Exemple #1
0
/**
 * everything that is identical for the systems, and
 * should _not_ go into EquationSystems::compare(),
 * can go in this do_compare().
 */
bool do_compare (EquationSystems & les,
                 EquationSystems & res,
                 double threshold,
                 bool verbose)
{

    if (verbose)
    {
        libMesh::out        << "*********   LEFT SYSTEM    *********" << std::endl;
        les.print_info  ();
        libMesh::out << "*********   RIGHT SYSTEM   *********" << std::endl;
        res.print_info ();
        libMesh::out << "********* COMPARISON PHASE *********" << std::endl
                     << std::endl;
    }

    /**
     * start comparing
     */
    bool result = les.compare(res, threshold, verbose);
    if (verbose)
    {
        libMesh::out        << "*********     FINISHED     *********" << std::endl;
    }
    return result;
}
Exemple #2
0
void write_output_solvedata(EquationSystems & es,
                            unsigned int a_step,
                            unsigned int newton_steps,
                            unsigned int krylov_steps,
                            unsigned int tv_sec,
                            unsigned int tv_usec)
{
    MeshBase & mesh = es.get_mesh();
    unsigned int n_active_elem = mesh.n_active_elem();
    unsigned int n_active_dofs = es.n_active_dofs();

    if (mesh.processor_id() == 0)
    {
        // Write out the number of elements/dofs used
        std::ofstream activemesh ("out_activemesh.m",
                                  std::ios_base::app | std::ios_base::out);
        activemesh.precision(17);
        activemesh << (a_step + 1) << ' '
                   << n_active_elem << ' '
                   << n_active_dofs << std::endl;

        // Write out the number of solver steps used
        std::ofstream solvesteps ("out_solvesteps.m",
                                  std::ios_base::app | std::ios_base::out);
        solvesteps.precision(17);
        solvesteps << newton_steps << ' '
                   << krylov_steps << std::endl;

        // Write out the clock time
        std::ofstream clocktime ("out_clocktime.m",
                                 std::ios_base::app | std::ios_base::out);
        clocktime.precision(17);
        clocktime << tv_sec << '.' << tv_usec << std::endl;
    }
}
bool EquationSystems::compare (const EquationSystems& other_es,
                               const Real threshold,
                               const bool verbose) const
{
  // safety check, whether we handle at least the same number
  // of systems
  std::vector<bool> os_result;

  if (this->n_systems() != other_es.n_systems())
    {
      if (verbose)
        {
          libMesh::out << "  Fatal difference. This system handles "
                       << this->n_systems() << " systems," << std::endl
                       << "  while the other system handles "
                       << other_es.n_systems()
                       << " systems." << std::endl
                       << "  Aborting comparison." << std::endl;
        }
      return false;
    }
  else
    {
      // start comparing each system
      const_system_iterator       pos = _systems.begin();
      const const_system_iterator end = _systems.end();

      for (; pos != end; ++pos)
        {
          const std::string& sys_name = pos->first;
          const System&  system        = *(pos->second);

          // get the other system
          const System& other_system   = other_es.get_system (sys_name);

          os_result.push_back (system.compare (other_system, threshold, verbose));

        }

    }


  // sum up the results
  if (os_result.size()==0)
    return true;
  else
    {
      bool os_identical;
      unsigned int n = 0;
      do
        {
          os_identical = os_result[n];
          n++;
        }
      while (os_identical && n<os_result.size());
      return os_identical;
    }
}
Exemple #4
0
void ExodusII_IO::write_discontinuous_exodusII (const std::string& name,
				     const EquationSystems& es)
{
  std::vector<std::string> solution_names;
  std::vector<Number>      v;

  es.build_variable_names  (solution_names);
  es.build_discontinuous_solution_vector (v);

  this->write_nodal_data_discontinuous(name, v, solution_names);
}
Exemple #5
0
void run_timestepping(EquationSystems& systems, GetPot& args)
{
    TransientExplicitSystem& aux_system = systems.get_system<TransientExplicitSystem>("auxiliary");

    SolidSystem& solid_system = systems.get_system<SolidSystem>("solid");

    AutoPtr<VTKIO> io = AutoPtr<VTKIO>(new VTKIO(systems.get_mesh()));

    Real duration = args("duration", 1.0);

    for (unsigned int t_step = 0; t_step < duration/solid_system.deltat; t_step++) {
        // Progress in current phase [0..1]
        Real progress = t_step * solid_system.deltat / duration;
        systems.parameters.set<Real>("progress") = progress;
        systems.parameters.set<unsigned int>("step") = t_step;

        // Update message

        out << "===== Time Step " << std::setw(4) << t_step;
        out << " (" << std::fixed << std::setprecision(2) << std::setw(6) << (progress*100.) << "%)";
        out << ", time = " << std::setw(7) << solid_system.time;
        out << " =====" << std::endl;

        // Advance timestep in auxiliary system
        aux_system.current_local_solution->close();
        aux_system.old_local_solution->close();
        *aux_system.older_local_solution = *aux_system.old_local_solution;
        *aux_system.old_local_solution = *aux_system.current_local_solution;

        out << "Solving Solid" << std::endl;
        solid_system.solve();
        aux_system.reinit();

        // Carry out the adaptive mesh refinement/coarsening
        out << "Doing a reinit of the equation systems" << std::endl;
        systems.reinit();

        if (t_step % args("output/frequency", 1) == 0) {
            std::stringstream file_name;
            file_name << args("results_directory", "./") << "fem_";
            file_name << std::setw(6) << std::setfill('0') << t_step;
            file_name << ".pvtu";

            io->write_equation_systems(file_name.str(), systems);
        }
        // Advance to the next timestep in a transient problem
        out << "Advancing to next step" << std::endl;
        solid_system.time_solver->advance_timestep();
    }
}
Exemple #6
0
int main( int argc, char** argv )
{
    LibMeshInit init (argc, argv);

    Mesh mesh(init.comm());

    MeshTools::Generation::build_square (mesh,
                                         4, 4,
                                         0.0, 1.0,
                                         0.0, 1.0,
                                         QUAD4);

//    XdrIO mesh_io(mesh);
//    mesh_io.read("one_tri.xda");

    mesh.print_info();

    EquationSystems es (mesh);

    LinearImplicitSystem& system = es.add_system<LinearImplicitSystem>("lap");

    uint u_var = system.add_variable("u", FIRST, LAGRANGE);

    Laplacian lap(es);

    system.attach_assemble_object(lap);

    std::set<boundary_id_type> bd_ids;
    bd_ids.insert(1);
    bd_ids.insert(3);

    std::vector<uint> vars(1,u_var);

    ZeroFunction<Real> zero;

    DirichletBoundary dirichlet_bc(bd_ids, vars, &zero);

    system.get_dof_map().add_dirichlet_boundary(dirichlet_bc);

    es.init();

    es.print_info();

    system.solve();

    VTKIO(mesh).write_equation_systems("lap.pvtu",es);

    return 0;
}
Exemple #7
0
/*
 * FIXME: This is known to write nonsense on AMR meshes
 * and it strips the imaginary parts of complex Numbers
 */
void VTKIO::system_vectors_to_vtk(const EquationSystems& es, vtkUnstructuredGrid*& grid)
{
  if (MeshOutput<MeshBase>::mesh().processor_id() == 0)
    {
      std::map<std::string, std::vector<Number> > vecs;
      for (unsigned int i=0; i<es.n_systems(); ++i)
        {
          const System& sys = es.get_system(i);
          System::const_vectors_iterator v_end = sys.vectors_end();
          System::const_vectors_iterator it = sys.vectors_begin();
          for (; it!= v_end; ++it)
            {
              // for all vectors on this system
              std::vector<Number> values;
              // libMesh::out<<"it "<<it->first<<std::endl;

              it->second->localize_to_one(values, 0);
              // libMesh::out<<"finish localize"<<std::endl;
              vecs[it->first] = values;
            }
        }

      std::map<std::string, std::vector<Number> >::iterator it = vecs.begin();

      for (; it!=vecs.end(); ++it)
        {
          vtkDoubleArray *data = vtkDoubleArray::New();
          data->SetName(it->first.c_str());
          libmesh_assert_equal_to (it->second.size(), es.get_mesh().n_nodes());
          data->SetNumberOfValues(it->second.size());

          for (unsigned int i=0; i<it->second.size(); ++i)
            {
#ifdef LIBMESH_USE_COMPLEX_NUMBERS
              libmesh_do_once (libMesh::err << "Only writing the real part for complex numbers!\n"
                               << "if you need this support contact " << LIBMESH_PACKAGE_BUGREPORT
                               << std::endl);
              data->SetValue(i, it->second[i].real());
#else
              data->SetValue(i, it->second[i]);
#endif

            }
          grid->GetPointData()->AddArray(data);
          data->Delete();
        }
    }
}
void scale_mesh_and_plot(EquationSystems & es,
                         const RBParameters & mu,
                         const std::string & filename)
{
  // Loop over the mesh nodes and move them!
  MeshBase & mesh = es.get_mesh();

