 * - "for i in 1..#10"
 * - "for (i, j) in zip(1..10 by 2, 1..10 by -2)"
 * - "for (i, j) in zip(A, 1..10 by 2)" // will optimize range iter still
 * - "coforall i in 1..10 by 2"         // works for coforalls as well
 *
 * Will not optimize ranges like:
 * - "for in in (1..)"             // doesn't handle unbounded ranges
 * - "for i in 1..10 by 2 by 2"    // doesn't handle more than one by operator
 * - "for i in 1..10 align 2"      // doesn't handle align operator
 * - "for i in (1..10)#2"          // doesn't handle bounded counted ranges
 * - "for i in 1..#10 by 2"        // doesn't handle strided and counted ranges
 * - "var r = 1..10"; for i in r"  // not an anonymous range
 * - "forall i in 1..10"           // doesn't get applied to foralls
 *
 * Note that this function is pretty fragile because it relies on names of
 * functions/iterators as well as the arguments and order of those
 * functions/iterators but there's not really a way around it this early in
 * compilation. If the iterator can't be replaced, it is left unchanged.
 */
static void tryToReplaceWithDirectRangeIterator(Expr* iteratorExpr)
{
  if (CallExpr* call = toCallExpr(iteratorExpr))
  {
    CallExpr* range = NULL;
    Expr* stride = NULL;
    Expr* count = NULL;
    // grab the stride if we have a strided range
    if (call->isNamed("chpl_by"))
    {
      range = toCallExpr(call->get(1)->copy());
      stride = toExpr(call->get(2)->copy());
    }
    // or grab the count if we have a counted range and set unit stride
    else if (call->isNamed("#"))
    {
      range = toCallExpr(call->get(1)->copy());
      count = toExpr(call->get(2)->copy());
      stride = new SymExpr(new_IntSymbol(1));
    }
    // or assume the call is the range (checked below) and set unit stride
    else
    {
      range = call;
      stride = new SymExpr(new_IntSymbol(1));
    }

    //
    // see if we're looking at a range builder. The builder is iteratable since
    // range has these() iterators
    //

    // replace fully bounded (and possibly strided range) with a direct range
    // iter. e.g. replace:
    //
    //   `low..high by stride`
    //
    // with:
    //
    // `chpl_direct_range_iter(low, high, stride)`
    if (range && range->isNamed("chpl_build_bounded_range"))
    {
      // replace the range construction with a direct range iterator
      Expr* low = range->get(1)->copy();
      Expr* high = range->get(2)->copy();
      iteratorExpr->replace(new CallExpr("chpl_direct_range_iter", low, high, stride));
    }

    // replace a counted, low bounded range with unit stride with an equivalent
    // direct range iter. e.g. replace:
    //
    //   `low..#count` (which is equivalent to `low..low+count-1`)
    //
    // with:
    //
    //   `chpl_direct_range_iter(low, low+count-1, 1)`
    else if (count && range && range->isNamed("chpl_build_low_bounded_range"))
    {
      Expr* low = range->get(1)->copy();
      Expr* high = new CallExpr("-", new CallExpr("+", low->copy(), count), new_IntSymbol(1));
      iteratorExpr->replace(new CallExpr("chpl_direct_range_iter", low, high, stride));
    }
  }
}
// This routine returns true if the value of the given symbol may have changed
// due to execution of the containing expression.
// If the symbol is a reference, this means that the address to which the
// symbol points will be changed, not the value contained in that address.  See
// isRefUse() for that case.
// To be conservative, the routine should return true by default and then
// select the cases where we are sure nothing has changed.
static bool needsKilling(SymExpr* se, std::set<Symbol*>& liveRefs)
{
  INT_ASSERT(se->isRef() == false);
  if (toGotoStmt(se->parentExpr)) {
    return false;
  }

  if (toCondStmt(se->parentExpr)) {
    return false;
  }

  if (toBlockStmt(se->parentExpr)) {
    return false;
  }

  if (isDefExpr(se->parentExpr)) {
    return false;
  }

  CallExpr* call = toCallExpr(se->parentExpr);

  if (FnSymbol* fn = call->resolvedFunction())
  {
    // Skip the "base" symbol.
    if (se->symbol() == fn)
    {
      return false;
    }

    ArgSymbol* arg = actual_to_formal(se);

    if (arg->intent == INTENT_OUT   ||
        arg->intent == INTENT_INOUT ||
        arg->intent == INTENT_REF   ||
        arg->hasFlag(FLAG_ARG_THIS)) // Todo: replace with arg intent check?
    {
      liveRefs.insert(se->symbol());
      return true;
    }

    if (isRecordWrappedType(arg->type))
    {
      return true;
    }

    return false;
  }
  else
  {
    const bool isFirstActual = call->get(1) == se;
    if ((call->isPrimitive(PRIM_MOVE) || call->isPrimitive(PRIM_ASSIGN))
        && isFirstActual)
    {
      return true;
    }

    if (isOpEqualPrim(call) && isFirstActual)
    {
      return true;
    }

    if (call->isPrimitive(PRIM_SET_MEMBER) && isFirstActual)
    {
      return true;
    }

    if (call->isPrimitive(PRIM_ARRAY_SET) ||
        call->isPrimitive(PRIM_ARRAY_SET_FIRST))
    {
      if (isFirstActual)
      {
        return true;
      }

      return false;
    }

    if (call->isPrimitive(PRIM_GET_MEMBER))
    {
      // This creates an alias to a portion of the first arg.
      // We could track this as a reference and invalidate a pair containing
      // this symbol when the ref is dereferenced.  But for now, we want to
      // preserve the mapping ref = &value in the RefMap, so having a (ref,
      // value) pair also possibly mean ref = &(value.subfield) does not quite
      // fit.
      // We could keep the ability to do (deref ref) <- value substitution by
      // keeping a separate map for "true" references, or by performing those
      // substitutions in a separate pass.
      // For now, we treat subfield extraction as evidence of a future change
      // to the symbol itself, and use that fact to remove it from
      // consideration in copy propagation.
      if (isFirstActual)
      {
        // We select just the case where the referent is passed by value,
        // because in the other case, the address of the object is not
        // returned, so that means that the address (i.e. the value of the
        // reference variable) does not change.
        return true;
      }

      return false;
    }

    if (call->isPrimitive(PRIM_ADDR_OF) ||
        call->isPrimitive(PRIM_SET_REFERENCE)) {
      liveRefs.insert(se->symbol());
      return true;
    }

    return false;
  }

  INT_ASSERT(0); // Should never get here.

  return true;
}