Exemple #1
0
/**
 * This is the main method. Makeflat runs in three steps:
 *
 * 1) Calculate statistics
 *   - For all cameras, this checks for one band and matching
 *       sample counts.
 *   - For framing cameras, this checks the standard deviation of
 *       the images and records the averages of each image
 *   - For push frame cameras, this calls CheckFramelets for each
 *       image.
 *
 * 2) Create the temporary file, collect more detailed statistics
 *   - For all cameras, this generates the temporary file and calculates
 *       the final exclusion list
 *   - For framing/push frame cameras, the temporary file is
 *       2 bands, where the first is a sum of DNs from each image/framelet
 *       and the second band is a count of valid DNs that went into each sum
 *
 *  3) Create the final flat field file
 *   - For all cameras, this processes the temporary file to create the final flat
 *       field file.
 */
void IsisMain() {
    // Initialize variables
    ResetGlobals();

    UserInterface &ui = Application::GetUserInterface();
    maxStdev = ui.GetDouble("STDEVTOL");

    if(ui.GetString("IMAGETYPE") == "FRAMING") {
        cameraType = Framing;

        // framing cameras need to figure this out automatically
        //   during step 1
        numFrameLines = -1;
    }
    else if(ui.GetString("IMAGETYPE") == "LINESCAN") {
        cameraType = LineScan;
        numFrameLines = ui.GetInteger("NUMLINES");
    }
    else {
        cameraType = PushFrame;
        numFrameLines = ui.GetInteger("FRAMELETHEIGHT");
    }

    FileList inList(ui.GetFilename("FROMLIST"));
    Progress progress;

    tempFileLength = 0;
    numOutputSamples = 0;

    /**
     * Line scan progress is based on the input list, whereas
     * the other cameras take much longer and are based on the
     * images themselves. Prepare the progress if we're doing
     * line scan.
     */
    if(cameraType == LineScan) {
        progress.SetText("Calculating Number of Image Lines");
        progress.SetMaximumSteps(inList.size());
        progress.CheckStatus();
    }

    /**
     *  For a push frame camera, the temp file is one framelet.
     *   Technically this is the same for the framing, but we
     *   don't know the height of a framelet yet.
     */
    if(cameraType == PushFrame) {
        tempFileLength = numFrameLines;
    }

    /**
     * Start pass 1, use global currImage so that methods called
     *   know the image we're processing.
     */
    for(currImage = 0; currImage < inList.size(); currImage++) {
        /**
         * Read the current cube into memory
         */
        Cube tmp;
        tmp.Open(Filename(inList[currImage]).Expanded());

        /**
         * If we haven't determined how many samples the output
         *   should have, we can do so now
         */
        if(numOutputSamples == 0 && tmp.Bands() == 1) {
            numOutputSamples = tmp.Samples();
        }

        /**
         * Try and validate the image, quick tests first!
         *
         * (imageValid &= means imageValid = imageValid && ...)
         */
        bool imageValid = true;

        // Only single band images are acceptable
        imageValid &= (tmp.Bands() == 1);

        // Sample sizes must always match
        imageValid &= (numOutputSamples == tmp.Samples());

        // For push frame cameras, there must be valid all framelets
        if(cameraType == PushFrame) {
            imageValid &=  (tmp.Lines() % numFrameLines == 0);
        }

        // For framing cameras, we need to figure out the size...
        //    setTempFileLength is used to revert if the file
        //    is decided to be invalid
        bool setTempFileLength = false;
        if(cameraType == Framing) {
            if(tempFileLength == 0 && imageValid) {
                tempFileLength = tmp.Lines();
                numFrameLines = tempFileLength;
                setTempFileLength = true;
            }

            imageValid &= (tempFileLength == tmp.Lines());
        }

        // Statistics are necessary at this point for push frame and framing cameras
        //   because the framing camera standard deviation tolerance is based on
        //   entire images, and push frame framelet exclusion stats can not be collected
        //   during pass 2 cleanly
        if((cameraType == Framing || cameraType == PushFrame) && imageValid) {
            string prog = "Calculating Standard Deviation " + iString((int)currImage+1) + "/";
            prog += iString((int)inList.size()) + " (" + Filename(inList[currImage]).Name() + ")";

            if(cameraType == Framing) {
                Statistics *stats = tmp.Statistics(1, prog);
                imageValid &= !IsSpecial(stats->StandardDeviation());
                imageValid &= !IsSpecial(stats->Average());
                imageValid &= stats->StandardDeviation() <= maxStdev;

                vector<double> fileStats;
                fileStats.push_back(stats->Average());
                inputFrameletAverages.push_back(fileStats);

                delete stats;
            }
            else if(cameraType == PushFrame) {
                imageValid &= CheckFramelets(prog, tmp);
            }

            if(setTempFileLength && !imageValid) {
                tempFileLength = 0;
            }
        }

        // The line scan camera needs to actually count the number of lines in each image to know
        //   how many total frames there are before beginning pass 2.
        if(imageValid && (cameraType == LineScan)) {
            int lines = (tmp.Lines() / numFrameLines);