  MeshBase::node_iterator       node_it  = mesh.nodes_begin();
  const MeshBase::node_iterator node_end = mesh.nodes_end();

  for ( ; node_it != node_end; node_it++)
    {
      Node * node = *node_it;

      (*node)(0) *= mu.get_value("x_scaling");
    }

  // Post-process the solution to compute the stresses
  compute_stresses(es);

#ifdef LIBMESH_HAVE_EXODUS_API
  ExodusII_IO (mesh).write_equation_systems (filename, es);
#endif

  // Loop over the mesh nodes and move them!
  node_it = mesh.nodes_begin();

  for ( ; node_it != node_end; node_it++)
    {
      Node * node = *node_it;

      (*node)(0) /= mu.get_value("x_scaling");
    }
}
Exemple #9
0
void assemble_poisson(EquationSystems & es,
                      const std::string & system_name)
{
  libmesh_assert_equal_to (system_name, "Poisson");

  const MeshBase & mesh = es.get_mesh();
  const unsigned int dim = mesh.mesh_dimension();
  LinearImplicitSystem & system = es.get_system<LinearImplicitSystem>("Poisson");

  const DofMap & dof_map = system.get_dof_map();

  FEType fe_type = dof_map.variable_type(0);
  UniquePtr<FEBase> fe (FEBase::build(dim, fe_type));
  QGauss qrule (dim, FIFTH);
  fe->attach_quadrature_rule (&qrule);
  UniquePtr<FEBase> fe_face (FEBase::build(dim, fe_type));
  QGauss qface(dim-1, FIFTH);
  fe_face->attach_quadrature_rule (&qface);

  const std::vector<Real> & JxW = fe->get_JxW();
  const std::vector<std::vector<Real> > & phi = fe->get_phi();
  const std::vector<std::vector<RealGradient> > & dphi = fe->get_dphi();

  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  std::vector<dof_id_type> dof_indices;

  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      const Elem * elem = *el;

      dof_map.dof_indices (elem, dof_indices);

      fe->reinit (elem);

      Ke.resize (dof_indices.size(),
                 dof_indices.size());

      Fe.resize (dof_indices.size());

      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          for (unsigned int i=0; i<phi.size(); i++)
            {
              Fe(i) += JxW[qp]*phi[i][qp];
              for (unsigned int j=0; j<phi.size(); j++)
                Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
            }
        }

      dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);

      system.matrix->add_matrix (Ke, dof_indices);
      system.rhs->add_vector    (Fe, dof_indices);
    }
}
Exemple #10
0
void transform_mesh_and_plot(EquationSystems & es,
                             Real curvature,
                             const std::string & filename)
{
  // Loop over the mesh nodes and move them!
  MeshBase & mesh = es.get_mesh();

  MeshBase::node_iterator       node_it  = mesh.nodes_begin();
  const MeshBase::node_iterator node_end = mesh.nodes_end();

  for ( ; node_it != node_end; node_it++)
    {
      Node * node = *node_it;

      Real x = (*node)(0);
      Real z = (*node)(2);

      (*node)(0) = -1./curvature + (1./curvature + x)*cos(curvature*z);
      (*node)(2) = (1./curvature + x)*sin(curvature*z);
    }

#ifdef LIBMESH_HAVE_EXODUS_API
  ExodusII_IO(mesh).write_equation_systems(filename, es);
#endif
}
Exemple #11
0
void MeshOutput<MT>::write_equation_systems (const std::string & fname,
                                             const EquationSystems & es,
                                             const std::set<std::string> * system_names)
{
  START_LOG("write_equation_systems()", "MeshOutput");

  // We may need to gather and/or renumber a ParallelMesh to output
  // it, making that const qualifier in our constructor a dirty lie
  MT & my_mesh = const_cast<MT &>(*_obj);

  // If we're asked to write data that's associated with a different
  // mesh, output files full of garbage are the result.
  libmesh_assert_equal_to(&es.get_mesh(), _obj);

  // A non-renumbered mesh may not have a contiguous numbering, and
  // that needs to be fixed before we can build a solution vector.
  if (my_mesh.max_elem_id() != my_mesh.n_elem() ||
      my_mesh.max_node_id() != my_mesh.n_nodes())
    {
      // If we were allowed to renumber then we should have already
      // been properly renumbered...
      libmesh_assert(!my_mesh.allow_renumbering());

      libmesh_do_once(libMesh::out <<
                      "Warning:  This MeshOutput subclass only supports meshes which are contiguously renumbered!"
                      << std::endl;);
CondensedEigenSystem::CondensedEigenSystem (EquationSystems& es,
                                            const std::string& name,
                                            const unsigned int number)
  : Parent(es, name, number),
    condensed_matrix_A(SparseMatrix<Number>::build(es.comm())),
    condensed_matrix_B(SparseMatrix<Number>::build(es.comm())),
    condensed_dofs_initialized(false)
{
}
/**
 * FIXME: This is a default implementation - derived classes should
 * reimplement it for efficiency.
 */
void ErrorEstimator::estimate_errors(const EquationSystems & equation_systems,
                                     ErrorMap & errors_per_cell,
                                     const std::map<const System *, const NumericVector<Number> *> * solution_vectors,
                                     bool estimate_parent_error)
{
  SystemNorm old_error_norm = this->error_norm;

  // Find the requested error values from each system
  for (unsigned int s = 0; s != equation_systems.n_systems(); ++s)
    {
      const System & sys = equation_systems.get_system(s);

      unsigned int n_vars = sys.n_vars();

      for (unsigned int v = 0; v != n_vars; ++v)
        {
          // Only fill in ErrorVectors the user asks for
          if (errors_per_cell.find(std::make_pair(&sys, v)) ==
              errors_per_cell.end())
            continue;

          // Calculate error in only one variable
          std::vector<Real> weights(n_vars, 0.0);
          weights[v] = 1.0;
          this->error_norm =
            SystemNorm(std::vector<FEMNormType>(n_vars, old_error_norm.type(v)),
                       weights);

          const NumericVector<Number> * solution_vector = nullptr;
          if (solution_vectors &&
              solution_vectors->find(&sys) != solution_vectors->end())
            solution_vector = solution_vectors->find(&sys)->second;

          this->estimate_error
            (sys, *errors_per_cell[std::make_pair(&sys, v)],
             solution_vector, estimate_parent_error);
        }
    }

  // Restore our old state before returning
  this->error_norm = old_error_norm;
}
void ErrorEstimator::estimate_errors(const EquationSystems & equation_systems,
                                     ErrorVector & error_per_cell,
                                     const std::map<const System *, SystemNorm> & error_norms,
                                     const std::map<const System *, const NumericVector<Number> *> * solution_vectors,
                                     bool estimate_parent_error)
{
  SystemNorm old_error_norm = this->error_norm;

  // Sum the error values from each system
  for (unsigned int s = 0; s != equation_systems.n_systems(); ++s)
    {
      ErrorVector system_error_per_cell;
      const System & sys = equation_systems.get_system(s);
      if (error_norms.find(&sys) == error_norms.end())
        this->error_norm = old_error_norm;
      else
        this->error_norm = error_norms.find(&sys)->second;

      const NumericVector<Number> * solution_vector = nullptr;
      if (solution_vectors &&
          solution_vectors->find(&sys) != solution_vectors->end())
        solution_vector = solution_vectors->find(&sys)->second;

      this->estimate_error(sys, system_error_per_cell,
                           solution_vector, estimate_parent_error);

      if (s)
        {
          libmesh_assert_equal_to (error_per_cell.size(), system_error_per_cell.size());
          for (std::size_t i=0; i != error_per_cell.size(); ++i)
            error_per_cell[i] += system_error_per_cell[i];
        }
      else
        error_per_cell = system_error_per_cell;
    }

  // Restore our old state before returning
  this->error_norm = old_error_norm;
}
Exemple #15
0
void ExodusII_IO::write_element_data (const EquationSystems & es)
{
  // The first step is to collect the element data onto this processor.
  // We want the constant monomial data.

  std::vector<Number> soln;
  std::vector<std::string> names;

  // If _output_variables is populated we need to filter the monomials we output
  if (_output_variables.size())
  {
    std::vector<std::string> monomials;
    const FEType type(CONSTANT, MONOMIAL);
    es.build_variable_names(monomials, &type);

    for (std::vector<std::string>::iterator it = monomials.begin(); it != monomials.end(); ++it)
      if (std::find(_output_variables.begin(), _output_variables.end(), *it) != _output_variables.end())
        names.push_back(*it);
  }

  // If we pass in a list of names to "get_solution" it'll filter the variables comming back
  es.get_solution( soln, names );

  // The data must ultimately be written block by block.  This means that this data
  // must be sorted appropriately.

  if (!exio_helper->created())
    {
      libMesh::err << "ERROR, ExodusII file must be initialized "
                   << "before outputting element variables.\n"
                   << std::endl;
      libmesh_error();
    }

  const MeshBase & mesh = MeshOutput<MeshBase>::mesh();

  exio_helper->initialize_element_variables( mesh, names );
  exio_helper->write_element_values(mesh,soln,_timestep);
}
// ------------------------------------------------------------
// LinearImplicitSystem implementation
LinearImplicitSystem::LinearImplicitSystem (EquationSystems & es,
                                            const std::string & name_in,
                                            const unsigned int number_in) :

