void deadVariableElimination(FnSymbol* fn) {
  Vec<Symbol*> symSet;
  Vec<SymExpr*> symExprs;
  collectSymbolSetSymExprVec(fn, symSet, symExprs);

  Map<Symbol*,Vec<SymExpr*>*> defMap;
  Map<Symbol*,Vec<SymExpr*>*> useMap;
  buildDefUseMaps(symSet, symExprs, defMap, useMap);

  forv_Vec(Symbol, sym, symSet)
  {
    // We're interested only in VarSymbols.
    if (!isVarSymbol(sym))
      continue;

    // A method must have a _this symbol, even if it is not used.
    if (sym == fn->_this)
      continue;

    if (isDeadVariable(sym, defMap, useMap)) {
      for_defs(se, defMap, sym) {
        CallExpr* call = toCallExpr(se->parentExpr);
        INT_ASSERT(call &&
                   (call->isPrimitive(PRIM_MOVE) ||
                    call->isPrimitive(PRIM_ASSIGN)));
        Expr* rhs = call->get(2)->remove();
        if (!isSymExpr(rhs))
          call->replace(rhs);
        else
          call->remove();
      }
      sym->defPoint->remove();
    }
  }
Exemple #2
0
static void removeVoidReturn(BlockStmt* cloneBody) {
  CallExpr* retexpr = toCallExpr(cloneBody->body.tail);
  INT_ASSERT(retexpr && retexpr->isPrimitive(PRIM_RETURN));
  INT_ASSERT(toSymExpr(retexpr->get(1))->symbol() == gVoid);

  retexpr->remove();
}
Exemple #3
0
//
// Determine the index type for a ParamForLoop.
//
// This implementation creates a range with low/high values and then
// asks for its type.
//
Type* ParamForLoop::indexType()
{
  SymExpr*  lse     = lowExprGet();
  SymExpr*  hse     = highExprGet();
  CallExpr* range    = new CallExpr("chpl_build_bounded_range",
                                    lse->copy(), hse->copy());
  Type*     idxType = 0;

  insertBefore(range);

  resolveCall(range);

  if (FnSymbol* sym = range->isResolved())
  {
    resolveFormals(sym);

    DefExpr* formal = toDefExpr(sym->formals.get(1));

    if (toArgSymbol(formal->sym)->typeExpr)
      idxType = toArgSymbol(formal->sym)->typeExpr->body.tail->typeInfo();
    else
      idxType = formal->sym->type;

    range->remove();
  }
  else
  {
    INT_FATAL("unresolved range");
  }

  return idxType;
}
Exemple #4
0
// Remove the return statement and the def of 'ret'. Return 'ret'.
// See also removeRetSymbolAndUses().
static Symbol* removeParIterReturn(BlockStmt* cloneBody, Symbol* retsym) {
  CallExpr* retexpr = toCallExpr(cloneBody->body.tail);
  INT_ASSERT(retexpr && retexpr->isPrimitive(PRIM_RETURN));
  if (retsym == NULL) {
    retsym = toSymExpr(retexpr->get(1))->symbol();
    INT_ASSERT(retsym->type->symbol->hasFlag(FLAG_ITERATOR_RECORD));

  } else {
    CallExpr* move = toCallExpr(retsym->getSingleDef()->getStmtExpr());
    INT_ASSERT(move->isPrimitive(PRIM_MOVE) || move->isPrimitive(PRIM_ASSIGN));
    retsym = toSymExpr(move->get(2))->symbol();
    move->remove();
  }

  retexpr->remove();
  return retsym;
}
void ResolutionCandidate::resolveTypeConstructor(CallInfo& info) {
  SET_LINENO(fn);

  // Ignore tuple constructors; they were generated
  // with their type constructors.
  if (fn->hasFlag(FLAG_PARTIAL_TUPLE) == false) {
    CallExpr* typeConstructorCall = new CallExpr(astr("_type", fn->name));

    for_formals(formal, fn) {
      if (formal->hasFlag(FLAG_IS_MEME) == false) {
        if (fn->_this->type->symbol->hasFlag(FLAG_TUPLE)) {
          if (formal->instantiatedFrom != NULL) {
            typeConstructorCall->insertAtTail(formal->type->symbol);

          } else if (formal->hasFlag(FLAG_INSTANTIATED_PARAM)) {
            typeConstructorCall->insertAtTail(paramMap.get(formal));
          }

        } else {
          if (strcmp(formal->name, "outer") == 0 ||
              formal->type                  == dtMethodToken) {
            typeConstructorCall->insertAtTail(formal);

          } else if (formal->instantiatedFrom != NULL) {
            SymExpr*   se = new SymExpr(formal->type->symbol);
            NamedExpr* ne = new NamedExpr(formal->name, se);

            typeConstructorCall->insertAtTail(ne);