            // partial frame?
            if(tmp.Lines() % numFrameLines != 0) {
                lines ++;
            }

            tempFileLength += lines;
        }
        else if(!imageValid) {
            excludedFiles.insert(pair<int, bool>(currImage, true));
        }

        tmp.Close();

        if(cameraType == LineScan) {
            progress.CheckStatus();
        }
    }

    /**
     * If the number of output samples could not be determined, we never
     *   found a legitimate cube.
     */
    if(numOutputSamples <= 0) {
        string msg = "No valid input cubes were found";
        throw iException::Message(iException::User,msg,_FILEINFO_);
    }

    /**
     * If theres no temp file length, which is based off of valid data in
     *   the input cubes, then we havent found any valid data.
     */
    if(tempFileLength <= 0) {
        string msg = "No valid input data was found";
        throw iException::Message(iException::User,msg,_FILEINFO_);
    }

    /**
     * ocube is now the temporary file (for pass 2).
     */
    ocube = new Cube();
    ocube->SetDimensions(numOutputSamples, tempFileLength, 2);
    PvlGroup &prefs = Preference::Preferences().FindGroup("DataDirectory", Pvl::Traverse);
    iString outTmpName = (string)prefs["Temporary"][0] + "/";
    outTmpName += Filename(ui.GetFilename("TO")).Basename() + ".tmp.cub";
    ocube->Create(outTmpName);
    oLineMgr = new LineManager(*ocube);
    oLineMgr->SetLine(1);

    ProcessByBrick p;
    int excludedCnt = 0;

    if(cameraType == LineScan) {
        outputTmpAverages.resize(numOutputSamples);
        outputTmpCounts.resize(numOutputSamples);
        numInputDns.resize(numOutputSamples);
    }

    cubeInitialized = false;
    for(currImage = 0; currImage < inList.size(); currImage++) {
        if(Excluded(currImage)) {
            excludedCnt ++;
            continue;
        }

        PvlObject currFile("Exclusions");
        currFile += PvlKeyword("Filename", inList[currImage]);
        currFile += PvlKeyword("Tolerance", maxStdev);

        if(cameraType == LineScan) {
            currFile += PvlKeyword("FrameLines", numFrameLines);
        }
        else if(cameraType == PushFrame) {
            currFile += PvlKeyword("FrameletLines", numFrameLines);
        }

        excludedDetails.push_back(currFile);

        CubeAttributeInput inAtt;

        // This needs to be set constantly because ClearInputCubes
        //   seems to be removing the input brick size.
        if(cameraType == LineScan) {
            p.SetBrickSize(1, numFrameLines, 1);
        }
        else if(cameraType == Framing || cameraType == PushFrame) {
            p.SetBrickSize(numOutputSamples, 1, 1);
        }

        p.SetInputCube(inList[currImage], inAtt);
        iString progText = "Calculating Averages " + iString((int)currImage+1);
        progText += "/" + iString((int)inList.size());
        progText += " (" + Filename(inList[currImage]).Name() + ")";
        p.Progress()->SetText(progText);

        p.StartProcess(CreateTemporaryData);
        p.EndProcess();
        p.ClearInputCubes();

        if(excludedDetails[excludedDetails.size()-1].Groups() == 0) {
            excludedDetails.resize(excludedDetails.size()-1);
        }
    }

    /**
     * Pass 2 completed. The processing methods were responsible for writing
     * the entire temporary cube.
     */
    if(oLineMgr) {
        delete oLineMgr;
        oLineMgr = NULL;
    }

    if(ocube) {
        ocube->Close();
        delete ocube;
    }

    /**
     * ocube is now the final output
     */
    ocube = new Cube();

    if(cameraType == LineScan) {
        ocube->SetDimensions(numOutputSamples, 1, 1);
    }
    else if(cameraType == Framing || cameraType == PushFrame) {
        ocube->SetDimensions(numOutputSamples, tempFileLength, 1);
    }

    ocube->Create(Filename(ui.GetFilename("TO")).Expanded());
    oLineMgr = new LineManager(*ocube);
    oLineMgr->SetLine(1);

    // We now have the necessary temp file, let's go ahead and combine it into
    //   the final output!
    p.SetInputBrickSize(numOutputSamples, 1, 2);
    p.SetOutputBrickSize(numOutputSamples, 1, 1);

    cubeInitialized = false;
    CubeAttributeInput inAtt;
    p.Progress()->SetText("Calculating Final Flat Field");
    p.SetInputCube(outTmpName, inAtt);
    p.StartProcess(ProcessTemporaryData);
    p.EndProcess();

    if(cameraType == LineScan) {
        ocube->Write(*oLineMgr);
    }

    if(oLineMgr) {
        delete oLineMgr;
        oLineMgr = NULL;
    }

    if(ocube) {
        ocube->Close();
        delete ocube;
        ocube = NULL;
    }

