/** * everything that is identical for the systems, and * should _not_ go into EquationSystems::compare(), * can go in this do_compare(). */ bool do_compare (EquationSystems & les, EquationSystems & res, double threshold, bool verbose) { if (verbose) { libMesh::out << "********* LEFT SYSTEM *********" << std::endl; les.print_info (); libMesh::out << "********* RIGHT SYSTEM *********" << std::endl; res.print_info (); libMesh::out << "********* COMPARISON PHASE *********" << std::endl << std::endl; } /** * start comparing */ bool result = les.compare(res, threshold, verbose); if (verbose) { libMesh::out << "********* FINISHED *********" << std::endl; } return result; }
int main( int argc, char** argv ) { LibMeshInit init (argc, argv); Mesh mesh(init.comm()); MeshTools::Generation::build_square (mesh, 4, 4, 0.0, 1.0, 0.0, 1.0, QUAD4); // XdrIO mesh_io(mesh); // mesh_io.read("one_tri.xda"); mesh.print_info(); EquationSystems es (mesh); LinearImplicitSystem& system = es.add_system<LinearImplicitSystem>("lap"); uint u_var = system.add_variable("u", FIRST, LAGRANGE); Laplacian lap(es); system.attach_assemble_object(lap); std::set<boundary_id_type> bd_ids; bd_ids.insert(1); bd_ids.insert(3); std::vector<uint> vars(1,u_var); ZeroFunction<Real> zero; DirichletBoundary dirichlet_bc(bd_ids, vars, &zero); system.get_dof_map().add_dirichlet_boundary(dirichlet_bc); es.init(); es.print_info(); system.solve(); VTKIO(mesh).write_equation_systems("lap.pvtu",es); return 0; }
int main (int argc, char** argv) { LibMeshInit init(argc, argv); if (argc < 4) libMesh::out << "Usage: ./prog -d DIM filename" << std::endl; // Variables to get us started const unsigned int dim = atoi(argv[2]); std::string meshname (argv[3]); // declare a mesh... Mesh mesh(init.comm(), dim); // Read a mesh mesh.read(meshname); GMVIO(mesh).write ("out_0.gmv"); mesh.elem(0)->set_refinement_flag (Elem::REFINE); MeshRefinement mesh_refinement (mesh); mesh_refinement.refine_and_coarsen_elements (); mesh_refinement.uniformly_refine (2); mesh.print_info(); // Set up the equation system(s) EquationSystems es (mesh); LinearImplicitSystem& primary = es.add_system<LinearImplicitSystem>("primary"); primary.add_variable ("U", FIRST); primary.add_variable ("V", FIRST); primary.get_dof_map()._dof_coupling->resize(2); (*primary.get_dof_map()._dof_coupling)(0,0) = 1; (*primary.get_dof_map()._dof_coupling)(1,1) = 1; primary.attach_assemble_function(assemble); es.init (); es.print_info (); primary.get_dof_map().print_dof_constraints (); // call the solver. primary.solve (); GMVIO(mesh).write_equation_systems ("out_1.gmv", es); // Refine uniformly mesh_refinement.uniformly_refine (1); es.reinit (); // Write out the projected solution GMVIO(mesh).write_equation_systems ("out_2.gmv", es); // Solve again. Output the refined solution primary.solve (); GMVIO(mesh).write_equation_systems ("out_3.gmv", es); return 0; }
void assemble_and_solve(MeshBase & mesh, EquationSystems & equation_systems) { mesh.print_info(); LinearImplicitSystem & system = equation_systems.add_system<LinearImplicitSystem> ("Poisson"); unsigned int u_var = system.add_variable("u", FIRST, LAGRANGE); system.attach_assemble_function (assemble_poisson); // the cube has boundaries IDs 0, 1, 2, 3, 4 and 5 std::set<boundary_id_type> boundary_ids; for (int j = 0; j<6; ++j) boundary_ids.insert(j); // Create a vector storing the variable numbers which the BC applies to std::vector<unsigned int> variables(1); variables[0] = u_var; ZeroFunction<> zf; DirichletBoundary dirichlet_bc(boundary_ids, variables, &zf); system.get_dof_map().add_dirichlet_boundary(dirichlet_bc); equation_systems.init(); equation_systems.print_info(); #ifdef LIBMESH_ENABLE_AMR MeshRefinement mesh_refinement(mesh); mesh_refinement.refine_fraction() = 0.7; mesh_refinement.coarsen_fraction() = 0.3; mesh_refinement.max_h_level() = 5; const unsigned int max_r_steps = 2; for (unsigned int r_step=0; r_step<=max_r_steps; r_step++) { system.solve(); if (r_step != max_r_steps) { ErrorVector error; KellyErrorEstimator error_estimator; error_estimator.estimate_error(system, error); libMesh::out << "Error estimate\nl2 norm = " << error.l2_norm() << "\nmaximum = " << error.maximum() << std::endl; mesh_refinement.flag_elements_by_error_fraction (error); mesh_refinement.refine_and_coarsen_elements(); equation_systems.reinit(); } } #else system.solve(); #endif }