Exemple #1
0
const EDA_RECT PCB_TARGET::GetBoundingBox() const
{
    EDA_RECT bBox;
    bBox.SetX( m_Pos.x - m_Size/2 );
    bBox.SetY( m_Pos.y - m_Size/2 );
    bBox.SetWidth( m_Size );
    bBox.SetHeight( m_Size );

    return bBox;
}
const EDA_RECT DIMENSION::GetBoundingBox() const
{
    EDA_RECT    bBox;
    int         xmin, xmax, ymin, ymax;

    bBox    = m_Text.GetTextBox( -1 );
    xmin    = bBox.GetX();
    xmax    = bBox.GetRight();
    ymin    = bBox.GetY();
    ymax    = bBox.GetBottom();

    xmin    = std::min( xmin, m_crossBarO.x );
    xmin    = std::min( xmin, m_crossBarF.x );
    ymin    = std::min( ymin, m_crossBarO.y );
    ymin    = std::min( ymin, m_crossBarF.y );
    xmax    = std::max( xmax, m_crossBarO.x );
    xmax    = std::max( xmax, m_crossBarF.x );
    ymax    = std::max( ymax, m_crossBarO.y );
    ymax    = std::max( ymax, m_crossBarF.y );

    xmin    = std::min( xmin, m_featureLineGO.x );
    xmin    = std::min( xmin, m_featureLineGF.x );
    ymin    = std::min( ymin, m_featureLineGO.y );
    ymin    = std::min( ymin, m_featureLineGF.y );
    xmax    = std::max( xmax, m_featureLineGO.x );
    xmax    = std::max( xmax, m_featureLineGF.x );
    ymax    = std::max( ymax, m_featureLineGO.y );
    ymax    = std::max( ymax, m_featureLineGF.y );

    xmin    = std::min( xmin, m_featureLineDO.x );
    xmin    = std::min( xmin, m_featureLineDF.x );
    ymin    = std::min( ymin, m_featureLineDO.y );
    ymin    = std::min( ymin, m_featureLineDF.y );
    xmax    = std::max( xmax, m_featureLineDO.x );
    xmax    = std::max( xmax, m_featureLineDF.x );
    ymax    = std::max( ymax, m_featureLineDO.y );
    ymax    = std::max( ymax, m_featureLineDF.y );

    bBox.SetX( xmin );
    bBox.SetY( ymin );
    bBox.SetWidth( xmax - xmin + 1 );
    bBox.SetHeight( ymax - ymin + 1 );

    bBox.Normalize();

    return bBox;
}
EDA_RECT EDA_TEXT::GetTextBox( int aLine, int aThickness, bool aInvertY ) const
{
    EDA_RECT       rect;
    wxPoint        pos;
    wxArrayString  strings;
    wxString       text = GetShownText();
    int            thickness = ( aThickness < 0 ) ? m_Thickness : aThickness;
    int            linecount = 1;

    if( m_MultilineAllowed )
    {
        wxStringSplit( text, strings, '\n' );

        if ( strings.GetCount() )     // GetCount() == 0 for void strings
        {
            if( aLine >= 0 && (aLine < (int)strings.GetCount()) )
                text = strings.Item( aLine );
            else
                text = strings.Item( 0 );

            linecount = strings.GetCount();
        }
    }

    // calculate the H and V size
    int    dx = LenSize( text );
    int    dy = GetInterline( aThickness );

    // Creates bounding box (rectangle) for an horizontal text
    wxSize textsize = wxSize( dx, dy );

    if( aInvertY )
        rect.SetOrigin( m_Pos.x, -m_Pos.y );
    else
        rect.SetOrigin( m_Pos );

    // extra dy interval for letters like j and y and ]
    int extra_dy = dy - m_Size.y;
    rect.Move( wxPoint( 0, -extra_dy / 2 ) ); // move origin by the half extra interval

    // for multiline texts and aLine < 0, merge all rectangles
    if( m_MultilineAllowed && aLine < 0 )
    {
        for( unsigned ii = 1; ii < strings.GetCount(); ii++ )
        {
            text = strings.Item( ii );
            dx   = LenSize( text );
            textsize.x  = std::max( textsize.x, dx );
            textsize.y += dy;
        }
    }

    rect.SetSize( textsize );

    /* Now, calculate the rect origin, according to text justification
     * At this point the rectangle origin is the text origin (m_Pos).
     * This is true only for left and top text justified texts (using top to bottom Y axis
     * orientation). and must be recalculated for others justifications
     * also, note the V justification is relative to the first line
     */
    switch( m_HJustify )
    {
    case GR_TEXT_HJUSTIFY_LEFT:
        if( m_Mirror )
            rect.SetX( rect.GetX() - rect.GetWidth() );
        break;

    case GR_TEXT_HJUSTIFY_CENTER:
        rect.SetX( rect.GetX() - (rect.GetWidth() / 2) );
        break;

    case GR_TEXT_HJUSTIFY_RIGHT:
        if( !m_Mirror )
            rect.SetX( rect.GetX() - rect.GetWidth() );
        break;
    }

    dy = m_Size.y + thickness;

    switch( m_VJustify )
    {
    case GR_TEXT_VJUSTIFY_TOP:
        break;

    case GR_TEXT_VJUSTIFY_CENTER:
        rect.SetY( rect.GetY() - ( dy / 2) );
        break;