    /**
     * Build a list of excluded files
     */
    PvlGroup excludedFiles("ExcludedFiles");
    for(currImage = 0; currImage < inList.size(); currImage++) {
        if(Excluded(currImage)) {
            excludedFiles += PvlKeyword("File", inList[currImage]);
        }
    }

    // log the results
    Application::Log(excludedFiles);

    if(ui.WasEntered("EXCLUDE")) {
        Pvl excludeFile;

        // Find excluded files
        excludeFile.AddGroup(excludedFiles);

        for(unsigned int i = 0; i < excludedDetails.size(); i++) {
            excludeFile.AddObject(excludedDetails[i]);
        }

        excludeFile.Write(Filename(ui.GetFilename("EXCLUDE")).Expanded());
    }

    remove(outTmpName.c_str());

    // Clean up settings
    ResetGlobals();
}
Exemple #2
0
void IsisMain() {
  //Create a process to create the input cubes
  Process p;
  //Create the input cubes, matching sample/lines
  Cube *inCube = p.SetInputCube ("FROM");
  Cube *latCube = p.SetInputCube("LATCUB", SpatialMatch);
  Cube *lonCube = p.SetInputCube("LONCUB", SpatialMatch);

  //A 1x1 brick to read in the latitude and longitude DN values from
  //the specified cubes
  Brick latBrick(1,1,1, latCube->PixelType());
  Brick lonBrick(1,1,1, lonCube->PixelType());

  UserInterface &ui = Application::GetUserInterface();

  //Set the sample and line increments
  int sinc = (int)(inCube->Samples() * 0.10);
  if(ui.WasEntered("SINC")) {
    sinc = ui.GetInteger("SINC");
  }

  int linc = (int)(inCube->Lines() * 0.10);
  if(ui.WasEntered("LINC")) {
    linc = ui.GetInteger("LINC");
  }

  //Set the degree of the polynomial to use in our functions
  int degree = ui.GetInteger("DEGREE");

  //We are using a polynomial with two variables
  PolynomialBivariate sampFunct(degree); 
  PolynomialBivariate lineFunct(degree);

  //We will be solving the function using the least squares method
  LeastSquares sampSol(sampFunct);
  LeastSquares lineSol(lineFunct);

  //Setup the variables for solving the stereographic projection
  //x = cos(latitude) * sin(longitude - lon_center)
  //y = cos(lat_center) * sin(latitude) - sin(lat_center) * cos(latitude) * cos(longitude - lon_center)

  //Get the center lat and long from the input cubes
  double lat_center = latCube->Statistics()->Average() * PI/180.0;
  double lon_center = lonCube->Statistics()->Average() * PI/180.0;


  /**
   * Loop through lines and samples projecting the latitude and longitude at those
   * points to stereographic x and y and adding these points to the LeastSquares 
   * matrix. 
   */
  for(int i = 1; i <= inCube->Lines(); i+= linc) {
    for(int j = 1; j <= inCube->Samples(); j+= sinc) {
      latBrick.SetBasePosition(j, i, 1);
      latCube->Read(latBrick);
      if(IsSpecial(latBrick.at(0))) continue;
      double lat = latBrick.at(0) * PI/180.0;
      lonBrick.SetBasePosition(j, i, 1);
      lonCube->Read(lonBrick);
      if(IsSpecial(lonBrick.at(0))) continue;
      double lon = lonBrick.at(0) * PI/180.0;

      //Project lat and lon to x and y using a stereographic projection
      double k = 2/(1 + sin(lat_center) * sin(lat) + cos(lat_center)*cos(lat)*cos(lon - lon_center));
      double x = k * cos(lat) * sin(lon - lon_center);
      double y = k * (cos(lat_center) * sin(lat)) - (sin(lat_center) * cos(lat) * cos(lon - lon_center));

      //Add x and y to the least squares matrix
      vector<double> data;
      data.push_back(x);
      data.push_back(y);
      sampSol.AddKnown(data, j);
      lineSol.AddKnown(data, i);

      //If the sample increment goes past the last sample in the line, we want to
      //always read the last sample..
      if(j != inCube->Samples() && j + sinc > inCube->Samples()) {
        j = inCube->Samples() - sinc;
      }
    }
    //If the line increment goes past the last line in the cube, we want to
    //always read the last line..
    if(i != inCube->Lines() && i + linc > inCube->Lines()) {    
      i = inCube->Lines() - linc;
    }
  }

  //Solve the least squares functions using QR Decomposition
  sampSol.Solve(LeastSquares::QRD);
  lineSol.Solve(LeastSquares::QRD);

  //If the user wants to save the residuals to a file, create a file and write
  //the column titles to it.
  TextFile oFile;
  if(ui.WasEntered("RESIDUALS")) {
    oFile.Open(ui.GetFilename("RESIDUALS"), "overwrite");
    oFile.PutLine("Sample,\tLine,\tX,\tY,\tSample Error,\tLine Error\n");
  }