  Parent                 (es, name_in, number_in),
  linear_solver          (LinearSolver<Number>::build(es.comm())),
  _n_linear_iterations   (0),
  _final_linear_residual (1.e20),
  _shell_matrix(nullptr),
  _subset(nullptr),
  _subset_solve_mode(SUBSET_ZERO)
{
}
Exemple #17
0
  void testRestart()
  {
    SlitFunc slitfunc;

    _mesh->write("slit_mesh.xda");
    _es->write("slit_solution.xda",
               EquationSystems::WRITE_DATA |
               EquationSystems::WRITE_SERIAL_FILES);

    Mesh mesh2(*TestCommWorld);
    mesh2.read("slit_mesh.xda");
    EquationSystems es2(mesh2);
    es2.read("slit_solution.xda");

    System & sys2 = es2.get_system<System> ("SimpleSystem");

    unsigned int dim = 2;

    CPPUNIT_ASSERT_EQUAL( sys2.n_vars(), 1u );

    FEMContext context(sys2);
    FEBase * fe = NULL;
    context.get_element_fe( 0, fe, dim );
    const std::vector<Point> & xyz = fe->get_xyz();
    fe->get_phi();

    MeshBase::const_element_iterator       el     =
      mesh2.active_local_elements_begin();
    const MeshBase::const_element_iterator end_el =
      mesh2.active_local_elements_end();

    for (; el != end_el; ++el)
      {
        const Elem * elem = *el;
        context.pre_fe_reinit(sys2, elem);
        context.elem_fe_reinit();

        const unsigned int n_qp = xyz.size();

        for (unsigned int qp=0; qp != n_qp; ++qp)
          {
            const Number exact_val = slitfunc(context, xyz[qp]);

            const Number discrete_val = context.interior_value(0, qp);

            CPPUNIT_ASSERT_DOUBLES_EQUAL(libmesh_real(exact_val),
                                         libmesh_real(discrete_val),
                                         TOLERANCE*TOLERANCE);
          }
      }
  }
Exemple #18
0
// ------------------------------------------------------------
// EigenSystem implementation
EigenSystem::EigenSystem (EquationSystems& es,
                          const std::string& name_in,
                          const unsigned int number_in
                          ) :
  Parent           (es, name_in, number_in),
  matrix_A         (NULL),
  matrix_B         (NULL),
  eigen_solver     (EigenSolver<Number>::build(es.comm())),
  _n_converged_eigenpairs (0),
  _n_iterations           (0),
  _is_generalized_eigenproblem (false),
  _eigen_problem_type (NHEP)
{
}
Exemple #19
0
  void setUp()
  {
    this->build_mesh();

    // libMesh *should* renumber now, or a ParallelMesh might not have
    // contiguous ids, which is a requirement to write xda files.
    _mesh->allow_renumbering(true);

    _es = new EquationSystems(*_mesh);
    _sys = &_es->add_system<System> ("SimpleSystem");
    _sys->add_variable("u", FIRST);

    _es->init();
    SlitFunc slitfunc;
    _sys->project_solution(&slitfunc);

#ifdef LIBMESH_ENABLE_AMR
    MeshRefinement(*_mesh).uniformly_refine(1);
    _es->reinit();
    MeshRefinement(*_mesh).uniformly_refine(1);
    _es->reinit();
#endif
  }
Exemple #20
0
// ------------------------------------------------------------
// EigenSystem implementation
EigenSystem::EigenSystem (EquationSystems& es,
			  const std::string& name,
			  const unsigned int number
			  ) :
  Parent           (es, name, number),
  matrix_A         (NULL),
  matrix_B         (NULL),
  eigen_solver     (EigenSolver<Number>::build(es.comm())),
  _n_converged_eigenpairs (0),
  _n_iterations           (0),
  _is_generalized_eigenproblem (false),
  _eigen_problem_type (NHEP),
  _eigenproblem_sensitivity_assemble_system_function(NULL),
  _eigenproblem_sensitivity_assemble_system_object(NULL)
{
}
Exemple #21
0
void write_output(EquationSystems &es,		                   
		  unsigned int a_step, // The adaptive step count
		  std::string solution_type) // primal or adjoint solve
{
  MeshBase &mesh = es.get_mesh();

#ifdef LIBMESH_HAVE_GMV
  
  OStringStream file_name_gmv;
  file_name_gmv << solution_type << ".out.gmv.";      
  OSSRealzeroright(file_name_gmv,2,0,a_step);
  
  GMVIO(mesh).write_equation_systems
    (file_name_gmv.str(), es);
    
#endif    
}
Exemple #22
0
void write_output(EquationSystems &es,
                  unsigned int a_step,       // The adaptive step count
                  std::string solution_type) // primal or adjoint solve
{
#ifdef LIBMESH_HAVE_GMV
  MeshBase &mesh = es.get_mesh();

  std::ostringstream file_name_gmv;
  file_name_gmv << solution_type
                << ".out.gmv."
                << std::setw(2)
                << std::setfill('0')
                << std::right
                << a_step;

  GMVIO(mesh).write_equation_systems
    (file_name_gmv.str(), es);
#endif
}
Exemple #23
0
void setup(EquationSystems& systems, Mesh& mesh, GetPot& args)
{
    const unsigned int dim = mesh.mesh_dimension();
    // We currently invert tensors with the assumption that they're 3x3
    libmesh_assert (dim == 3);

    // Generating Mesh
    ElemType eltype = Utility::string_to_enum<ElemType>(args("mesh/generation/element_type", "hex8"));
    int nx = args("mesh/generation/num_elem", 4, 0);
    int ny = args("mesh/generation/num_elem", 4, 1);
    int nz = dim > 2 ? args("mesh/generation/num_elem", 4, 2) : 0;
    double origx = args("mesh/generation/origin", -1.0, 0);
    double origy = args("mesh/generation/origin", -1.0, 1);
    double origz = args("mesh/generation/origin", 0.0, 2);
    double sizex = args("mesh/generation/size", 2.0, 0);
    double sizey = args("mesh/generation/size", 2.0, 1);
    double sizez = args("mesh/generation/size", 2.0, 2);
    MeshTools::Generation::build_cube(mesh, nx, ny, nz,
                                      origx, origx+sizex, origy, origy+sizey, origz, origz+sizez, eltype);

    // Creating Systems
    SolidSystem& imms = systems.add_system<SolidSystem> ("solid");
    imms.args = args;

    // Build up auxiliary system
    ExplicitSystem& aux_sys = systems.add_system<TransientExplicitSystem>("auxiliary");

    // Initialize the system
    systems.parameters.set<unsigned int>("phase") = 0;
    systems.init();

    imms.save_initial_mesh();

    // Fill global solution vector from local ones
    aux_sys.reinit();
}
// The matrix assembly function to be called at each time step to
// prepare for the linear solve.
void assemble_stokes (EquationSystems & es,
                      const std::string & system_name)
{
  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Navier-Stokes");

  // Get a constant reference to the mesh object.
  const MeshBase & mesh = es.get_mesh();

  // The dimension that we are running
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to the Stokes system object.
  TransientLinearImplicitSystem & navier_stokes_system =
    es.get_system<TransientLinearImplicitSystem> ("Navier-Stokes");

  // Numeric ids corresponding to each variable in the system
  const unsigned int u_var = navier_stokes_system.variable_number ("u");
  const unsigned int v_var = navier_stokes_system.variable_number ("v");
  const unsigned int p_var = navier_stokes_system.variable_number ("p");
  const unsigned int alpha_var = navier_stokes_system.variable_number ("alpha");

  // Get the Finite Element type for "u".  Note this will be
  // the same as the type for "v".
  FEType fe_vel_type = navier_stokes_system.variable_type(u_var);

  // Get the Finite Element type for "p".
  FEType fe_pres_type = navier_stokes_system.variable_type(p_var);

  // Build a Finite Element object of the specified type for
  // the velocity variables.
  UniquePtr<FEBase> fe_vel  (FEBase::build(dim, fe_vel_type));

  // Build a Finite Element object of the specified type for
  // the pressure variables.
  UniquePtr<FEBase> fe_pres (FEBase::build(dim, fe_pres_type));

  // A Gauss quadrature rule for numerical integration.
  // Let the FEType object decide what order rule is appropriate.
  QGauss qrule (dim, fe_vel_type.default_quadrature_order());

  // Tell the finite element objects to use our quadrature rule.
  fe_vel->attach_quadrature_rule (&qrule);
  fe_pres->attach_quadrature_rule (&qrule);

  // Here we define some references to cell-specific data that
  // will be used to assemble the linear system.
  //
  // The element Jacobian * quadrature weight at each integration point.
  const std::vector<Real> & JxW = fe_vel->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> > & phi = fe_vel->get_phi();

  // The element shape function gradients for the velocity
  // variables evaluated at the quadrature points.
  const std::vector<std::vector<RealGradient> > & dphi = fe_vel->get_dphi();

  // The element shape functions for the pressure variable
  // evaluated at the quadrature points.
  const std::vector<std::vector<Real> > & psi = fe_pres->get_phi();

