// ------------------------------------------------------------ // LinearPartitioner implementation void LinearPartitioner::_do_partition (MeshBase& mesh, const unsigned int n) { libmesh_assert_greater (n, 0); // Check for an easy return if (n == 1) { this->single_partition (mesh); return; } // Create a simple linear partitioning { START_LOG ("partition()", "LinearPartitioner"); const dof_id_type n_active_elem = mesh.n_active_elem(); const dof_id_type blksize = n_active_elem/n; dof_id_type e = 0; MeshBase::element_iterator elem_it = mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = mesh.active_elements_end(); for ( ; elem_it != elem_end; ++elem_it) { if ((e/blksize) < n) { Elem *elem = *elem_it; elem->processor_id() = libmesh_cast_int<processor_id_type>(e/blksize); } else { Elem *elem = *elem_it; elem->processor_id() = 0; elem = elem->parent(); } e++; } STOP_LOG ("partition()", "LinearPartitioner"); } }
void Partitioner::set_parent_processor_ids(MeshBase & mesh) { // Ignore the parameter when !LIBMESH_ENABLE_AMR libmesh_ignore(mesh); LOG_SCOPE("set_parent_processor_ids()", "Partitioner"); #ifdef LIBMESH_ENABLE_AMR // If the mesh is serial we have access to all the elements, // in particular all the active ones. We can therefore set // the parent processor ids indirecly through their children, and // set the subactive processor ids while examining their active // ancestors. // By convention a parent is assigned to the minimum processor // of all its children, and a subactive is assigned to the processor // of its active ancestor. if (mesh.is_serial()) { // Loop over all the active elements in the mesh MeshBase::element_iterator it = mesh.active_elements_begin(); const MeshBase::element_iterator end = mesh.active_elements_end(); for ( ; it!=end; ++it) { Elem * child = *it; // First set descendents std::vector<const Elem *> subactive_family; child->total_family_tree(subactive_family); for (unsigned int i = 0; i != subactive_family.size(); ++i) const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id(); // Then set ancestors Elem * parent = child->parent(); while (parent) { // invalidate the parent id, otherwise the min below // will not work if the current parent id is less // than all the children! parent->invalidate_processor_id(); for (unsigned int c=0; c<parent->n_children(); c++) { child = parent->child_ptr(c); libmesh_assert(child); libmesh_assert(!child->is_remote()); libmesh_assert_not_equal_to (child->processor_id(), DofObject::invalid_processor_id); parent->processor_id() = std::min(parent->processor_id(), child->processor_id()); } parent = parent->parent(); } } } // When the mesh is parallel we cannot guarantee that parents have access to // all their children. else { // Setting subactive processor ids is easy: we can guarantee // that children have access to all their parents. // Loop over all the active elements in the mesh MeshBase::element_iterator it = mesh.active_elements_begin(); const MeshBase::element_iterator end = mesh.active_elements_end(); for ( ; it!=end; ++it) { Elem * child = *it; std::vector<const Elem *> subactive_family; child->total_family_tree(subactive_family); for (unsigned int i = 0; i != subactive_family.size(); ++i) const_cast<Elem *>(subactive_family[i])->processor_id() = child->processor_id(); } // When the mesh is parallel we cannot guarantee that parents have access to // all their children. // We will use a brute-force approach here. Each processor finds its parent // elements and sets the parent pid to the minimum of its // semilocal descendants. // A global reduction is then performed to make sure the true minimum is found. // As noted, this is required because we cannot guarantee that a parent has // access to all its children on any single processor. libmesh_parallel_only(mesh.comm()); libmesh_assert(MeshTools::n_elem(mesh.unpartitioned_elements_begin(), mesh.unpartitioned_elements_end()) == 0); const dof_id_type max_elem_id = mesh.max_elem_id(); std::vector<processor_id_type> parent_processor_ids (std::min(communication_blocksize, max_elem_id)); for (dof_id_type blk=0, last_elem_id=0; last_elem_id<max_elem_id; blk++) { last_elem_id = std::min(static_cast<dof_id_type>((blk+1)*communication_blocksize), max_elem_id); const dof_id_type first_elem_id = blk*communication_blocksize; std::fill (parent_processor_ids.begin(), parent_processor_ids.end(), DofObject::invalid_processor_id); // first build up local contributions to parent_processor_ids