  //Gather the statistics for the residuals from the least squares solutions
  Statistics sampErr;
  Statistics lineErr;
  vector<double> sampResiduals = sampSol.Residuals();
  vector<double> lineResiduals = lineSol.Residuals();
  for(int i = 0; i < (int)sampResiduals.size(); i++) {
    sampErr.AddData(sampResiduals[i]);
    lineErr.AddData(lineResiduals[i]);
  }

  //If a residuals file was specified, write the previous data, and the errors to the file.
  if(ui.WasEntered("RESIDUALS")) {
    for(int i = 0; i < sampSol.Rows(); i++) {
      vector<double> data = sampSol.GetInput(i);
      iString tmp = "";
      tmp += iString(sampSol.GetExpected(i));
      tmp += ",\t";
      tmp += iString(lineSol.GetExpected(i));
      tmp += ",\t";
      tmp += iString(data[0]);
      tmp += ",\t";
      tmp += iString(data[1]);
      tmp += ",\t";
      tmp += iString(sampResiduals[i]);
      tmp += ",\t";
      tmp += iString(lineResiduals[i]);
      oFile.PutLine(tmp + "\n");
    }
  }
  oFile.Close();

  //Records the error to the log
  PvlGroup error( "Error" );
  error += PvlKeyword( "Degree", degree );
  error += PvlKeyword( "NumberOfPoints", (int)sampResiduals.size() );
  error += PvlKeyword( "SampleMinimumError", sampErr.Minimum() );
  error += PvlKeyword( "SampleAverageError", sampErr.Average() );
  error += PvlKeyword( "SampleMaximumError", sampErr.Maximum() );
  error += PvlKeyword( "SampleStdDeviationError", sampErr.StandardDeviation() );
  error += PvlKeyword( "LineMinimumError", lineErr.Minimum() );
  error += PvlKeyword( "LineAverageError", lineErr.Average() );
  error += PvlKeyword( "LineMaximumError", lineErr.Maximum() );
  error += PvlKeyword( "LineStdDeviationError", lineErr.StandardDeviation() );
  Application::Log( error );

  //Close the input cubes for cleanup
  p.EndProcess();

  //If we want to warp the image, then continue, otherwise return
  if(!ui.GetBoolean("NOWARP")) {
    //Creates the mapping group
    Pvl mapFile;
    mapFile.Read(ui.GetFilename("MAP"));
    PvlGroup &mapGrp = mapFile.FindGroup("Mapping",Pvl::Traverse);

    //Reopen the lat and long cubes
    latCube = new Cube();
    latCube->SetVirtualBands(ui.GetInputAttribute("LATCUB").Bands());
    latCube->Open(ui.GetFilename("LATCUB"));

    lonCube = new Cube();
    lonCube->SetVirtualBands(ui.GetInputAttribute("LONCUB").Bands());
    lonCube->Open(ui.GetFilename("LONCUB"));

    PvlKeyword targetName;

    //If the user entered the target name
    if(ui.WasEntered("TARGET")) {
      targetName = PvlKeyword("TargetName", ui.GetString("TARGET"));
    }
    //Else read the target name from the input cube
    else {
      Pvl fromFile;
      fromFile.Read(ui.GetFilename("FROM"));
      targetName = fromFile.FindKeyword("TargetName", Pvl::Traverse);
    }

    mapGrp.AddKeyword(targetName, Pvl::Replace);

    PvlKeyword equRadius;
    PvlKeyword polRadius;


    //If the user entered the equatorial and polar radii
    if(ui.WasEntered("EQURADIUS") && ui.WasEntered("POLRADIUS")) {
      equRadius = PvlKeyword("EquatorialRadius", ui.GetDouble("EQURADIUS"));
      polRadius = PvlKeyword("PolarRadius", ui.GetDouble("POLRADIUS"));
    }
    //Else read them from the pck
    else {
      Filename pckFile("$base/kernels/pck/pck?????.tpc");
      pckFile.HighestVersion();

      string pckFilename = pckFile.Expanded();

      furnsh_c(pckFilename.c_str());

      string target = targetName[0];
      SpiceInt code;
      SpiceBoolean found;

      bodn2c_c (target.c_str(), &code, &found);

      if (!found) {
        string msg = "Could not convert Target [" + target +
                     "] to NAIF code";
        throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
      }

      SpiceInt n;
      SpiceDouble radii[3];

      bodvar_c(code,"RADII",&n,radii);

      equRadius = PvlKeyword("EquatorialRadius", radii[0] * 1000);
      polRadius = PvlKeyword("PolarRadius", radii[2] * 1000);
    }

    mapGrp.AddKeyword(equRadius, Pvl::Replace);
    mapGrp.AddKeyword(polRadius, Pvl::Replace);


    //If the latitude type is not in the mapping group, copy it from the input
    if(!mapGrp.HasKeyword("LatitudeType")) {
      if(ui.GetString("LATTYPE") == "PLANETOCENTRIC") {
        mapGrp.AddKeyword(PvlKeyword("LatitudeType","Planetocentric"), Pvl::Replace);
      }
      else {
        mapGrp.AddKeyword(PvlKeyword("LatitudeType","Planetographic"), Pvl::Replace);
      }
    }