  // The value of the linear shape function gradients at the quadrature points
  // const std::vector<std::vector<RealGradient> > & dpsi = fe_pres->get_dphi();

  // A reference to the DofMap object for this system.  The DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.  We will talk more about the DofMap
  // in future examples.
  const DofMap & dof_map = navier_stokes_system.get_dof_map();

  // Define data structures to contain the element matrix
  // and right-hand-side vector contribution.  Following
  // basic finite element terminology we will denote these
  // "Ke" and "Fe".
  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  DenseSubMatrix<Number>
    Kuu(Ke), Kuv(Ke), Kup(Ke),
    Kvu(Ke), Kvv(Ke), Kvp(Ke),
    Kpu(Ke), Kpv(Ke), Kpp(Ke);
  DenseSubMatrix<Number> Kalpha_p(Ke), Kp_alpha(Ke);

  DenseSubVector<Number>
    Fu(Fe),
    Fv(Fe),
    Fp(Fe);

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;
  std::vector<dof_id_type> dof_indices_u;
  std::vector<dof_id_type> dof_indices_v;
  std::vector<dof_id_type> dof_indices_p;
  std::vector<dof_id_type> dof_indices_alpha;

  // Find out what the timestep size parameter is from the system, and
  // the value of theta for the theta method.  We use implicit Euler (theta=1)
  // for this simulation even though it is only first-order accurate in time.
  // The reason for this decision is that the second-order Crank-Nicolson
  // method is notoriously oscillatory for problems with discontinuous
  // initial data such as the lid-driven cavity.  Therefore,
  // we sacrifice accuracy in time for stability, but since the solution
  // reaches steady state relatively quickly we can afford to take small
  // timesteps.  If you monitor the initial nonlinear residual for this
  // simulation, you should see that it is monotonically decreasing in time.
  const Real dt    = es.parameters.get<Real>("dt");
  // const Real time  = es.parameters.get<Real>("time");
  const Real theta = 1.;

  // Now we will loop over all the elements in the mesh that
  // live on the local processor. We will compute the element
  // matrix and right-hand-side contribution.  Since the mesh
  // will be refined we want to only consider the ACTIVE elements,
  // hence we use a variant of the active_elem_iterator.
  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem * elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);
      dof_map.dof_indices (elem, dof_indices_u, u_var);
      dof_map.dof_indices (elem, dof_indices_v, v_var);
      dof_map.dof_indices (elem, dof_indices_p, p_var);
      dof_map.dof_indices (elem, dof_indices_alpha, alpha_var);

      const unsigned int n_dofs   = dof_indices.size();
      const unsigned int n_u_dofs = dof_indices_u.size();
      const unsigned int n_v_dofs = dof_indices_v.size();
      const unsigned int n_p_dofs = dof_indices_p.size();

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape functions
      // (phi, dphi) for the current element.
      fe_vel->reinit  (elem);
      fe_pres->reinit (elem);

      // Zero the element matrix and right-hand side before
      // summing them.  We use the resize member here because
      // the number of degrees of freedom might have changed from
      // the last element.  Note that this will be the case if the
      // element type is different (i.e. the last element was a
      // triangle, now we are on a quadrilateral).
      Ke.resize (n_dofs, n_dofs);
      Fe.resize (n_dofs);

      // Reposition the submatrices...  The idea is this:
      //
      //         -           -          -  -
      //        | Kuu Kuv Kup |        | Fu |
      //   Ke = | Kvu Kvv Kvp |;  Fe = | Fv |
      //        | Kpu Kpv Kpp |        | Fp |
      //         -           -          -  -
      //
      // The DenseSubMatrix.repostition () member takes the
      // (row_offset, column_offset, row_size, column_size).
      //
      // Similarly, the DenseSubVector.reposition () member
      // takes the (row_offset, row_size)
      Kuu.reposition (u_var*n_u_dofs, u_var*n_u_dofs, n_u_dofs, n_u_dofs);
      Kuv.reposition (u_var*n_u_dofs, v_var*n_u_dofs, n_u_dofs, n_v_dofs);
      Kup.reposition (u_var*n_u_dofs, p_var*n_u_dofs, n_u_dofs, n_p_dofs);

      Kvu.reposition (v_var*n_v_dofs, u_var*n_v_dofs, n_v_dofs, n_u_dofs);
      Kvv.reposition (v_var*n_v_dofs, v_var*n_v_dofs, n_v_dofs, n_v_dofs);
      Kvp.reposition (v_var*n_v_dofs, p_var*n_v_dofs, n_v_dofs, n_p_dofs);

      Kpu.reposition (p_var*n_u_dofs, u_var*n_u_dofs, n_p_dofs, n_u_dofs);
      Kpv.reposition (p_var*n_u_dofs, v_var*n_u_dofs, n_p_dofs, n_v_dofs);
      Kpp.reposition (p_var*n_u_dofs, p_var*n_u_dofs, n_p_dofs, n_p_dofs);

      // Also, add a row and a column to constrain the pressure
      Kp_alpha.reposition (p_var*n_u_dofs, p_var*n_u_dofs+n_p_dofs, n_p_dofs, 1);
      Kalpha_p.reposition (p_var*n_u_dofs+n_p_dofs, p_var*n_u_dofs, 1, n_p_dofs);


      Fu.reposition (u_var*n_u_dofs, n_u_dofs);
      Fv.reposition (v_var*n_u_dofs, n_v_dofs);
      Fp.reposition (p_var*n_u_dofs, n_p_dofs);

      // Now we will build the element matrix and right-hand-side.
      // Constructing the RHS requires the solution and its
      // gradient from the previous timestep.  This must be
      // calculated at each quadrature point by summing the
      // solution degree-of-freedom values by the appropriate
      // weight functions.
      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          // Values to hold the solution & its gradient at the previous timestep.
          Number u = 0., u_old = 0.;
          Number v = 0., v_old = 0.;
          Number p_old = 0.;
          Gradient grad_u, grad_u_old;
          Gradient grad_v, grad_v_old;

          // Compute the velocity & its gradient from the previous timestep
          // and the old Newton iterate.
          for (unsigned int l=0; l<n_u_dofs; l++)
            {
              // From the old timestep:
              u_old += phi[l][qp]*navier_stokes_system.old_solution (dof_indices_u[l]);
              v_old += phi[l][qp]*navier_stokes_system.old_solution (dof_indices_v[l]);
              grad_u_old.add_scaled (dphi[l][qp], navier_stokes_system.old_solution (dof_indices_u[l]));
              grad_v_old.add_scaled (dphi[l][qp], navier_stokes_system.old_solution (dof_indices_v[l]));

              // From the previous Newton iterate:
              u += phi[l][qp]*navier_stokes_system.current_solution (dof_indices_u[l]);
              v += phi[l][qp]*navier_stokes_system.current_solution (dof_indices_v[l]);
              grad_u.add_scaled (dphi[l][qp], navier_stokes_system.current_solution (dof_indices_u[l]));
              grad_v.add_scaled (dphi[l][qp], navier_stokes_system.current_solution (dof_indices_v[l]));
            }

          // Compute the old pressure value at this quadrature point.
          for (unsigned int l=0; l<n_p_dofs; l++)
            p_old += psi[l][qp]*navier_stokes_system.old_solution (dof_indices_p[l]);

          // Definitions for convenience.  It is sometimes simpler to do a
          // dot product if you have the full vector at your disposal.
          const NumberVectorValue U_old (u_old, v_old);
          const NumberVectorValue U     (u,     v);
          const Number u_x = grad_u(0);
          const Number u_y = grad_u(1);
          const Number v_x = grad_v(0);
          const Number v_y = grad_v(1);

          // First, an i-loop over the velocity degrees of freedom.
          // We know that n_u_dofs == n_v_dofs so we can compute contributions
          // for both at the same time.
          for (unsigned int i=0; i<n_u_dofs; i++)
            {
              Fu(i) += JxW[qp]*(u_old*phi[i][qp] -                            // mass-matrix term
                                (1.-theta)*dt*(U_old*grad_u_old)*phi[i][qp] + // convection term
                                (1.-theta)*dt*p_old*dphi[i][qp](0)  -         // pressure term on rhs
                                (1.-theta)*dt*(grad_u_old*dphi[i][qp]) +      // diffusion term on rhs
                                theta*dt*(U*grad_u)*phi[i][qp]);              // Newton term


              Fv(i) += JxW[qp]*(v_old*phi[i][qp] -                             // mass-matrix term
                                (1.-theta)*dt*(U_old*grad_v_old)*phi[i][qp] +  // convection term
                                (1.-theta)*dt*p_old*dphi[i][qp](1) -           // pressure term on rhs
                                (1.-theta)*dt*(grad_v_old*dphi[i][qp]) +       // diffusion term on rhs
                                theta*dt*(U*grad_v)*phi[i][qp]);               // Newton term


              // Note that the Fp block is identically zero unless we are using
              // some kind of artificial compressibility scheme...