MeshBase::element_iterator not_it = mesh.ancestor_elements_begin(); const MeshBase::element_iterator not_end = mesh.ancestor_elements_end(); bool have_parent_in_block = false; for ( ; not_it != not_end; ++not_it) { Elem * parent = *not_it; const dof_id_type parent_idx = parent->id(); libmesh_assert_less (parent_idx, max_elem_id); if ((parent_idx >= first_elem_id) && (parent_idx < last_elem_id)) { have_parent_in_block = true; processor_id_type parent_pid = DofObject::invalid_processor_id; std::vector<const Elem *> active_family; parent->active_family_tree(active_family); for (unsigned int i = 0; i != active_family.size(); ++i) parent_pid = std::min (parent_pid, active_family[i]->processor_id()); const dof_id_type packed_idx = parent_idx - first_elem_id; libmesh_assert_less (packed_idx, parent_processor_ids.size()); parent_processor_ids[packed_idx] = parent_pid; } } // then find the global minimum mesh.comm().min (parent_processor_ids); // and assign the ids, if we have a parent in this block. if (have_parent_in_block) for (not_it = mesh.ancestor_elements_begin(); not_it != not_end; ++not_it) { Elem * parent = *not_it; const dof_id_type parent_idx = parent->id(); if ((parent_idx >= first_elem_id) && (parent_idx < last_elem_id)) { const dof_id_type packed_idx = parent_idx - first_elem_id; libmesh_assert_less (packed_idx, parent_processor_ids.size()); const processor_id_type parent_pid = parent_processor_ids[packed_idx]; libmesh_assert_not_equal_to (parent_pid, DofObject::invalid_processor_id); parent->processor_id() = parent_pid; } } } } #endif // LIBMESH_ENABLE_AMR }
void MeshRefinement::flag_elements_by_elem_fraction (const ErrorVector& error_per_cell, const Real refine_frac, const Real coarsen_frac, const unsigned int max_l) { parallel_only(); // The function arguments are currently just there for // backwards_compatibility if (!_use_member_parameters) { // If the user used non-default parameters, lets warn // that they're deprecated if (refine_frac != 0.3 || coarsen_frac != 0.0 || max_l != libMesh::invalid_uint) libmesh_deprecated(); _refine_fraction = refine_frac; _coarsen_fraction = coarsen_frac; _max_h_level = max_l; } // Check for valid fractions.. // The fraction values must be in [0,1] libmesh_assert_greater_equal (_refine_fraction, 0); libmesh_assert_less_equal (_refine_fraction, 1); libmesh_assert_greater_equal (_coarsen_fraction, 0); libmesh_assert_less_equal (_coarsen_fraction, 1); // The number of active elements in the mesh const unsigned int n_active_elem = _mesh.n_elem(); // The number of elements to flag for coarsening const unsigned int n_elem_coarsen = static_cast<unsigned int>(_coarsen_fraction * n_active_elem); // The number of elements to flag for refinement const unsigned int n_elem_refine = static_cast<unsigned int>(_refine_fraction * n_active_elem); // Clean up the refinement flags. These could be left // over from previous refinement steps. this->clean_refinement_flags(); // This vector stores the error and element number for all the // active elements. It will be sorted and the top & bottom // elements will then be flagged for coarsening & refinement std::vector<float> sorted_error; sorted_error.reserve (n_active_elem); // Loop over the active elements and create the entry // in the sorted_error vector MeshBase::element_iterator elem_it = _mesh.active_local_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_local_elements_end(); for (; elem_it != elem_end; ++elem_it) sorted_error.push_back (error_per_cell[(*elem_it)->id()]); CommWorld.allgather(sorted_error); // Now sort the sorted_error vector std::sort (sorted_error.begin(), sorted_error.end()); // If we're coarsening by parents: // Create a sorted error vector with coarsenable parent elements // only, sorted by lowest errors first ErrorVector error_per_parent, sorted_parent_error; if (_coarsen_by_parents) { Real parent_error_min, parent_error_max; create_parent_error_vector(error_per_cell, error_per_parent, parent_error_min, parent_error_max); sorted_parent_error = error_per_parent; std::sort (sorted_parent_error.begin(), sorted_parent_error.end()); // All the other error values will be 0., so get rid of them. sorted_parent_error.erase (std::remove(sorted_parent_error.begin(), sorted_parent_error.end(), 0.), sorted_parent_error.end()); } float top_error= 0., bottom_error = 0.; // Get the maximum error value corresponding to the // bottom n_elem_coarsen elements if (_coarsen_by_parents && n_elem_coarsen) { const unsigned int dim = _mesh.mesh_dimension(); unsigned int twotodim = 1; for (unsigned int i=0; i!