    //If the longitude direction is not in the mapping group, copy it from the input
    if(!mapGrp.HasKeyword("LongitudeDirection")) {
      if(ui.GetString("LONDIR") == "POSITIVEEAST") {
        mapGrp.AddKeyword(PvlKeyword("LongitudeDirection","PositiveEast"), Pvl::Replace);
      }
      else {
        mapGrp.AddKeyword(PvlKeyword("LongitudeDirection","PositiveWest"), Pvl::Replace);
      }
    }

    //If the longitude domain is not in the mapping group, assume it is 360
    if(!mapGrp.HasKeyword("LongitudeDomain")) {
      mapGrp.AddKeyword(PvlKeyword("LongitudeDomain","360"), Pvl::Replace);
    }

    //If the default range is to be computed, use the input lat/long cubes to determine the range
    if(ui.GetString("DEFAULTRANGE") == "COMPUTE") {
      //NOTE - When computing the min/max longitude this application does not account for the 
      //longitude seam if it exists. Since the min/max are calculated from the statistics of
      //the input longitude cube and then converted to the mapping group's domain they may be
      //invalid for cubes containing the longitude seam. 
    
      Statistics *latStats = latCube->Statistics();
      Statistics *lonStats = lonCube->Statistics();

      double minLat = latStats->Minimum();
      double maxLat = latStats->Maximum();

      bool isOcentric = ((std::string)mapGrp.FindKeyword("LatitudeType")) == "Planetocentric";
 
      if(isOcentric) {
        if(ui.GetString("LATTYPE") != "PLANETOCENTRIC") {
          minLat = Projection::ToPlanetocentric(minLat, (double)equRadius, (double)polRadius);
          maxLat = Projection::ToPlanetocentric(maxLat, (double)equRadius, (double)polRadius);
        }
      }
      else {
        if(ui.GetString("LATTYPE") == "PLANETOCENTRIC") {
          minLat = Projection::ToPlanetographic(minLat, (double)equRadius, (double)polRadius);
          maxLat = Projection::ToPlanetographic(maxLat, (double)equRadius, (double)polRadius);
        }
      }

      int lonDomain = (int)mapGrp.FindKeyword("LongitudeDomain");
      double minLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Minimum()) : Projection::To180Domain(lonStats->Minimum());
      double maxLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Maximum()) : Projection::To180Domain(lonStats->Maximum());

      bool isPosEast = ((std::string)mapGrp.FindKeyword("LongitudeDirection")) == "PositiveEast";
      
      if(isPosEast) {
        if(ui.GetString("LONDIR") != "POSITIVEEAST") {
          minLon = Projection::ToPositiveEast(minLon, lonDomain);
          maxLon = Projection::ToPositiveEast(maxLon, lonDomain);
        }
      }
      else {
        if(ui.GetString("LONDIR") == "POSITIVEEAST") {
          minLon = Projection::ToPositiveWest(minLon, lonDomain);
          maxLon = Projection::ToPositiveWest(maxLon, lonDomain);
        }
      }

      if(minLon > maxLon) {
        double temp = minLon;
        minLon = maxLon;
        maxLon = temp;
      }

      mapGrp.AddKeyword(PvlKeyword("MinimumLatitude", minLat),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MaximumLatitude", maxLat),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MinimumLongitude", minLon),Pvl::Replace);
      mapGrp.AddKeyword(PvlKeyword("MaximumLongitude", maxLon),Pvl::Replace);
    }

    //If the user decided to enter a ground range then override
    if (ui.WasEntered("MINLAT")) {
      mapGrp.AddKeyword(PvlKeyword("MinimumLatitude",
                                        ui.GetDouble("MINLAT")),Pvl::Replace);
    }
  
    if (ui.WasEntered("MAXLAT")) {
      mapGrp.AddKeyword(PvlKeyword("MaximumLatitude",
                                        ui.GetDouble("MAXLAT")),Pvl::Replace);
    }

    if (ui.WasEntered("MINLON")) {
      mapGrp.AddKeyword(PvlKeyword("MinimumLongitude",
                                        ui.GetDouble("MINLON")),Pvl::Replace);
    }
  
    if (ui.WasEntered("MAXLON")) {
      mapGrp.AddKeyword(PvlKeyword("MaximumLongitude",
                                        ui.GetDouble("MAXLON")),Pvl::Replace);
    }
  
    //If the pixel resolution is to be computed, compute the pixels/degree from the input
    if (ui.GetString("PIXRES") == "COMPUTE") {
      latBrick.SetBasePosition(1,1,1);
      latCube->Read(latBrick);

      lonBrick.SetBasePosition(1,1,1);
      lonCube->Read(lonBrick);