              // Matrix contributions for the uu and vv couplings.
              for (unsigned int j=0; j<n_u_dofs; j++)
                {
                  Kuu(i,j) += JxW[qp]*(phi[i][qp]*phi[j][qp] +                // mass matrix term
                                       theta*dt*(dphi[i][qp]*dphi[j][qp]) +   // diffusion term
                                       theta*dt*(U*dphi[j][qp])*phi[i][qp] +  // convection term
                                       theta*dt*u_x*phi[i][qp]*phi[j][qp]);   // Newton term

                  Kuv(i,j) += JxW[qp]*theta*dt*u_y*phi[i][qp]*phi[j][qp];     // Newton term

                  Kvv(i,j) += JxW[qp]*(phi[i][qp]*phi[j][qp] +                // mass matrix term
                                       theta*dt*(dphi[i][qp]*dphi[j][qp]) +   // diffusion term
                                       theta*dt*(U*dphi[j][qp])*phi[i][qp] +  // convection term
                                       theta*dt*v_y*phi[i][qp]*phi[j][qp]);   // Newton term

                  Kvu(i,j) += JxW[qp]*theta*dt*v_x*phi[i][qp]*phi[j][qp];     // Newton term
                }

              // Matrix contributions for the up and vp couplings.
              for (unsigned int j=0; j<n_p_dofs; j++)
                {
                  Kup(i,j) += JxW[qp]*(-theta*dt*psi[j][qp]*dphi[i][qp](0));
                  Kvp(i,j) += JxW[qp]*(-theta*dt*psi[j][qp]*dphi[i][qp](1));
                }
            }

          // Now an i-loop over the pressure degrees of freedom.  This code computes
          // the matrix entries due to the continuity equation.  Note: To maintain a
          // symmetric matrix, we may (or may not) multiply the continuity equation by
          // negative one.  Here we do not.
          for (unsigned int i=0; i<n_p_dofs; i++)
            {
              Kp_alpha(i,0) += JxW[qp]*psi[i][qp];
              Kalpha_p(0,i) += JxW[qp]*psi[i][qp];
              for (unsigned int j=0; j<n_u_dofs; j++)
                {
                  Kpu(i,j) += JxW[qp]*psi[i][qp]*dphi[j][qp](0);
                  Kpv(i,j) += JxW[qp]*psi[i][qp]*dphi[j][qp](1);
                }
            }
        } // end of the quadrature point qp-loop


      // At this point the interior element integration has
      // been completed.  However, we have not yet addressed
      // boundary conditions.  For this example we will only
      // consider simple Dirichlet boundary conditions imposed
      // via the penalty method. The penalty method used here
      // is equivalent (for Lagrange basis functions) to lumping
      // the matrix resulting from the L2 projection penalty
      // approach introduced in example 3.
      {
        // The penalty value.  \f$ \frac{1}{\epsilon} \f$
        const Real penalty = 1.e10;

        // The following loops over the sides of the element.
        // If the element has no neighbor on a side then that
        // side MUST live on a boundary of the domain.
        for (unsigned int s=0; s<elem->n_sides(); s++)
          if (elem->neighbor(s) == libmesh_nullptr)
            {
              UniquePtr<Elem> side (elem->build_side(s));

              // Loop over the nodes on the side.
              for (unsigned int ns=0; ns<side->n_nodes(); ns++)
                {
                  // Boundary ids are set internally by
                  // build_square().
                  // 0=bottom
                  // 1=right
                  // 2=top
                  // 3=left

                  // Set u = 1 on the top boundary, 0 everywhere else
                  const Real u_value =
                    (mesh.get_boundary_info().has_boundary_id(elem, s, 2))
                    ? 1. : 0.;

                  // Set v = 0 everywhere
                  const Real v_value = 0.;

                  // Find the node on the element matching this node on
                  // the side.  That defined where in the element matrix
                  // the boundary condition will be applied.
                  for (unsigned int n=0; n<elem->n_nodes(); n++)
                    if (elem->node_id(n) == side->node_id(ns))
                      {
                        // Matrix contribution.
                        Kuu(n,n) += penalty;
                        Kvv(n,n) += penalty;

                        // Right-hand-side contribution.
                        Fu(n) += penalty*u_value;
                        Fv(n) += penalty*v_value;
                      }
                } // end face node loop
            } // end if (elem->neighbor(side) == libmesh_nullptr)
      } // end boundary condition section

      // If this assembly program were to be used on an adaptive mesh,
      // we would have to apply any hanging node constraint equations
      dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);

      // The element matrix and right-hand-side are now built
      // for this element.  Add them to the global matrix and
      // right-hand-side vector.  The SparseMatrix::add_matrix()
      // and NumericVector::add_vector() members do this for us.
      navier_stokes_system.matrix->add_matrix (Ke, dof_indices);
      navier_stokes_system.rhs->add_vector    (Fe, dof_indices);
    } // end of element loop

  // We can set the mean of the pressure by setting Falpha
  navier_stokes_system.rhs->add(navier_stokes_system.rhs->size()-1, 10.);
}
Exemple #25
0
void assemble_matrices(EquationSystems & es,
                       const std::string & libmesh_dbg_var(system_name))
{

  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Eigensystem");

#ifdef LIBMESH_HAVE_SLEPC

  // Get a constant reference to the mesh object.
  const MeshBase & mesh = es.get_mesh();

  // The dimension that we are running.
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to our system.
  EigenSystem & eigen_system = es.get_system<EigenSystem> ("Eigensystem");

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  FEType fe_type = eigen_system.get_dof_map().variable_type(0);

  // A reference to the two system matrices
  SparseMatrix<Number> & matrix_A = *eigen_system.matrix_A;
  SparseMatrix<Number> & matrix_B = *eigen_system.matrix_B;

  // Build a Finite Element object of the specified type.  Since the
  // FEBase::build() member dynamically creates memory we will
  // store the object as a std::unique_ptr<FEBase>.  This can be thought
  // of as a pointer that will clean up after itself.
  std::unique_ptr<FEBase> fe (FEBase::build(dim, fe_type));

  // A  Gauss quadrature rule for numerical integration.
  // Use the default quadrature order.
  QGauss qrule (dim, fe_type.default_quadrature_order());

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (&qrule);

  // The element Jacobian * quadrature weight at each integration point.
  const std::vector<Real> & JxW = fe->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real>> & phi = fe->get_phi();

  // The element shape function gradients evaluated at the quadrature
  // points.
  const std::vector<std::vector<RealGradient>> & dphi = fe->get_dphi();

  // A reference to the DofMap object for this system.  The DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.
  const DofMap & dof_map = eigen_system.get_dof_map();

  // The element mass and stiffness matrices.
  DenseMatrix<Number> Me;
  DenseMatrix<Number> Ke;

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;


  // Now we will loop over all the elements in the mesh that
  // live on the local processor. We will compute the element
  // matrix and right-hand-side contribution.  In case users
  // later modify this program to include refinement, we will
  // be safe and will only consider the active elements;
  // hence we use a variant of the active_elem_iterator.
  for (const auto & elem : mesh.active_local_element_ptr_range())
    {
      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape functions
      // (phi, dphi) for the current element.
      fe->reinit (elem);

      // Zero the element matrices before
      // summing them.  We use the resize member here because
      // the number of degrees of freedom might have changed from
      // the last element.  Note that this will be the case if the
      // element type is different (i.e. the last element was a
      // triangle, now we are on a quadrilateral).
      const unsigned int n_dofs =
        cast_int<unsigned int>(dof_indices.size());
      Ke.resize (n_dofs, n_dofs);
      Me.resize (n_dofs, n_dofs);

      // Now loop over the quadrature points.  This handles
      // the numeric integration.
      //
      // We will build the element matrix.  This involves
      // a double loop to integrate the test functions (i) against
      // the trial functions (j).
      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        for (unsigned int i=0; i<n_dofs; i++)
          for (unsigned int j=0; j<n_dofs; j++)
            {
              Me(i,j) += JxW[qp]*phi[i][qp]*phi[j][qp];
              Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
            }

      // The calls to constrain_element_matrix below have no effect in
      // the current example. However, if users modify this example to
      // include hanging nodes due to mesh refinement, for example,
      // then it is essential to call constrain_element_matrix.
      // As a result we include constrain_element_matrix here to
      // ensure this example is ready to be used with hanging nodes.
      // (Note that constrained rows/cols will be eliminated from
      // the eigenproblem by the CondensedEigenSystem.)
      dof_map.constrain_element_matrix(Ke, dof_indices, false);
      dof_map.constrain_element_matrix(Me, dof_indices, false);

      // Finally, simply add the element contribution to the
      // overall matrices A and B.
      matrix_A.add_matrix (Ke, dof_indices);
      matrix_B.add_matrix (Me, dof_indices);
    } // end of element loop


#else
  // Avoid compiler warnings
  libmesh_ignore(es);
#endif // LIBMESH_HAVE_SLEPC
}
Exemple #26
0
// Define the matrix assembly function for the 1D PDE we are solving
void assemble_1D(EquationSystems& es, const std::string& system_name)
{

#ifdef LIBMESH_ENABLE_AMR

  // It is a good idea to check we are solving the correct system
  libmesh_assert_equal_to (system_name, "1D");

  // Get a reference to the mesh object
  const MeshBase& mesh = es.get_mesh();

  // The dimension we are using, i.e. dim==1
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to the system we are solving
  LinearImplicitSystem& system = es.get_system<LinearImplicitSystem>("1D");

  // Get a reference to the DofMap object for this system. The DofMap object
  // handles the index translation from node and element numbers to degree of
  // freedom numbers. DofMap's are discussed in more detail in future examples.
  const DofMap& dof_map = system.get_dof_map();

  // Get a constant reference to the Finite Element type for the first
  // (and only) variable in the system.
  FEType fe_type = dof_map.variable_type(0);

  // Build a finite element object of the specified type. The build
  // function dynamically allocates memory so we use an UniquePtr in this case.
  // An UniquePtr is a pointer that cleans up after itself. See examples 3 and 4
  // for more details on UniquePtr.
  UniquePtr<FEBase> fe(FEBase::build(dim, fe_type));

  // Tell the finite element object to use fifth order Gaussian quadrature
  QGauss qrule(dim,FIFTH);
  fe->attach_quadrature_rule(&qrule);

  // Here we define some references to cell-specific data that will be used to
  // assemble the linear system.