=dim; ++i) twotodim *= 2; unsigned int n_parent_coarsen = n_elem_coarsen / (twotodim - 1); if (n_parent_coarsen) bottom_error = sorted_parent_error[n_parent_coarsen - 1]; } else if (n_elem_coarsen) { bottom_error = sorted_error[n_elem_coarsen - 1]; } if (n_elem_refine) top_error = sorted_error[sorted_error.size() - n_elem_refine]; // Finally, let's do the element flagging elem_it = _mesh.active_elements_begin(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; Elem* parent = elem->parent(); if (_coarsen_by_parents && parent && n_elem_coarsen && error_per_parent[parent->id()] <= bottom_error) elem->set_refinement_flag(Elem::COARSEN); if (!_coarsen_by_parents && n_elem_coarsen && error_per_cell[elem->id()] <= bottom_error) elem->set_refinement_flag(Elem::COARSEN); if (n_elem_refine && elem->level() < _max_h_level && error_per_cell[elem->id()] >= top_error) elem->set_refinement_flag(Elem::REFINE); } }
//----------------------------------------------------------------- // Mesh refinement methods void MeshRefinement::flag_elements_by_error_fraction (const ErrorVector& error_per_cell, const Real refine_frac, const Real coarsen_frac, const unsigned int max_l) { parallel_only(); // The function arguments are currently just there for // backwards_compatibility if (!_use_member_parameters) { // If the user used non-default parameters, lets warn // that they're deprecated if (refine_frac != 0.3 || coarsen_frac != 0.0 || max_l != libMesh::invalid_uint) libmesh_deprecated(); _refine_fraction = refine_frac; _coarsen_fraction = coarsen_frac; _max_h_level = max_l; } // Check for valid fractions.. // The fraction values must be in [0,1] libmesh_assert_greater_equal (_refine_fraction, 0); libmesh_assert_less_equal (_refine_fraction, 1); libmesh_assert_greater_equal (_coarsen_fraction, 0); libmesh_assert_less_equal (_coarsen_fraction, 1); // Clean up the refinement flags. These could be left // over from previous refinement steps. this->clean_refinement_flags(); // We're getting the minimum and maximum error values // for the ACTIVE elements Real error_min = 1.e30; Real error_max = 0.; // And, if necessary, for their parents Real parent_error_min = 1.e30; Real parent_error_max = 0.; // Prepare another error vector if we need to sum parent errors ErrorVector error_per_parent; if (_coarsen_by_parents) { create_parent_error_vector(error_per_cell, error_per_parent, parent_error_min, parent_error_max); } // We need to loop over all active elements to find the minimum MeshBase::element_iterator el_it = _mesh.active_local_elements_begin(); const MeshBase::element_iterator el_end = _mesh.active_local_elements_end(); for (; el_it != el_end; ++el_it) { const unsigned int id = (*el_it)->id(); libmesh_assert_less (id, error_per_cell.size()); error_max = std::max (error_max, error_per_cell[id]); error_min = std::min (error_min, error_per_cell[id]); } CommWorld.max(error_max); CommWorld.min(error_min); // Compute the cutoff values for coarsening and refinement const Real error_delta = (error_max - error_min); const Real parent_error_delta = parent_error_max - parent_error_min; const Real refine_cutoff = (1.- _refine_fraction)*error_max; const Real coarsen_cutoff = _coarsen_fraction*error_delta + error_min; const Real parent_cutoff = _coarsen_fraction*parent_error_delta + error_min; // // Print information about the error // libMesh::out << " Error Information:" << std::endl // << " ------------------" << std::endl // << " min: " << error_min << std::endl // << " max: " << error_max << std::endl // << " delta: " << error_delta << std::endl // << " refine_cutoff: " << refine_cutoff << std::endl // << " coarsen_cutoff: " << coarsen_cutoff << std::endl; // Loop over the elements and flag them for coarsening or // refinement based on the element error MeshBase::element_iterator e_it = _mesh.active_elements_begin(); const MeshBase::element_iterator e_end = _mesh.active_elements_end(); for (; e_it != e_end; ++e_it) { Elem* elem = *e_it; const unsigned int id = elem->id(); libmesh_assert_less (id, error_per_cell.size()); const float elem_error = error_per_cell[id]; if (_coarsen_by_parents) { Elem* parent = elem->parent(); if (parent) { const unsigned int parentid = parent->id(); if (error_per_parent[parentid] >= 0. && error_per_parent[parentid] <= parent_cutoff) elem->set_refinement_flag(Elem::COARSEN); } } // Flag the element for coarsening if its error // is <= coarsen_fraction*delta + error_min else if (elem_error <= coarsen_cutoff) { elem->set_refinement_flag(Elem::COARSEN); } // Flag the element for refinement if its error // is >= refinement_cutoff. if (elem_error >= refine_cutoff) if (elem->level() < _max_h_level) elem->set_refinement_flag(Elem::REFINE); } }
