void drawContext::drawMesh() { if(!CTX::instance()->mesh.draw) return; // make sure to flag any model-dependent post-processing view as // changed if the underlying mesh has, before resetting the changed // flag if(CTX::instance()->mesh.changed){ for(unsigned int i = 0; i < GModel::list.size(); i++) for(unsigned int j = 0; j < PView::list.size(); j++) if(PView::list[j]->getData()->hasModel(GModel::list[i])) PView::list[j]->setChanged(true); } glPointSize((float)CTX::instance()->mesh.pointSize); gl2psPointSize((float)(CTX::instance()->mesh.pointSize * CTX::instance()->print.epsPointSizeFactor)); glLineWidth((float)CTX::instance()->mesh.lineWidth); gl2psLineWidth((float)(CTX::instance()->mesh.lineWidth * CTX::instance()->print.epsLineWidthFactor)); if(CTX::instance()->mesh.lightTwoSide) glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); else glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE); if(!CTX::instance()->clipWholeElements){ for(int i = 0; i < 6; i++) if(CTX::instance()->mesh.clip & (1 << i)) glEnable((GLenum)(GL_CLIP_PLANE0 + i)); else glDisable((GLenum)(GL_CLIP_PLANE0 + i)); } for(unsigned int i = 0; i < GModel::list.size(); i++){ GModel *m = GModel::list[i]; m->fillVertexArrays(); if(m->getVisibility() && isVisible(m)){ int status = m->getMeshStatus(); if(status >= 0) std::for_each(m->firstVertex(), m->lastVertex(), drawMeshGVertex(this)); if(status >= 1) std::for_each(m->firstEdge(), m->lastEdge(), drawMeshGEdge(this)); if(status >= 2){ beginFakeTransparency(); std::for_each(m->firstFace(), m->lastFace(), drawMeshGFace(this)); endFakeTransparency(); } if(status >= 3) std::for_each(m->firstRegion(), m->lastRegion(), drawMeshGRegion(this)); } } CTX::instance()->mesh.changed = 0; for(int i = 0; i < 6; i++) glDisable((GLenum)(GL_CLIP_PLANE0 + i)); }
void collapseSmallEdges(GModel &gm) { return; // gm.renumberMeshVertices(true); std::list<GFace*> faces; for (GModel::fiter fit = gm.firstFace(); fit != gm.lastFace(); fit++){ faces.push_back(*fit); } BDS_Mesh *pm = gmsh2BDS(faces); outputScalarField(pm->triangles, "all.pos", 0); for (GModel::eiter eit = gm.firstEdge(); eit != gm.lastEdge(); eit++){ } delete pm; }
bool OptHOM::addBndObjGrad(double factor, double &Obj, alglib::real_1d_array &gradObj) { // set the mesh to its present position std::vector<SPoint3> xyz,uvw; mesh.getGEntityPositions(xyz,uvw); mesh.updateGEntityPositions(); //could be better (e.g. store the model in the Mesh:: datastrucure) GModel *gm = GModel::current(); // for all model edges, compute the error between the geometry and the mesh maxDistCAD = 0.0; double distCAD = 0.0; for (GModel::eiter it = gm->firstEdge(); it != gm->lastEdge(); ++it){ // do not do straight lines if ((*it)->geomType() == GEntity::Line)continue; // look at all mesh lines std::vector<bool> doWeCompute((*it)->lines.size()); for (unsigned int i=0;i<(*it)->lines.size(); i++){ doWeCompute[i] = false; for (unsigned int j=0;j<(*it)->lines[i]->getNumVertices(); j++){ int index = mesh.getFreeVertexStartIndex((*it)->lines[i]->getVertex(j)); if (index >=0){ doWeCompute[i] = true; continue; } } } std::vector<double> dist((*it)->lines.size()); for (unsigned int i=0;i<(*it)->lines.size(); i++){ if (doWeCompute[i]){ // compute the distance from the geometry to the mesh dist[i] = MLineGEdgeDistance ( (*it)->lines[i] , *it ); maxDistCAD = std::max(maxDistCAD,dist[i]); distCAD += dist [i] * factor; } } // be clever to compute the derivative : iterate on all // Distance = \sum_{lines} Distance (line, GEdge) // For a high order vertex, we compute the derivative only by // recomputing the distance to one only line const double eps = 1.e-6; for (unsigned int i=0;i<(*it)->lines.size(); i++){ if (doWeCompute[i]){ for (int j=2 ; j<(*it)->lines[i]->getNumVertices() ; j++){ MVertex *v = (*it)->lines[i]->getVertex(j); int index = mesh.getFreeVertexStartIndex(v); // printf("%d %d (%d %d)\n",v->getNum(),index,v->onWhat()->tag(),v->onWhat()->dim()); if (index >= 0){ double t; v->getParameter(0,t); SPoint3 pp (v->x(),v->y(),v->z()); GPoint gp = (*it)->point(t+eps); v->setParameter(0,t+eps); v->setXYZ(gp.x(),gp.y(),gp.z()); double dist2 = MLineGEdgeDistance ( (*it)->lines[i] , *it ); double deriv = (dist2 - dist[i])/eps; v->setXYZ(pp.x(),pp.y(),pp.z()); v->setParameter(0,t); // printf("%g %g %g\n",dist[i],dist2, MLineGEdgeDistance ( (*it)->lines[i] , *it )); // get the index of the vertex gradObj[index] += deriv * factor; } } } // printf("done\n"); // For a low