  // The element Jacobian * quadrature weight at each integration point.
  const std::vector<Real>& JxW = fe->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> >& phi = fe->get_phi();

  // The element shape function gradients evaluated at the quadrature points.
  const std::vector<std::vector<RealGradient> >& dphi = fe->get_dphi();

  // Declare a dense matrix and dense vector to hold the element matrix
  // and right-hand-side contribution
  DenseMatrix<Number> Ke;
  DenseVector<Number> Fe;

  // This vector will hold the degree of freedom indices for the element.
  // These define where in the global system the element degrees of freedom
  // get mapped.
  std::vector<dof_id_type> dof_indices;

  // We now loop over all the active elements in the mesh in order to calculate
  // the matrix and right-hand-side contribution from each element. Use a
  // const_element_iterator to loop over the elements. We make
  // el_end const as it is used only for the stopping condition of the loop.
  MeshBase::const_element_iterator el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator el_end = mesh.active_local_elements_end();

  // Note that ++el is preferred to el++ when using loops with iterators
  for( ; el != el_end; ++el)
    {
      // It is convenient to store a pointer to the current element
      const Elem* elem = *el;

      // Get the degree of freedom indices for the current element.
      // These define where in the global matrix and right-hand-side this
      // element will contribute to.
      dof_map.dof_indices(elem, dof_indices);

      // Compute the element-specific data for the current element. This
      // involves computing the location of the quadrature points (q_point)
      // and the shape functions (phi, dphi) for the current element.
      fe->reinit(elem);

      // Store the number of local degrees of freedom contained in this element
      const int n_dofs = dof_indices.size();

      // We resize and zero out Ke and Fe (resize() also clears the matrix and
      // vector). In this example, all elements in the mesh are EDGE3's, so
      // Ke will always be 3x3, and Fe will always be 3x1. If the mesh contained
      // different element types, then the size of Ke and Fe would change.
      Ke.resize(n_dofs, n_dofs);
      Fe.resize(n_dofs);


      // Now loop over quadrature points to handle numerical integration
      for(unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          // Now build the element matrix and right-hand-side using loops to
          // integrate the test functions (i) against the trial functions (j).
          for(unsigned int i=0; i<phi.size(); i++)
            {
              Fe(i) += JxW[qp]*phi[i][qp];

              for(unsigned int j=0; j<phi.size(); j++)
                {
                  Ke(i,j) += JxW[qp]*(1.e-3*dphi[i][qp]*dphi[j][qp] +
                                      phi[i][qp]*phi[j][qp]);
                }
            }
        }


      // At this point we have completed the matrix and RHS summation. The
      // final step is to apply boundary conditions, which in this case are
      // simple Dirichlet conditions with u(0) = u(1) = 0.

      // Define the penalty parameter used to enforce the BC's
      double penalty = 1.e10;

      // Loop over the sides of this element. For a 1D element, the "sides"
      // are defined as the nodes on each edge of the element, i.e. 1D elements
      // have 2 sides.
      for(unsigned int s=0; s<elem->n_sides(); s++)
        {
          // If this element has a NULL neighbor, then it is on the edge of the
          // mesh and we need to enforce a boundary condition using the penalty
          // method.
          if(elem->neighbor(s) == NULL)
            {
              Ke(s,s) += penalty;
              Fe(s)   += 0*penalty;
            }
        }

      // This is a function call that is necessary when using adaptive
      // mesh refinement. See Adaptivity Example 2 for more details.
      dof_map.constrain_element_matrix_and_vector (Ke, Fe, dof_indices);

      // Add Ke and Fe to the global matrix and right-hand-side.
      system.matrix->add_matrix(Ke, dof_indices);
      system.rhs->add_vector(Fe, dof_indices);
    }
#endif // #ifdef LIBMESH_ENABLE_AMR
}
DTKInterpolationAdapter::DTKInterpolationAdapter(Teuchos::RCP<const Teuchos::MpiComm<int> > in_comm, EquationSystems & in_es, const Point & offset, unsigned int from_dim):
    comm(in_comm),
    es(in_es),
    _offset(offset),
    mesh(in_es.get_mesh()),
    dim(mesh.mesh_dimension())
{
  MPI_Comm old_comm = Moose::swapLibMeshComm(*comm->getRawMpiComm());

  std::set<GlobalOrdinal> semi_local_nodes;
  get_semi_local_nodes(semi_local_nodes);

  num_local_nodes = semi_local_nodes.size();

  vertices.resize(num_local_nodes);
  Teuchos::ArrayRCP<double> coordinates(num_local_nodes * dim);

  Teuchos::ArrayRCP<double> target_coordinates(num_local_nodes * from_dim);

  // Fill in the vertices and coordinates
  {
    GlobalOrdinal i = 0;

    for (std::set<GlobalOrdinal>::iterator it = semi_local_nodes.begin();
        it != semi_local_nodes.end();
        ++it)
    {
      const Node & node = mesh.node(*it);

      vertices[i] = node.id();

      for (GlobalOrdinal j=0; j<dim; j++)
        coordinates[(j*num_local_nodes) + i] = node(j) + offset(j);

      for (GlobalOrdinal j=0; j<from_dim; j++)
        target_coordinates[(j*num_local_nodes) + i] = node(j) + offset(j);

      i++;
    }
  }

  // Currently assuming all elements are the same!
  DataTransferKit::DTK_ElementTopology element_topology = get_element_topology(mesh.elem(0));
  GlobalOrdinal n_nodes_per_elem = mesh.elem(0)->n_nodes();

  GlobalOrdinal n_local_elem = mesh.n_local_elem();

  elements.resize(n_local_elem);
  Teuchos::ArrayRCP<GlobalOrdinal> connectivity(n_nodes_per_elem*n_local_elem);

  Teuchos::ArrayRCP<double> elem_centroid_coordinates(n_local_elem*from_dim);

  // Fill in the elements and connectivity
  {
    GlobalOrdinal i = 0;

    MeshBase::const_element_iterator end = mesh.local_elements_end();
    for (MeshBase::const_element_iterator it = mesh.local_elements_begin();
        it != end;
        ++it)
    {
      const Elem & elem = *(*it);
      elements[i] = elem.id();

      for (GlobalOrdinal j=0; j<n_nodes_per_elem; j++)
        connectivity[(j*n_local_elem)+i] = elem.node(j);

      {
        Point centroid = elem.centroid();
        for (GlobalOrdinal j=0; j<from_dim; j++)
          elem_centroid_coordinates[(j*n_local_elem) + i] = centroid(j) + offset(j);
      }

      i++;
    }
  }

  Teuchos::ArrayRCP<int> permutation_list(n_nodes_per_elem);
  for (GlobalOrdinal i = 0; i < n_nodes_per_elem; ++i )
    permutation_list[i] = i;

  /*
  Moose::out<<"n_nodes_per_elem: "<<n_nodes_per_elem<<std::endl;

  Moose::out<<"Dim: "<<dim<<std::endl;

  Moose::err<<"Vertices size: "<<vertices.size()<<std::endl;
  {
    Moose::err<<libMesh::processor_id()<<" Vertices: ";

    for (unsigned int i=0; i<vertices.size(); i++)
      Moose::err<<vertices[i]<<" ";

    Moose::err<<std::endl;
  }

  Moose::err<<"Coordinates size: "<<coordinates.size()<<std::endl;
  {
    Moose::err<<libMesh::processor_id()<<" Coordinates: ";

    for (unsigned int i=0; i<coordinates.size(); i++)
      Moose::err<<coordinates[i]<<" ";

    Moose::err<<std::endl;
  }

  Moose::err<<"Connectivity size: "<<connectivity.size()<<std::endl;
  {
    Moose::err<<libMesh::processor_id()<<" Connectivity: ";

    for (unsigned int i=0; i<connectivity.size(); i++)
      Moose::err<<connectivity[i]<<" ";