void MeshRefinement::flag_elements_by_error_tolerance (const ErrorVector& error_per_cell_in) { parallel_only(); libmesh_assert_greater (_coarsen_threshold, 0); // Check for valid fractions.. // The fraction values must be in [0,1] libmesh_assert_greater_equal (_refine_fraction, 0); libmesh_assert_less_equal (_refine_fraction, 1); libmesh_assert_greater_equal (_coarsen_fraction, 0); libmesh_assert_less_equal (_coarsen_fraction, 1); // How much error per cell will we tolerate? const Real local_refinement_tolerance = _absolute_global_tolerance / std::sqrt(static_cast<Real>(_mesh.n_active_elem())); const Real local_coarsening_tolerance = local_refinement_tolerance * _coarsen_threshold; // Prepare another error vector if we need to sum parent errors ErrorVector error_per_parent; if (_coarsen_by_parents) { Real parent_error_min, parent_error_max; create_parent_error_vector(error_per_cell_in, error_per_parent, parent_error_min, parent_error_max); } MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; Elem* parent = elem->parent(); const unsigned int elem_number = elem->id(); const float elem_error = error_per_cell_in[elem_number]; if (elem_error > local_refinement_tolerance && elem->level() < _max_h_level) elem->set_refinement_flag(Elem::REFINE); if (!_coarsen_by_parents && elem_error < local_coarsening_tolerance) elem->set_refinement_flag(Elem::COARSEN); if (_coarsen_by_parents && parent) { float parent_error = error_per_parent[parent->id()]; if (parent_error >= 0.) { const Real parent_coarsening_tolerance = std::sqrt(parent->n_children() * local_coarsening_tolerance * local_coarsening_tolerance); if (parent_error < parent_coarsening_tolerance) elem->set_refinement_flag(Elem::COARSEN); } } } }
bool UnstructuredMesh::contract () { LOG_SCOPE ("contract()", "Mesh"); // Flag indicating if this call actually changes the mesh bool mesh_changed = false; element_iterator in = elements_begin(); const element_iterator end = elements_end(); #ifdef DEBUG for ( ; in != end; ++in) if (*in != libmesh_nullptr) { Elem * el = *in; libmesh_assert(el->active() || el->subactive() || el->ancestor()); } in = elements_begin(); #endif // Loop over the elements. for ( ; in != end; ++in) if (*in != libmesh_nullptr) { Elem * el = *in; // Delete all the subactive ones if (el->subactive()) { // No level-0 element should be subactive. // Note that we CAN'T test elem->level(), as that // touches elem->parent()->dim(), and elem->parent() // might have already been deleted! libmesh_assert(el->parent()); // Delete the element // This just sets a pointer to NULL, and doesn't // invalidate any iterators this->delete_elem(el); // the mesh has certainly changed mesh_changed = true; } else { // Compress all the active ones if (el->active()) el->contract(); else libmesh_assert (el->ancestor()); } } // Strip any newly-created NULL voids out of the element array this->renumber_nodes_and_elements(); // FIXME: Need to understand why deleting subactive children // invalidates the point locator. For now we will clear it explicitly this->clear_point_locator(); return mesh_changed; }
void unpack(std::vector<largest_id_type>::const_iterator in, Elem** out, MeshBase* mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = static_cast<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = static_cast<unsigned int>(*in++); // int 2: refinement flag const int rflag = *in++; libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState refinement_flag = static_cast<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = *in++; libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = static_cast<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = *in++; libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = static_cast<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = static_cast<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = static_cast<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = static_cast<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = static_cast<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id const dof_id_type parent_id = static_cast<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id