Exemple #1
0
bool PowInt(void)
{	bool ok = true;

	using CppAD::pow;
	using CppAD::exp;
	using CppAD::log;
	using namespace CppAD;


	// independent variable vector, indices, values, and declaration
	CPPAD_TESTVECTOR(AD<double>) U(1);
	U[0]     = 2.;
	Independent(U);

	// dependent variable vector and indices
	CPPAD_TESTVECTOR(AD<double>) Z(2);

	// dependent variable values
	Z[0]         = pow(U[0], 5);     // x = u^5
	Z[1]         = pow(U[0], -5);    // y = u^{-5}

	// create f: U -> Z and vectors used for derivative calculations
	ADFun<double> f(U, Z);
	CPPAD_TESTVECTOR(double) v( f.Domain() );
	CPPAD_TESTVECTOR(double) w( f.Range() );

	/*
	x_u = 5 * u^4
	y_u = - 5 * u^{-6}
	*/

	// check function values values
	double u = Value(U[0]);
	ok &= NearEqual(Z[0] , exp( log(u) * 5.),              1e-10 , 1e-10);
	ok &= NearEqual(Z[1] , exp( - log(u) * 5.),            1e-10 , 1e-10);

	// forward computation of partials 
	v[0] = 1.;
	w = f.Forward(1, v);
	ok &= NearEqual(w[0] , 5. * exp( log(u) * 4.),         1e-10 , 1e-10);
	ok &= NearEqual(w[1] , - 5. * exp( - log(u) * 6.),     1e-10 , 1e-10);

	return ok;
}
Exemple #2
0
bool Erf(void)
{   bool ok = true;
    using namespace CppAD;
    using CppAD::atan;
    using CppAD::exp;
    using CppAD::sqrt;

    // Construct function object corresponding to erf
    CPPAD_TEST_VECTOR< AD<double> > X(1);
    CPPAD_TEST_VECTOR< AD<double> > Y(1);
    X[0] = 0.;
    Independent(X);
    Y[0] = erf(X[0]);
    ADFun<double> Erf(X, Y);

    // vectors to use with function object
    CPPAD_TEST_VECTOR<double> x(1);
    CPPAD_TEST_VECTOR<double> y(1);
    CPPAD_TEST_VECTOR<double> dx(1);
    CPPAD_TEST_VECTOR<double> dy(1);

    // check value at zero
    x[0]  = 0.;
    y = Erf.Forward(0, x);
    ok &= NearEqual(0., y[0], 4e-4, 0.);

    // check the derivative of error function
    dx[0]         = 1.;
    double pi     = 4. * atan(1.);
    double factor = 2. / sqrt( pi );
    int i;
    for(i = -10; i <= 10; i++)
    {   x[0] = i / 4.;
        y    = Erf.Forward(0, x);

        // check derivative
        double derf = factor * exp( - x[0] * x[0] );
        dy          = Erf.Forward(1, dx);
        ok         &= NearEqual(derf, dy[0], 0., 2e-3);

        // test using erf with AD< AD<double> >
        AD< AD<double> > X0 = x[0];
        AD< AD<double> > Y0 = erf(X0);

        ok &= ( y[0] == Value( Value(Y0) ) );
    }
    return ok;
}
Exemple #3
0
bool VecUnary(void)
{	
	using namespace CppAD;
	using CppAD::abs;
	using CppAD::sin;
	using CppAD::atan;
	using CppAD::cos;
	using CppAD::exp;
	using CppAD::log;
	using CppAD::sqrt;

	bool ok  = true;
	size_t n = 8;
	size_t i;

	CPPAD_TEST_VECTOR< AD<double> > X(n);
	VecAD<double>             Y(n);
	CPPAD_TEST_VECTOR< AD<double> > Z(n);


	for(i = 0; i < n; i++)
		X[i] = int(i);  // some compilers require the int here
	Independent(X);

	AD<double> j;

	j    = 0.;
	Y[j] = X[0]; 
	Z[0] = -Y[j];

	j    = 1.;
	Y[j] = X[1]; 
	Z[1] = sin( Y[j] );

	j    = 2.;
	Y[j] = X[2]; 
	Z[2] = abs( Y[j] );

	j    = 3.;
	Y[j] = X[3]; 
	Z[3] = atan( Y[j] );

	j    = 4.;
	Y[j] = X[4]; 
	Z[4] = cos( Y[j] );

	j    = 5.;
	Y[j] = X[5]; 
	Z[5] = exp( Y[j] );

	j    = 6.;
	Y[j] = X[6]; 
	Z[6] = log( Y[j] );

	j    = 7.;
	Y[j] = X[7]; 
	Z[7] = sqrt( Y[j] );