    Moose::err<<std::endl;
  }

  Moose::err<<"Permutation_List size: "<<permutation_list.size()<<std::endl;
  {
    Moose::err<<libMesh::processor_id()<<" Permutation_List: ";

    for (unsigned int i=0; i<permutation_list.size(); i++)
      Moose::err<<permutation_list[i]<<" ";

    Moose::err<<std::endl;
  }

  */
  Teuchos::RCP<MeshContainerType> mesh_container = Teuchos::rcp(
    new MeshContainerType(dim, vertices, coordinates,
                          element_topology, n_nodes_per_elem,
                          elements, connectivity, permutation_list) );

  // We only have 1 element topology in this grid so we make just one mesh block
  Teuchos::ArrayRCP<Teuchos::RCP<MeshContainerType> > mesh_blocks(1);
  mesh_blocks[0] = mesh_container;

  // Create the MeshManager
  mesh_manager = Teuchos::rcp(new DataTransferKit::MeshManager<MeshContainerType>(mesh_blocks, comm, dim) );

  // Pack the coordinates into a field, this will be the positions we'll ask for other systems fields at
  if (from_dim == dim)
    target_coords = Teuchos::rcp(new DataTransferKit::FieldManager<MeshContainerType>(mesh_container, comm));
  else
  {
    Teuchos::ArrayRCP<GlobalOrdinal> empty_elements(0);
    Teuchos::ArrayRCP<GlobalOrdinal> empty_connectivity(0);

    Teuchos::RCP<MeshContainerType> coords_only_mesh_container = Teuchos::rcp(
      new MeshContainerType(from_dim, vertices, target_coordinates,
                            element_topology, n_nodes_per_elem,
                            empty_elements, empty_connectivity, permutation_list) );

    target_coords = Teuchos::rcp(new DataTransferKit::FieldManager<MeshContainerType>(coords_only_mesh_container, comm));
  }

  {
    Teuchos::ArrayRCP<GlobalOrdinal> empty_elements(0);
    Teuchos::ArrayRCP<GlobalOrdinal> empty_connectivity(0);

    Teuchos::RCP<MeshContainerType> centroid_coords_only_mesh_container = Teuchos::rcp(
      new MeshContainerType(from_dim, elements, elem_centroid_coordinates,
                            element_topology, n_nodes_per_elem,
                            empty_elements, empty_connectivity, permutation_list) );

    elem_centroid_coords = Teuchos::rcp(new DataTransferKit::FieldManager<MeshContainerType>(centroid_coords_only_mesh_container, comm));
  }

  // Swap back
  Moose::swapLibMeshComm(old_comm);
}
void get_dirichlet_dofs(EquationSystems& es,
                        const std::string& system_name,
                        std::set<unsigned int>& dirichlet_dof_ids)
{
#ifdef LIBMESH_HAVE_SLEPC

  dirichlet_dof_ids.clear();

  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Eigensystem");

  // Get a constant reference to the mesh object.
  const MeshBase& mesh = es.get_mesh();

  // The dimension that we are running.
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to our system.
  EigenSystem & eigen_system = es.get_system<EigenSystem> (system_name);

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  FEType fe_type = eigen_system.get_dof_map().variable_type(0);
  
  const DofMap& dof_map = eigen_system.get_dof_map();

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<unsigned int> dof_indices;


  // Now we will loop over all the elements in the mesh that
  // live on the local processor. We will compute the element
  // matrix and right-hand-side contribution.  In case users
  // later modify this program to include refinement, we will
  // be safe and will only consider the active elements;
  // hence we use a variant of the \p active_elem_iterator.
  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();
 
  for ( ; el != end_el; ++el)
    {
      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem* elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

     {
        // All boundary dofs are Dirichlet dofs in this case
        for (unsigned int s=0; s<elem->n_sides(); s++)
          if (elem->neighbor(s) == NULL)
            {
              std::vector<unsigned int> side_dofs;
              FEInterface::dofs_on_side(elem, dim, fe_type,
                                        s, side_dofs);

              for(unsigned int ii=0; ii<side_dofs.size(); ii++)
                dirichlet_dof_ids.insert(dof_indices[side_dofs[ii]]);
            }
      }

    } // end of element loop

#endif // LIBMESH_HAVE_SLEPC

  /**
   * All done!
   */
  return;

}
void assemble_matrices(EquationSystems& es,
                       const std::string& system_name)
{
  
  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Eigensystem");

#ifdef LIBMESH_HAVE_SLEPC

  // Get a constant reference to the mesh object.
  const MeshBase& mesh = es.get_mesh();

  // The dimension that we are running.
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to our system.
  EigenSystem & eigen_system = es.get_system<EigenSystem> (system_name);

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  FEType fe_type = eigen_system.get_dof_map().variable_type(0);

  // A reference to the two system matrices
  SparseMatrix<Number>&  matrix_A = *eigen_system.matrix_A;
  SparseMatrix<Number>&  matrix_B = *eigen_system.matrix_B;

  // Build a Finite Element object of the specified type.  Since the
  // \p FEBase::build() member dynamically creates memory we will
  // store the object as an \p AutoPtr<FEBase>.  This can be thought
  // of as a pointer that will clean up after itself.
  AutoPtr<FEBase> fe (FEBase::build(dim, fe_type));
  
  // A  Gauss quadrature rule for numerical integration.
  // Use the default quadrature order.
  QGauss qrule (dim, fe_type.default_quadrature_order());

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (&qrule);

  // The element Jacobian * quadrature weight at each integration point.   
  const std::vector<Real>& JxW = fe->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> >& phi = fe->get_phi();

  // The element shape function gradients evaluated at the quadrature
  // points.
  const std::vector<std::vector<RealGradient> >& dphi = fe->get_dphi();

  // A reference to the \p DofMap object for this system.  The \p DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.
  const DofMap& dof_map = eigen_system.get_dof_map();

  // The element mass and stiffness matrices.
  DenseMatrix<Number>   Me;
  DenseMatrix<Number>   Ke;

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<unsigned int> dof_indices;


  // Now we will loop over all the elements in the mesh that
  // live on the local processor. We will compute the element
  // matrix and right-hand-side contribution.  In case users
  // later modify this program to include refinement, we will
  // be safe and will only consider the active elements;
  // hence we use a variant of the \p active_elem_iterator.
  MeshBase::const_element_iterator       el     = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();
 
  for ( ; el != end_el; ++el)
    {
      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem* elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape functions
      // (phi, dphi) for the current element.
      fe->reinit (elem);

      // Zero the element matrices before
      // summing them.  We use the resize member here because
      // the number of degrees of freedom might have changed from
      // the last element.  Note that this will be the case if the
      // element type is different (i.e. the last element was a
      // triangle, now we are on a quadrilateral).
      Ke.resize (dof_indices.size(), dof_indices.size());
      Me.resize (dof_indices.size(), dof_indices.size());

      // Now loop over the quadrature points.  This handles
      // the numeric integration.
      // 
      // We will build the element matrix.  This involves
      // a double loop to integrate the test funcions (i) against
      // the trial functions (j).
      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        for (unsigned int i=0; i<phi.size(); i++)
          for (unsigned int j=0; j<phi.size(); j++)
            {
              Me(i,j) += JxW[qp]*phi[i][qp]*phi[j][qp];
              Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
            }

      // On an unrefined mesh, constrain_element_matrix does
      // nothing.  If this assembly function is ever repurposed to
      // run on a refined mesh, getting the hanging node constraints
      // right will be important.  Note that, even with
      // asymmetric_constraint_rows = false, the constrained dof
      // diagonals still exist in the matrix, with diagonal entries
      // that are there to ensure non-singular matrices for linear
      // solves but which would generate positive non-physical
      // eigenvalues for eigensolves.
      // dof_map.constrain_element_matrix(Ke, dof_indices, false);
      // dof_map.constrain_element_matrix(Me, dof_indices, false);

      // Finally, simply add the element contribution to the
      // overall matrices A and B.
      matrix_A.add_matrix (Ke, dof_indices);
      matrix_B.add_matrix (Me, dof_indices);

    } // end of element loop


#endif // LIBMESH_HAVE_SLEPC

  /**
   * All done!
   */
  return;

}
// Here we define the matrix assembly routine for
// the Helmholtz system.  This function will be
// called to form the stiffness matrix and right-hand side.
void assemble_helmholtz(EquationSystems & es,
                        const std::string & system_name)
{

  // It is a good idea to make sure we are assembling
  // the proper system.
  libmesh_assert_equal_to (system_name, "Helmholtz");

  // Get a constant reference to the mesh object.
  const MeshBase & mesh = es.get_mesh();

  // The dimension that we are in
  const unsigned int dim = mesh.mesh_dimension();

  // Get a reference to our system, as before
  FrequencySystem & f_system =
    es.get_system<FrequencySystem> (system_name);

  // A const reference to the DofMap object for this system.  The DofMap
  // object handles the index translation from node and element numbers
  // to degree of freedom numbers.
  const DofMap & dof_map = f_system.get_dof_map();

  // Get a constant reference to the Finite Element type
  // for the first (and only) variable in the system.
  const FEType & fe_type = dof_map.variable_type(0);