const unsigned int which_child_am_i = static_cast<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem *elem = mesh->query_elem(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unqiue id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node(i) == static_cast<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); libmesh_assert (!level || elem->parent() != NULL); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child(which_child_am_i) == elem); #endif // Our neighbor links should be "close to" correct - we may have // to update them, but we can check for some inconsistencies. for (unsigned int n=0; n != elem->n_neighbors(); ++n) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor(n)); continue; } Elem *neigh = mesh->query_elem(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor(n) == neigh || elem->neighbor(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem *parent = NULL; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, static_cast<dof_id_type>(-1)); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element definitely should have children, assign // remote_elem to all of them for now, for consistency. Later // unpacked elements may overwrite that. if (!elem->active()) for (unsigned int c=0; c != elem->n_children(); ++c) elem->add_child(const_cast<RemoteElem*>(remote_elem), c); #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (static_cast<dof_id_type>(*in++)); for (unsigned int n=0; n<elem->n_neighbors(); n++) { const dof_id_type neighbor_id = static_cast<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem *neigh = mesh->query_elem(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem*>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side boundary condition ids if (level == 0) for (unsigned int s = 0; s != elem->n_sides(); ++s) { const int num_bcs = *in++; libmesh_assert_greater_equal (num_bcs, 0); for(int bc_it=0; bc_it < num_bcs; bc_it++) mesh->boundary_info->add_side (elem, s, *in++); } // Return the new element *out = elem; }
bool MeshRefinement::eliminate_unrefined_patches () { // This function must be run on all processors at once parallel_only(); bool flags_changed = false; MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; // First assume that we'll have to flag this element for both h // and p refinement, then change our minds if we see any // neighbors that are as coarse or coarser than us. bool h_flag_me = true, p_flag_me = true; // Skip the element if it is already fully flagged for refinement if (elem->p_refinement_flag() == Elem::REFINE) p_flag_me = false; if (elem->refinement_flag() == Elem::REFINE) { h_flag_me = false; if (!p_flag_me) continue; } // Test the parent if that is already flagged for coarsening else if (elem->refinement_flag() == Elem::COARSEN) { libmesh_assert(elem->parent()); elem = elem->parent(); // FIXME - this doesn't seem right - RHS if (elem->refinement_flag() != Elem::COARSEN_INACTIVE) continue; p_flag_me = false; } const unsigned int my_level = elem->level(); int my_p_adjustment = 0; if (elem->p_refinement_flag() == Elem::REFINE) my_p_adjustment = 1; else if (elem->p_refinement_flag() == Elem::COARSEN) { libmesh_assert_greater (elem->p_level(), 0); my_p_adjustment = -1; } const unsigned int my_new_p_level = elem->p_level() + my_p_adjustment; // Check all the element neighbors for (unsigned int n=0; n<elem->n_neighbors(); n++) { const Elem *neighbor = elem->neighbor(n); // Quit if the element is on a local boundary if (neighbor == NULL || neighbor == remote_elem) { h_flag_me = false; p_flag_me = false; break; } // if the neighbor will be equally or less refined than // we are, then we will not become an unrefined island. // So if we are still considering h refinement: if (h_flag_me && // If our neighbor is already at a lower level, // it can't end up at a higher level even if it // is flagged for refinement once ((neighbor->level() < my_level) || // If our neighbor is at the same level but isn't // flagged for refinement, it won't end up at a // higher level ((neighbor->active()) && (neighbor->refinement_flag() != Elem::REFINE)) || // If our neighbor is currently more refined but is // a parent flagged for coarsening, it will end up // at the same level. (neighbor->refinement_flag() == Elem::COARSEN_INACTIVE))) { // We've proven we won't become an unrefined island, // so don't h refine to avoid that. h_flag_me = false; // If we've also proven we don't need to p refine, // we don't