      //Read the lat and long at the upper left corner
      double a = latBrick.at(0) * PI/180.0;
      double c = lonBrick.at(0) * PI/180.0;
  
      latBrick.SetBasePosition(latCube->Samples(),latCube->Lines(),1);
      latCube->Read(latBrick);

      lonBrick.SetBasePosition(lonCube->Samples(),lonCube->Lines(),1);     
      lonCube->Read(lonBrick);

      //Read the lat and long at the lower right corner
      double b = latBrick.at(0) * PI/180.0;
      double d = lonBrick.at(0) * PI/180.0;

      //Determine the angle between the two points
      double angle = acos(cos(a) * cos(b) * cos(c - d) + sin(a) * sin(b));
      //double angle = acos((cos(a1) * cos(b1) * cos(b2)) + (cos(a1) * sin(b1) * cos(a2) * sin(b2)) + (sin(a1) * sin(a2)));
      angle *= 180/PI;

      //Determine the number of pixels between the two points
      double pixels = sqrt(pow(latCube->Samples() -1.0, 2.0) + pow(latCube->Lines() -1.0, 2.0));

      //Add the scale in pixels/degree to the mapping group
      mapGrp.AddKeyword(PvlKeyword("Scale",
                                        pixels/angle, "pixels/degree"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("PixelResolution")) {
        mapGrp.DeleteKeyword("PixelResolution");
      }
    }


    // If the user decided to enter a resolution then override
    if (ui.GetString("PIXRES") == "MPP") {
      mapGrp.AddKeyword(PvlKeyword("PixelResolution",
                                        ui.GetDouble("RESOLUTION"), "meters/pixel"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("Scale")) {
        mapGrp.DeleteKeyword("Scale");
      }
    }
    else if (ui.GetString("PIXRES") == "PPD") {
      mapGrp.AddKeyword(PvlKeyword("Scale",
                                        ui.GetDouble("RESOLUTION"), "pixels/degree"),
                                        Pvl::Replace);
      if (mapGrp.HasKeyword("PixelResolution")) {
        mapGrp.DeleteKeyword("PixelResolution");
      }
    }

    //Create a projection using the map file we created
    int samples,lines;
    Projection *outmap = ProjectionFactory::CreateForCube(mapFile,samples,lines,false);

    //Write the map file to the log
    Application::GuiLog(mapGrp);

    //Create a process rubber sheet
    ProcessRubberSheet r;

    //Set the input cube
    inCube = r.SetInputCube("FROM");

    double tolerance = ui.GetDouble("TOLERANCE") * outmap->Resolution();

    //Create a new transform object
    Transform *transform = new nocam2map (sampSol, lineSol, outmap,
                                          latCube, lonCube,
                                          ui.GetString("LATTYPE") == "PLANETOCENTRIC",
                                          ui.GetString("LONDIR") == "POSITIVEEAST",
                                          tolerance, ui.GetInteger("ITERATIONS"),
                                          inCube->Samples(), inCube->Lines(),
                                          samples, lines);
  
    //Allocate the output cube and add the mapping labels
    Cube *oCube = r.SetOutputCube ("TO", transform->OutputSamples(),
                                              transform->OutputLines(),
                                              inCube->Bands());
    oCube->PutGroup(mapGrp);

    //Determine which interpolation to use
    Interpolator *interp = NULL;
    if (ui.GetString("INTERP") == "NEARESTNEIGHBOR") {
      interp = new Interpolator(Interpolator::NearestNeighborType);
    }
    else if (ui.GetString("INTERP") == "BILINEAR") {
      interp = new Interpolator(Interpolator::BiLinearType);
    }
    else if (ui.GetString("INTERP") == "CUBICCONVOLUTION") {
      interp = new Interpolator(Interpolator::CubicConvolutionType);
    }
  
    //Warp the cube
    r.StartProcess(*transform, *interp);
    r.EndProcess();

    // add mapping to print.prt
    PvlGroup mapping = outmap->Mapping(); 
    Application::Log(mapping); 

    //Clean up
    delete latCube;
    delete lonCube;

    delete outmap;
    delete transform;
    delete interp;
  }
}
Exemple #3
0
//Helper function to compute input range.
void ComputeInputRange () {
  Process p;
  Cube *latCub = p.SetInputCube("LATCUB");
  Cube *lonCub = p.SetInputCube("LONCUB");

  UserInterface &ui = Application::GetUserInterface();
  Pvl userMap;
  userMap.Read(ui.GetFilename("MAP"));
  PvlGroup &userGrp = userMap.FindGroup("Mapping",Pvl::Traverse);

  Statistics *latStats = latCub->Statistics();
  Statistics *lonStats = lonCub->Statistics();

  double minLat = latStats->Minimum();
  double maxLat = latStats->Maximum();

  int lonDomain = userGrp.HasKeyword("LongitudeDomain") ? (int)userGrp.FindKeyword("LongitudeDomain") : 360;
  double minLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Minimum()) : Projection::To180Domain(lonStats->Minimum());
  double maxLon = lonDomain == 360 ? Projection::To360Domain(lonStats->Maximum()) : Projection::To180Domain(lonStats->Maximum());

  if(userGrp.HasKeyword("LatitudeType")) {
    bool isOcentric = ((std::string)userGrp.FindKeyword("LatitudeType")) == "Planetocentric";

    double equRadius;
    double polRadius;