    case GR_TEXT_VJUSTIFY_BOTTOM:
        rect.SetY( rect.GetY() - dy );
        break;
    }

    if( linecount > 1 )
    {
        int yoffset;
        linecount -= 1;

        switch( m_VJustify )
        {
        case GR_TEXT_VJUSTIFY_TOP:
            break;

        case GR_TEXT_VJUSTIFY_CENTER:
            yoffset = linecount * GetInterline() / 2;
            rect.SetY( rect.GetY() - yoffset );
            break;

        case GR_TEXT_VJUSTIFY_BOTTOM:
            yoffset = linecount * GetInterline( aThickness );
            rect.SetY( rect.GetY() - yoffset );
            break;
        }
    }

    rect.Inflate( thickness / 2 );
    rect.Normalize();       // Make h and v sizes always >= 0

    return rect;
}
const EDA_RECT DRAWSEGMENT::GetBoundingBox() const
{
    EDA_RECT bbox;

    bbox.SetOrigin( m_Start );

    switch( m_Shape )
    {
    case S_SEGMENT:
        bbox.SetEnd( m_End );
        break;

    case S_CIRCLE:
        bbox.Inflate( GetRadius() );
        break;

    case S_ARC:
        {
            bbox.Merge( m_End );
            wxPoint end = m_End;
            RotatePoint( &end, m_Start, -m_Angle );
            bbox.Merge( end );
        }
        break;

    case S_POLYGON:
        {
            wxPoint p_end;
            MODULE* module = GetParentModule();

            for( unsigned ii = 0; ii < m_PolyPoints.size(); ii++ )
            {
                wxPoint pt = m_PolyPoints[ii];

                if( module ) // Transform, if we belong to a module
                {
                    RotatePoint( &pt, module->GetOrientation() );
                    pt += module->GetPosition();
                }

                if( ii == 0 )
                    p_end = pt;

                bbox.SetX( std::min( bbox.GetX(), pt.x ) );
                bbox.SetY( std::min( bbox.GetY(), pt.y ) );
                p_end.x   = std::max( p_end.x, pt.x );
                p_end.y   = std::max( p_end.y, pt.y );
            }

            bbox.SetEnd( p_end );
        }
        break;

    default:
        ;
    }

    bbox.Inflate( ((m_Width+1) / 2) + 1 );
    bbox.Normalize();

    return bbox;
}
const EDA_RECT DRAWSEGMENT::GetBoundingBox() const
{
    EDA_RECT bbox;

    bbox.SetOrigin( m_Start );

    switch( m_Shape )
    {
    case S_SEGMENT:
        bbox.SetEnd( m_End );
        break;

    case S_CIRCLE:
        bbox.Inflate( GetRadius() );
        break;

    case S_ARC:
        {
            bbox.Merge( m_End );
            wxPoint end = m_End;
            RotatePoint( &end, m_Start, -m_Angle );
            bbox.Merge( end );

            // Determine the starting quarter
            // 0 right-bottom
            // 1 left-bottom
            // 2 left-top
            // 3 right-top
            unsigned int quarter = 0;       // assume right-bottom

            if( m_End.y < m_Start.y )       // change to left-top
                quarter |= 3;

            if( m_End.x < m_Start.x )       // for left side, the LSB is 2nd bit negated
                quarter ^= 1;

            int radius = GetRadius();
            int angle = (int) GetArcAngleStart() % 900 + m_Angle;
            bool directionCW = ( m_Angle > 0 );      // Is the direction of arc clockwise?

            if( !directionCW )
            {
                angle = 900 - angle;
                quarter = ( quarter + 3 ) % 4;       // -1 modulo arithmetic
            }

            while( angle > 900 )
            {
                switch( quarter )
                {
                case 0:
                    bbox.Merge( wxPoint( m_Start.x, m_Start.y + radius ) );     // down
                    break;

                case 1:
                    bbox.Merge( wxPoint( m_Start.x - radius, m_Start.y ) );     // left
                    break;

                case 2:
                    bbox.Merge( wxPoint( m_Start.x, m_Start.y - radius ) );     // up
                    break;

                case 3:
                    bbox.Merge( wxPoint( m_Start.x + radius, m_Start.y ) );     // right
                    break;
                }

                if( directionCW )
                    ++quarter;
                else
                    quarter += 3;       // -1 modulo arithmetic

                quarter %= 4;
                angle -= 900;
            }
        }
        break;

    case S_POLYGON:
        {
            wxPoint p_end;
            MODULE* module = GetParentModule();

            for( unsigned ii = 0; ii < m_PolyPoints.size(); ii++ )
            {
                wxPoint pt = m_PolyPoints[ii];

                if( module ) // Transform, if we belong to a module
                {
                    RotatePoint( &pt, module->GetOrientation() );
                    pt += module->GetPosition();
                }

                if( ii == 0 )
                    p_end = pt;

                bbox.SetX( std::min( bbox.GetX(), pt.x ) );
                bbox.SetY( std::min( bbox.GetY(), pt.y ) );
                p_end.x   = std::max( p_end.x, pt.x );
                p_end.y   = std::max( p_end.y, pt.y );
            }

            bbox.SetEnd( p_end );
        }
        break;

    default:
        ;
    }

    bbox.Inflate( ((m_Width+1) / 2) + 1 );
    bbox.Normalize();

    return bbox;
}