need to check more neighbors if (!p_flag_me) break; } if (p_flag_me) { // if active neighbors will have a p level // equal to or lower than ours, then we do not need to p // refine ourselves. if (neighbor->active()) { int p_adjustment = 0; if (neighbor->p_refinement_flag() == Elem::REFINE) p_adjustment = 1; else if (neighbor->p_refinement_flag() == Elem::COARSEN) { libmesh_assert_greater (neighbor->p_level(), 0); p_adjustment = -1; } if (my_new_p_level >= neighbor->p_level() + p_adjustment) { p_flag_me = false; if (!h_flag_me) break; } } // If we have inactive neighbors, we need to // test all their active descendants which neighbor us else if (neighbor->ancestor()) { if (neighbor->min_new_p_level_by_neighbor(elem, my_new_p_level + 2) <= my_new_p_level) { p_flag_me = false; if (!h_flag_me) break; } } } } if (h_flag_me) { // Parents that would create islands should no longer // coarsen if (elem->refinement_flag() == Elem::COARSEN_INACTIVE) { for (unsigned int c=0; c<elem->n_children(); c++) { libmesh_assert_equal_to (elem->child(c)->refinement_flag(), Elem::COARSEN); elem->child(c)->set_refinement_flag(Elem::DO_NOTHING); } elem->set_refinement_flag(Elem::INACTIVE); } else elem->set_refinement_flag(Elem::REFINE); flags_changed = true; } if (p_flag_me) { if (elem->p_refinement_flag() == Elem::COARSEN) elem->set_p_refinement_flag(Elem::DO_NOTHING); else elem->set_p_refinement_flag(Elem::REFINE); flags_changed = true; } } // If flags changed on any processor then they changed globally CommWorld.max(flags_changed); return flags_changed; }
Elem * Packing<Elem *>::unpack (std::vector<largest_id_type>::const_iterator in, MeshBase * mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = cast_int<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = cast_int<unsigned int>(*in++); // int 2: refinement flag and encoded has_children const int rflag = cast_int<int>(*in++); const int invalid_rflag = cast_int<int>(Elem::INVALID_REFINEMENTSTATE); libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, invalid_rflag*2+1); const bool has_children = (rflag > invalid_rflag); const Elem::RefinementState refinement_flag = has_children ? cast_int<Elem::RefinementState>(rflag - invalid_rflag - 1) : cast_int<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = cast_int<int>(*in++); libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = cast_int<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = cast_int<int>(*in++); libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = cast_int<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = cast_int<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = cast_int<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = cast_int<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = cast_int<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id. // Note: If level==0, then (*in) == invalid_id. In // this case, the equality check in cast_int<unsigned>(*in) will // never succeed. Therefore, we should only attempt the more // rigorous cast verification in cases where level != 0. const dof_id_type parent_id = (level == 0) ? static_cast<dof_id_type>(*in++) : cast_int<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id // Note: If level==0, then which_child_am_i is not valid, so don't // do the more rigorous cast verification. const unsigned int which_child_am_i = (level == 0) ? static_cast<unsigned int>(*in++) : cast_int<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR const dof_id_type interior_parent_id = static_cast<dof_id_type>(*in++); // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem * elem = mesh->query_elem_ptr(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unique id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node_id(i) == cast_int<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->has_children(), has_children); #ifdef DEBUG if (elem->active()) { libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); } #endif libmesh_assert (!level || elem->parent() != libmesh_nullptr); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child_ptr(which_child_am_i) == elem); #endif // Our interior_parent link should be "close to" correct - we // may have to update it, but we can check for some // inconsistencies. { // If the sending processor sees no interior_parent here, we'd // better agree. if (interior_parent_id == DofObject::invalid_id) { if (elem->dim() < LIBMESH_DIM) libmesh_assert (!