    //If the user entered the equatorial and polar radii
    if(ui.WasEntered("EQURADIUS") && ui.WasEntered("POLRADIUS")) {
      equRadius = ui.GetDouble("EQURADIUS");
      polRadius = ui.GetDouble("POLRADIUS");
    }
    //Else read them from the pck
    else {
      Filename pckFile("$base/kernels/pck/pck?????.tpc");
      pckFile.HighestVersion();

      string pckFilename = pckFile.Expanded();

      furnsh_c(pckFilename.c_str());

      string target;

      //If user entered target 
      if(ui.WasEntered("TARGET")) {
        target = ui.GetString("TARGET");
      }
      //Else read the target name from the input cube
      else {
        Pvl fromFile;
        fromFile.Read(ui.GetFilename("FROM"));
        target = (string)fromFile.FindKeyword("TargetName", Pvl::Traverse);
      }

      SpiceInt code;
      SpiceBoolean found;

      bodn2c_c (target.c_str(), &code, &found);

      if (!found) {
        string msg = "Could not convert Target [" + target +
                     "] to NAIF code";
        throw Isis::iException::Message(Isis::iException::Io,msg,_FILEINFO_);
      }

      SpiceInt n;
      SpiceDouble radii[3];

      bodvar_c(code,"RADII",&n,radii);

      equRadius = radii[0] * 1000;
      polRadius = radii[2] * 1000;
    }

    if(isOcentric) {
      if(ui.GetString("LATTYPE") != "PLANETOCENTRIC") {
        minLat = Projection::ToPlanetocentric(minLat, (double)equRadius, (double)polRadius);
        maxLat = Projection::ToPlanetocentric(maxLat, (double)equRadius, (double)polRadius);
      }
    }
    else {
      if(ui.GetString("LATTYPE") == "PLANETOCENTRIC") {
        minLat = Projection::ToPlanetographic(minLat, (double)equRadius, (double)polRadius);
        maxLat = Projection::ToPlanetographic(maxLat, (double)equRadius, (double)polRadius);
      }
    }
  }

  if(userGrp.HasKeyword("LongitudeDirection")) {
    bool isPosEast = ((std::string)userGrp.FindKeyword("LongitudeDirection")) == "PositiveEast";

    if(isPosEast) {
      if(ui.GetString("LONDIR") != "POSITIVEEAST") {
        minLon = Projection::ToPositiveEast(minLon, lonDomain);
        maxLon = Projection::ToPositiveEast(maxLon, lonDomain);

        if(minLon > maxLon) {
          double temp = minLon;
          minLon = maxLon;
          maxLon = temp;
        }
      }
    }
    else {
      if(ui.GetString("LONDIR") == "POSITIVEEAST") {
        minLon = Projection::ToPositiveWest(minLon, lonDomain);
        maxLon = Projection::ToPositiveWest(maxLon, lonDomain);

        if(minLon > maxLon) {
          double temp = minLon;
          minLon = maxLon;
          maxLon = temp;
        }
      }
    }
  }

  // Set ground range parameters in UI
  ui.Clear("MINLAT");
  ui.PutDouble("MINLAT", minLat);
  ui.Clear("MAXLAT");
  ui.PutDouble("MAXLAT", maxLat);
  ui.Clear("MINLON");
  ui.PutDouble("MINLON", minLon);
  ui.Clear("MAXLON");
  ui.PutDouble("MAXLON", maxLon);

  p.EndProcess();

  // Set default ground range param to camera
  ui.Clear("DEFAULTRANGE");
  ui.PutAsString("DEFAULTRANGE","COMPUTE");
}
Exemple #4
0
void IsisMain () 
{
	UserInterface &ui = Application::GetUserInterface();
    Filename inFile = ui.GetFilename("FROM");

	// Set the processing object
	ProcessExportMiniRFLroPds cProcess;

	// Setup the input cube
	Cube *cInCube = cProcess.SetInputCube("FROM");	
	Pvl * cInLabel =  cInCube->Label();

	// Get the output label file
	Filename outFile(ui.GetFilename("TO", "lbl"));
	string outFilename(outFile.Expanded());

	cProcess.SetDetached  (true, outFilename);	

	cProcess.SetExportType ( ProcessExportPds::Fixed );

	//Set the resolution to  Kilometers  
	cProcess.SetPdsResolution( ProcessExportPds::Kilometer );	
	
	// 32bit
	cProcess.SetOutputType(Isis::Real);
    cProcess.SetOutputNull(Isis::NULL4);
    cProcess.SetOutputLrs(Isis::LOW_REPR_SAT4);
    cProcess.SetOutputLis(Isis::LOW_INSTR_SAT4);
    cProcess.SetOutputHrs(Isis::HIGH_REPR_SAT4);
    cProcess.SetOutputHis(Isis::HIGH_INSTR_SAT4);
	cProcess.SetOutputRange(-DBL_MAX, DBL_MAX);

	cProcess.SetOutputEndian(Isis::Msb);