  // For the admittance boundary condition,
  // get the fluid density
  const Real rho = es.parameters.get<Real>("rho");

  // In here, we will add the element matrices to the
  // <i>additional</i> matrices "stiffness_mass", "damping",
  // and the additional vector "rhs", not to the members
  // "matrix" and "rhs".  Therefore, get writable
  // references to them
  SparseMatrix<Number> & stiffness = f_system.get_matrix("stiffness");
  SparseMatrix<Number> & damping = f_system.get_matrix("damping");
  SparseMatrix<Number> & mass = f_system.get_matrix("mass");
  NumericVector<Number> & freq_indep_rhs = f_system.get_vector("rhs");

  // Some solver packages (PETSc) are especially picky about
  // allocating sparsity structure and truly assigning values
  // to this structure.  Namely, matrix additions, as performed
  // later, exhibit acceptable performance only for identical
  // sparsity structures.  Therefore, explicitly zero the
  // values in the collective matrix, so that matrix additions
  // encounter identical sparsity structures.
  SparseMatrix<Number> & matrix = *f_system.matrix;

  // ------------------------------------------------------------------
  // Finite Element related stuff
  //
  // Build a Finite Element object of the specified type.  Since the
  // FEBase::build() member dynamically creates memory we will
  // store the object as a UniquePtr<FEBase>.  This can be thought
  // of as a pointer that will clean up after itself.
  UniquePtr<FEBase> fe (FEBase::build(dim, fe_type));

  // A 5th order Gauss quadrature rule for numerical integration.
  QGauss qrule (dim, FIFTH);

  // Tell the finite element object to use our quadrature rule.
  fe->attach_quadrature_rule (&qrule);

  // The element Jacobian// quadrature weight at each integration point.
  const std::vector<Real> & JxW = fe->get_JxW();

  // The element shape functions evaluated at the quadrature points.
  const std::vector<std::vector<Real> > & phi = fe->get_phi();

  // The element shape function gradients evaluated at the quadrature
  // points.
  const std::vector<std::vector<RealGradient> > & dphi = fe->get_dphi();

  // Now this is slightly different from example 4.
  // We will not add directly to the global matrix,
  // but to the additional matrices "stiffness_mass" and "damping".
  // The same holds for the right-hand-side vector Fe, which we will
  // later on store in the additional vector "rhs".
  // The zero_matrix is used to explicitly induce the same sparsity
  // structure in the overall matrix.
  // see later on. (At least) the mass, and stiffness matrices, however,
  // are inherently real.  Therefore, store these as one complex
  // matrix.  This will definitely save memory.
  DenseMatrix<Number> Ke, Ce, Me, zero_matrix;
  DenseVector<Number> Fe;

  // This vector will hold the degree of freedom indices for
  // the element.  These define where in the global system
  // the element degrees of freedom get mapped.
  std::vector<dof_id_type> dof_indices;

  // Now we will loop over all the elements in the mesh.
  // We will compute the element matrix and right-hand-side
  // contribution.

  MeshBase::const_element_iterator           el = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator end_el = mesh.active_local_elements_end();

  for ( ; el != end_el; ++el)
    {
      // Start logging the element initialization.
      START_LOG("elem init", "assemble_helmholtz");

      // Store a pointer to the element we are currently
      // working on.  This allows for nicer syntax later.
      const Elem * elem = *el;

      // Get the degree of freedom indices for the
      // current element.  These define where in the global
      // matrix and right-hand-side this element will
      // contribute to.
      dof_map.dof_indices (elem, dof_indices);

      // Compute the element-specific data for the current
      // element.  This involves computing the location of the
      // quadrature points (q_point) and the shape functions
      // (phi, dphi) for the current element.
      fe->reinit (elem);

      // Zero & resize the element matrix and right-hand side before
      // summing them, with different element types in the mesh this
      // is quite necessary.
      {
        const unsigned int n_dof_indices = dof_indices.size();

        Ke.resize          (n_dof_indices, n_dof_indices);
        Ce.resize          (n_dof_indices, n_dof_indices);
        Me.resize          (n_dof_indices, n_dof_indices);
        zero_matrix.resize (n_dof_indices, n_dof_indices);
        Fe.resize          (n_dof_indices);
      }

      // Stop logging the element initialization.
      STOP_LOG("elem init", "assemble_helmholtz");

      // Now loop over the quadrature points.  This handles
      // the numeric integration.
      START_LOG("stiffness & mass", "assemble_helmholtz");

      for (unsigned int qp=0; qp<qrule.n_points(); qp++)
        {
          // Now we will build the element matrix.  This involves
          // a double loop to integrate the test funcions (i) against
          // the trial functions (j).  Note the braces on the rhs
          // of Ke(i,j): these are quite necessary to finally compute
          // Real*(Point*Point) = Real, and not something else...
          for (unsigned int i=0; i<phi.size(); i++)
            for (unsigned int j=0; j<phi.size(); j++)
              {
                Ke(i,j) += JxW[qp]*(dphi[i][qp]*dphi[j][qp]);
                Me(i,j) += JxW[qp]*(phi[i][qp]*phi[j][qp]);
              }
        }

      STOP_LOG("stiffness & mass", "assemble_helmholtz");

      // Now compute the contribution to the element matrix
      // (due to mixed boundary conditions) if the current
      // element lies on the boundary.
      //
      // The following loops over the sides of the element.
      // If the element has no neighbor on a side then that
      // side MUST live on a boundary of the domain.

      for (unsigned int side=0; side<elem->n_sides(); side++)
        if (elem->neighbor(side) == libmesh_nullptr)
          {
            LOG_SCOPE("damping", "assemble_helmholtz");

            // Declare a special finite element object for
            // boundary integration.
            UniquePtr<FEBase> fe_face (FEBase::build(dim, fe_type));

            // Boundary integration requires one quadraure rule,
            // with dimensionality one less than the dimensionality
            // of the element.
            QGauss qface(dim-1, SECOND);

            // Tell the finte element object to use our
            // quadrature rule.
            fe_face->attach_quadrature_rule (&qface);

            // The value of the shape functions at the quadrature
            // points.
            const std::vector<std::vector<Real> > & phi_face =
              fe_face->get_phi();

            // The Jacobian// Quadrature Weight at the quadrature
            // points on the face.
            const std::vector<Real> & JxW_face = fe_face->get_JxW();

            // Compute the shape function values on the element
            // face.
            fe_face->reinit(elem, side);

            // For the Robin BCs consider a normal admittance an=1
            // at some parts of the bounfdary
            const Real an_value = 1.;

            // Loop over the face quadrature points for integration.
            for (unsigned int qp=0; qp<qface.n_points(); qp++)
              {

                // Element matrix contributrion due to precribed
                // admittance boundary conditions.
                for (unsigned int i=0; i<phi_face.size(); i++)
                  for (unsigned int j=0; j<phi_face.size(); j++)
                    Ce(i,j) += rho*an_value*JxW_face[qp]*phi_face[i][qp]*phi_face[j][qp];
              }
          }

      // If this assembly program were to be used on an adaptive mesh,
      // we would have to apply any hanging node constraint equations
      // by uncommenting the following lines:
      // std::vector<unsigned int> dof_indicesC = dof_indices;
      // std::vector<unsigned int> dof_indicesM = dof_indices;
      // dof_map.constrain_element_matrix (Ke, dof_indices);
      // dof_map.constrain_element_matrix (Ce, dof_indicesC);
      // dof_map.constrain_element_matrix (Me, dof_indicesM);


      // Finally, simply add the contributions to the additional
      // matrices and vector.
      stiffness.add_matrix (Ke, dof_indices);
      damping.add_matrix (Ce, dof_indices);
      mass.add_matrix (Me, dof_indices);

      // For the overall matrix, explicitly zero the entries where
      // we added values in the other ones, so that we have
      // identical sparsity footprints.
      matrix.add_matrix(zero_matrix, dof_indices);

    } // loop el


  // It now remains to compute the rhs. Here, we simply
  // get the normal velocities values on the boundary from the
  // mesh data.
  {
    LOG_SCOPE("rhs", "assemble_helmholtz");

    // get a reference to the mesh data.
    const MeshData & mesh_data = es.get_mesh_data();

    // We will now loop over all nodes. In case nodal data
    // for a certain node is available in the MeshData, we simply
    // adopt the corresponding value for the rhs vector.
    // Note that normal data was given in the mesh data file,
    // i.e. one value per node
    libmesh_assert_equal_to (mesh_data.n_val_per_node(), 1);

    MeshBase::const_node_iterator       node_it  = mesh.nodes_begin();
    const MeshBase::const_node_iterator node_end = mesh.nodes_end();

    for ( ; node_it != node_end; ++node_it)
      {
        // the current node pointer
        const Node * node = *node_it;

        // check if the mesh data has data for the current node
        // and do for all components
        if (mesh_data.has_data(node))
          for (unsigned int comp=0; comp<node->n_comp(0, 0); comp++)
            {
              // the dof number
              unsigned int dn = node->dof_number(0, 0, comp);

              // set the nodal value
              freq_indep_rhs.set(dn, mesh_data.get_data(node)[0]);
            }
      }
  }

  // All done!
}