(elem->interior_parent())); } // If the sending processor has a remote_elem interior_parent, // then all we know is that we'd better have *some* // interior_parent else if (interior_parent_id == remote_elem->id()) { libmesh_assert(elem->interior_parent()); } else { Elem * ip = mesh->query_elem_ptr(interior_parent_id); // The sending processor sees an interior parent here, so // if we don't have that interior element, then we'd // better have a remote_elem signifying that fact. if (!ip) libmesh_assert_equal_to (elem->interior_parent(), remote_elem); else { // The sending processor has an interior_parent here, // and we have that element, but that does *NOT* mean // we're already linking to it. Perhaps we initially // received elem from a processor on which the // interior_parent link was remote? libmesh_assert(elem->interior_parent() == ip || elem->interior_parent() == remote_elem); // If the link was originally remote, update it if (elem->interior_parent() == remote_elem) { elem->set_interior_parent(ip); } } } } // Our neighbor links should be "close to" correct - we may have // to update a remote_elem link, and we can check for possible // inconsistencies along the way. // // For subactive elements, we don't bother keeping neighbor // links in good shape, so there's nothing we need to set or can // safely assert here. if (!elem->subactive()) for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor_ptr(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor_ptr(n)); continue; } Elem * neigh = mesh->query_elem_ptr(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor_ptr(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor_ptr(n) == neigh || elem->neighbor_ptr(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor_ptr(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // Our p level and refinement flags should be "close to" correct // if we're not an active element - we might have a p level // increased or decreased by changes in remote_elem children. // // But if we have remote_elem children, then we shouldn't be // doing a projection on this inactive element on this // processor, so we won't need correct p settings. Couldn't // hurt to update, though. #ifdef LIBMESH_ENABLE_AMR if (elem->processor_id() != mesh->processor_id()) { elem->hack_p_level(p_level); elem->set_p_refinement_flag(p_refinement_flag); } #endif // LIBMESH_ENABLE_AMR // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem * parent = libmesh_nullptr; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem_ptr(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, DofObject::invalid_id); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child_ptr(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element should have children, assign remote_elem to // all of them for now, for consistency. Later unpacked // elements may overwrite that. if (has_children) { const unsigned int nc = elem->n_children(); for (unsigned int c=0; c != nc; ++c) elem->add_child(const_cast<RemoteElem *>(remote_elem), c); } #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (cast_int<dof_id_type>(*in++)); // Set interior_parent if found { // We may be unpacking an element that was a ghost element on the // sender, in which case the element's interior_parent may not be // known by the packed element. We'll have to set such // interior_parents to remote_elem ourselves and wait for a // later packed element to give us better information. if (interior_parent_id == remote_elem->id()) { elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); } else if (interior_parent_id != DofObject::invalid_id) { // If we don't have the interior parent element, then it's // a remote_elem until we get it. Elem * ip = mesh->query_elem_ptr(interior_parent_id); if (!ip ) elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); else elem->set_interior_parent(ip); } } for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem * neigh = mesh->query_elem_ptr(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side or edge boundary condition ids if (level == 0) { for (auto s : elem->side_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_side (elem, s, cast_int<boundary_id_type>(*in++)); } for (auto e : elem->edge_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_edge (elem, e, cast_int<boundary_id_type>(*in++)); } for (unsigned short sf=0; sf != 2; ++sf) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_shellface (elem, sf, cast_int<boundary_id_type>(*in++)); } } // Return the new element return elem; }