	// Turn off Keywords
	cProcess.ForceScalingFactor(false);
    cProcess.ForceSampleBitMask(false);
    cProcess.ForceCoreNull     (false);
    cProcess.ForceCoreLrs      (false);
    cProcess.ForceCoreLis      (false);
    cProcess.ForceCoreHrs      (false);
    cProcess.ForceCoreHis      (false);	

	// Standard label Translation
	Pvl &pdsLabel = cProcess.StandardPdsLabel( ProcessExportPds::Image); 	

	// bLevel => Level 2 = True, Level 3 = False
	bool bLevel2 = cInCube->HasGroup("Instrument");

	// Translate the keywords from the original EDR PDS label that go in 
    // this RDR PDS label for Level2 images only
	if (bLevel2) {
		OriginalLabel cOriginalBlob;
		cInCube->Read(cOriginalBlob);
		Pvl cOrigLabel;
		PvlObject cOrigLabelObj = cOriginalBlob.ReturnLabels();
		cOrigLabelObj.SetName("OriginalLabelObject");
		cOrigLabel.AddObject(cOrigLabelObj);
	   
		// Translates the ISIS labels along with the original EDR labels
		cOrigLabel.AddObject( *(cInCube->Label()) );
		PvlTranslationManager cCubeLabel2(cOrigLabel, "$lro/translations/mrfExportOrigLabel.trn");
		cCubeLabel2.Auto(pdsLabel);	

		
		if (cInLabel->FindObject("IsisCube").FindGroup("Instrument").HasKeyword("MissionName")) {
			PvlKeyword & cKeyMissionName = cInLabel->FindObject("IsisCube").FindGroup("Instrument").FindKeyword("MissionName");			
			size_t sFound = cKeyMissionName[0].find("CHANDRAYAAN");
			if (sFound != string::npos ) {
				cCubeLabel2 = PvlTranslationManager(cOrigLabel, "$lro/translations/mrfExportOrigLabelCH1.trn");
				cCubeLabel2.Auto(pdsLabel);
			}
			else {
				cCubeLabel2 = PvlTranslationManager(cOrigLabel, "$lro/translations/mrfExportOrigLabelLRO.trn");
				cCubeLabel2.Auto(pdsLabel);
			}
		}
	}
	else { //Level3 - add Band_Name keyword 
		PvlGroup & cBandBinGrp = cInCube->GetGroup("BandBin");
		PvlKeyword cKeyBandBin = PvlKeyword("BAND_NAME");
		PvlKeyword cKeyInBandBin;
		if (cBandBinGrp.HasKeyword("OriginalBand")){
			cKeyInBandBin = cBandBinGrp.FindKeyword("OriginalBand");					
		}
		else if (cBandBinGrp.HasKeyword("FilterName")){
			cKeyInBandBin = cBandBinGrp.FindKeyword("FilterName");					
		}
		for (int i=0; i<cKeyInBandBin.Size(); i++) {
			cKeyBandBin += cKeyInBandBin[i];
		}
		PvlObject &cImageObject( pdsLabel.FindObject("IMAGE") );
		cImageObject += cKeyBandBin;
	}
	
	// Get the Sources Product ID if entered for Level2 only as per example
	if (ui.WasEntered("SRC") && bLevel2) {
		std::string sSrcFile = ui.GetFilename("SRC");
		std::string sSrcType = ui.GetString("TYPE");
		GetSourceProductID(sSrcFile, sSrcType, pdsLabel);
	}	
  
	// Get the User defined Labels
	if (ui.WasEntered("USERLBL")) {
		std::string sUserLbl = ui.GetFilename("USERLBL");
		GetUserLabel(sUserLbl, pdsLabel, bLevel2);
	}
	
	// Calculate CheckSum
	Statistics * cStats =  cInCube->Statistics();
	iCheckSum = (unsigned int )cStats->Sum();
		
	FixLabel(pdsLabel, bLevel2);	
	
	// Add an output format template to	the PDS PVL
	// Distinguish betweeen Level 2 and 3 images by calling the camera()
	// function as only non mosaic images(Level2) have a camera	
	if (bLevel2) {
		pdsLabel.SetFormatTemplate ("$lro/translations/mrfPdsLevel2.pft");
	} else {		
		pdsLabel.SetFormatTemplate ("$lro/translations/mrfPdsLevel3.pft");
	}

	size_t iFound = outFilename.find(".lbl");
	outFilename.replace(iFound, 4, ".img");
	ofstream oCube(outFilename.c_str());
	cProcess.OutputDetatchedLabel(); 		
	//cProcess.OutputLabel(oCube);		
	cProcess.StartProcess(oCube);		
	oCube.close();
	cProcess.EndProcess();	
}