          } else if (formal->hasFlag(FLAG_INSTANTIATED_PARAM)) {
            SymExpr*   se = new SymExpr(paramMap.get(formal));
            NamedExpr* ne = new NamedExpr(formal->name, se);

            typeConstructorCall->insertAtTail(ne);
          }
        }
      }
    }

    info.call->insertBefore(typeConstructorCall);

    // If instead we call resolveCallAndCallee(typeConstructorCall)
    // then the line number reported in an error would change
    // e.g.: domains/deitz/test_generic_class_of_sparse_domain
    // or:   classes/diten/multipledestructor
    resolveCall(typeConstructorCall);

    INT_ASSERT(typeConstructorCall->isResolved());

    resolveFunction(typeConstructorCall->resolvedFunction());

    fn->_this->type = typeConstructorCall->resolvedFunction()->retType;

    typeConstructorCall->remove();
  }
Exemple #6
0
static bool
removeIdentityDefs(Symbol* sym) {
  bool change = false;

  for_defs(def, defMap, sym) {
    CallExpr* move = toCallExpr(def->parentExpr);
    if (move && isMoveOrAssign(move)) {
      SymExpr* rhs = toSymExpr(move->get(2));
      if (rhs && def->symbol() == rhs->symbol()) {
        move->remove();
        change = true;
      }
    }
  }
Exemple #7
0
static bool
removeIdentityDefs(Symbol* sym) {
  bool change = false;

  for_defs(def, defMap, sym) {
    CallExpr* move = toCallExpr(def->parentExpr);
    if (move && move->isPrimitive(PRIM_MOVE)) {
      SymExpr* rhs = toSymExpr(move->get(2));
      if (rhs && def->var == rhs->var) {
        move->remove();
        change = true;
      }
    }
  }
Exemple #8
0
CallExpr* ParamForLoop::foldForResolve()
{
  SymExpr*   idxExpr   = indexExprGet();
  SymExpr*   lse       = lowExprGet();
  SymExpr*   hse       = highExprGet();
  SymExpr*   sse       = strideExprGet();

  if (!lse             || !hse             || !sse)
    USR_FATAL(this, "param for loop must be defined over a bounded param range");

  VarSymbol* lvar      = toVarSymbol(lse->var);
  VarSymbol* hvar      = toVarSymbol(hse->var);
  VarSymbol* svar      = toVarSymbol(sse->var);

  CallExpr*  noop      = new CallExpr(PRIM_NOOP);

  if (!lvar            || !hvar            || !svar)
    USR_FATAL(this, "param for loop must be defined over a bounded param range");

  if (!lvar->immediate || !hvar->immediate || !svar->immediate)
    USR_FATAL(this, "param for loop must be defined over a bounded param range");

  Symbol*      idxSym  = idxExpr->var;
  Symbol*      continueSym = continueLabelGet();
  Type*        idxType = indexType();
  IF1_int_type idxSize = (get_width(idxType) == 32) ? INT_SIZE_32 : INT_SIZE_64;

  // Insert an "insertion marker" for loop unrolling
  insertAfter(noop);

  if (is_int_type(idxType))
  {
    int64_t low    = lvar->immediate->to_int();
    int64_t high   = hvar->immediate->to_int();
    int64_t stride = svar->immediate->to_int();

    if (stride <= 0)
    {
      for (int64_t i = high; i >= low; i += stride)
      {
        SymbolMap map;

        map.put(idxSym, new_IntSymbol(i, idxSize));
        copyBodyHelper(noop, i, &map, this, continueSym);
      }
    }
    else
    {
      for (int64_t i = low; i <= high; i += stride)
      {
        SymbolMap map;

        map.put(idxSym, new_IntSymbol(i, idxSize));

        copyBodyHelper(noop, i, &map, this, continueSym);
      }
    }
  }
  else
  {
    INT_ASSERT(is_uint_type(idxType) || is_bool_type(idxType));

    uint64_t low    = lvar->immediate->to_uint();
    uint64_t high   = hvar->immediate->to_uint();
    int64_t  stride = svar->immediate->to_int();

    if (stride <= 0)
    {
      for (uint64_t i = high; i >= low; i += stride)
      {
        SymbolMap map;

        map.put(idxSym, new_UIntSymbol(i, idxSize));

        copyBodyHelper(noop, i, &map, this, continueSym);
      }
    }
    else
    {
      for (uint64_t i = low; i <= high; i += stride)
      {
        SymbolMap map;

        map.put(idxSym, new_UIntSymbol(i, idxSize));

        copyBodyHelper(noop, i, &map, this, continueSym);
      }
    }
  }

  // Remove the "insertion marker"
  noop->remove();

  // Replace the paramLoop with the NO-OP
  replace(noop);

  return noop;
}