	
	ADFun<double> f(X, Z);
	CPPAD_TEST_VECTOR<double> x(n);
	CPPAD_TEST_VECTOR<double> z(n);

	for(i = 0; i < n; i++)
		x[i] = 2. / double(i + 1);
	x[7] = abs( x[7] );

	z    = f.Forward(0, x);

	ok  &= NearEqual(z[0],      - x[0],  1e-10, 1e-10);
	ok  &= NearEqual(z[1], sin( x[1] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[2], abs( x[2] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[3], atan(x[3] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[4], cos( x[4] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[5], exp( x[5] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[6], log( x[6] ),  1e-10, 1e-10);
	ok  &= NearEqual(z[7], sqrt(x[7] ),  1e-10, 1e-10);

	return ok;
}
Exemple #4
0
bool ForHess(void)
{	bool ok = true;

	using namespace CppAD;
	using CppAD::exp;
	using CppAD::sin;
	using CppAD::cos;
	using CppAD::NearEqual;
	double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

	size_t i;

	// create independent variable vector with assigned values
	CPPAD_TESTVECTOR(double)      u0(3);
	CPPAD_TESTVECTOR(AD<double>) U(3);
	for(i = 0; i < 3; i++)
		U[i] = u0[i] = double(i+1);
	Independent( U );

	// define the function
	CPPAD_TESTVECTOR(AD<double>) Y(2);
	Y[0] = U[0] * exp( U[1] );
	Y[1] = U[1] * sin( U[2] );

	// create the function y = F(u)
	ADFun<double> F(U, Y);

	// formulas for the upper triangle of Hessian of F_0
	CPPAD_TESTVECTOR(double) H0(9);
	H0[0] = 0.;                    // d^2 y[0] / d_u[0] d_u[0]
	H0[1] = exp( u0[1] );          // d^2 y[0] / d_u[0] d_u[1]
	H0[2] = 0.;                    // d^2 y[0] / d_u[0] d_u[2]

	H0[4] = u0[0] * exp( u0[1] );  // d^2 y[0] / d_u[1] d_u[1]
	H0[5] = 0.;                    // d^2 y[0] / d_u[1] d_u[2]

	H0[8] = 0.;                    // d^2 y[0] / d_u[2] d_u[2]

	// formulas for the upper triangle of Hessian of F_1
	CPPAD_TESTVECTOR(double) H1(9);
	H1[0] = 0.;                    // d^2 Y[1] / d_U[0] d_U[0]
	H1[1] = 0.;                    // d^2 Y[1] / d_U[0] d_U[1]
	H1[2] = 0.;                    // d^2 Y[1] / d_U[0] d_U[2]

	H1[4] = 0.;                    // d^2 Y[1] / d_U[1] d_U[1]
	H1[5] = cos( u0[2] );          // d^2 Y[1] / d_U[1] d_U[2]

	H1[8] = - u0[1] * sin( u0[2] );// d^2 Y[1] / d_U[2] d_U[2]


	// Define U(t) = u0 + u1 t + u2 t^2 / 2
	CPPAD_TESTVECTOR(double) u1(3);
	CPPAD_TESTVECTOR(double) u2(3);
	for(i = 0; i < 3; i++)
		u1[i] = u2[i] = 0.;

	size_t j;
	for(i = 0; i < 3; i++)
	{	// diagonal of Hessians in i-th coordiante direction
		u1[i] = 1.;
		F.Forward(1, u1);
		CPPAD_TESTVECTOR(double) Di = F.Forward(2, u2);
		ok &= NearEqual( 2. * Di[0] , H0[ i + 3 * i], eps99, eps99);
		ok &= NearEqual( 2. * Di[1] , H1[ i + 3 * i], eps99, eps99);
		//
		for(j = i+1; j < 3; j++)
		{	// cross term in i and j direction
			u1[j] = 1.;
			F.Forward(1, u1);
			CPPAD_TESTVECTOR(double) Cij = F.Forward(2, u2);

			// diagonal of Hessian in j-th coordinate direction
			u1[i] = 0.;
			F.Forward(1, u1);
			CPPAD_TESTVECTOR(double) Dj = F.Forward(2, u2);

			// (i, j) elements of the Hessians
			double H0ij = Cij[0] - Di[0] - Dj[0];
			ok &= NearEqual( H0ij, H0[j + 3 * i], eps99, eps99);
			double H1ij = Cij[1] - Di[1] - Dj[1];
			ok &= NearEqual( H1ij, H1[j + 3 * i], eps99, eps99);

			// reset all components of u1 to zero
			u1[j] = 0.;
		}
	}

	return ok;
}