order vertex classified on the GEdge, we recompute // two distances for the two MLines connected to the vertex for (unsigned int i=0;i<(*it)->lines.size()-1; i++){ MVertex *v = (*it)->lines[i]->getVertex(1); int index = mesh.getFreeVertexStartIndex(v); if (index >= 0){ double t; v->getParameter(0,t); SPoint3 pp (v->x(),v->y(),v->z()); GPoint gp = (*it)->point(t+eps); v->setParameter(0,t+eps); v->setXYZ(gp.x(),gp.y(),gp.z()); MLine *l1 = (*it)->lines[i]; MLine *l2 = (*it)->lines[i+1]; // printf("%d %d -- %d %d\n",l1->getVertex(0)->getNum(),l1->getVertex(1)->getNum(),l2->getVertex(0)->getNum(),l2->getVertex(1)->getNum()); double deriv = (MLineGEdgeDistance ( l1 , *it ) - dist[i]) /eps + (MLineGEdgeDistance ( l2 , *it ) - dist[i+1])/eps; v->setXYZ(pp.x(),pp.y(),pp.z()); v->setParameter(0,t); gradObj[index] += deriv * factor; } } } } // printf("computing distance : 1D part %12.5E\n",distCAD); // now the 3D part ! std::vector<std::vector<SVector3> > gsfT; computeGradSFAtNodes ( (*gm->firstFace())->triangles[0],gsfT); std::map<MVertex*,SVector3> normalsToCAD; for(GModel::fiter it = gm->firstFace(); it != gm->lastFace(); ++it){ // do not do plane surfaces if ((*it)->geomType() == GEntity::Plane)continue; std::map<MTriangle*,double> dist; std::vector<bool> doWeCompute((*it)->triangles.size()); for (unsigned int i=0;i<(*it)->triangles.size(); i++){ doWeCompute[i] = false; for (unsigned int j=0;j<(*it)->triangles[i]->getNumVertices(); j++){ int index = mesh.getFreeVertexStartIndex((*it)->triangles[i]->getVertex(j)); if (index >=0){ doWeCompute[i] = true; } } if (doWeCompute[i]){ for (unsigned int j=0;j<(*it)->triangles[i]->getNumVertices(); j++){ MVertex *v = (*it)->triangles[i]->getVertex(j); if (normalsToCAD.find(v) == normalsToCAD.end()){ SPoint2 p_cad; reparamMeshVertexOnFace(v, *it, p_cad); SVector3 tg_cad = (*it)->normal(p_cad); tg_cad.normalize(); normalsToCAD[v] = tg_cad; } } } } for (unsigned int i=0;i<(*it)->triangles.size(); i++){ // compute the distance from the geometry to the mesh if(doWeCompute[i]){ const double d = MFaceGFaceDistanceOld((*it)->triangles[i], *it, &gsfT, &normalsToCAD); dist[(*it)->triangles[i]] = d; maxDistCAD = std::max(maxDistCAD,d); distCAD += d * factor; } } // be clever again to compute the derivatives const double eps = 1.e-6; for (unsigned int i=0;i<(*it)->triangles.size(); i++){ if(doWeCompute[i]){ for (unsigned int j=0;j<(*it)->triangles[i]->getNumVertices(); j++){ // for (; itm !=v2t.end(); ++itm){ MVertex *v = (*it)->triangles[i]->getVertex(j); if(v->onWhat()->dim() == 1){ int index = mesh.getFreeVertexStartIndex(v); if (index >= 0){ MTriangle *t = (*it)->triangles[i]; GEdge *ge = v->onWhat()->cast2Edge(); double t_; v->getParameter(0,t_); SPoint3 pp (v->x(),v->y(),v->z()); GPoint gp = ge->point(t_+eps); v->setParameter(0,t_+eps); v->setXYZ(gp.x(),gp.y(),gp.z()); const double distT = dist[t]; double deriv = (MFaceGFaceDistanceOld(t, *it, &gsfT, &normalsToCAD) - distT) /eps; v->setXYZ(pp.x(),pp.y(),pp.z()); v->setParameter(0,t_); gradObj[index] += deriv * factor; } } if(v->onWhat() == *it){ int index = mesh.getFreeVertexStartIndex(v); if (index >= 0){ MTriangle *t = (*it)->triangles[i]; double uu,vv; v->getParameter(0,uu); v->getParameter(1,vv); SPoint3 pp (v->x(),v->y(),v->z()); const double distT = dist[t]; GPoint gp = (*it)->point(uu+eps,vv); v->setParameter(0,uu+eps); v->setXYZ(gp.x(),gp.y(),gp.z()); double deriv = (MFaceGFaceDistanceOld(t, *it, &gsfT, &normalsToCAD) - distT) /eps; v->setXYZ(pp.x(),pp.y(),pp.z()); v->setParameter(0,uu); gradObj[index] += deriv * factor; gp = (*it)->point(uu,vv+eps); v->setParameter(1,vv+eps); v->setXYZ(gp.x(),gp.y(),gp.z()); deriv = (MFaceGFaceDistanceOld(t, *it, &gsfT, &normalsToCAD) - distT) /eps; v->setXYZ(pp.x(),pp.y(),pp.z()); v->setParameter(1,vv); gradObj[index+1] += deriv * factor; } } } } } } mesh.updateGEntityPositions(xyz,uvw); Obj +=distCAD; // printf("computing distance : 2D part %12.5E\n",distCAD); // printf("%22.15E\n",distCAD); return true; }
int main(int argc,char *argv[]) { if(argc < 6){ printf("Usage: %s file lx ly lz rmax [levels=1] [refcs=1]\n", argv[0]); printf("where\n"); printf(" 'file' contains a CAD model\n"); printf(" 'lx', 'ly' and 'lz' are the sizes of the elements along the" " x-, y- and z-axis at the coarsest level\n"); printf(" 'rmax' is the radius of the largest sphere that can be inscribed" " in the structure\n"); printf(" 'levels' sets the number of levels in the grid\n"); printf(" 'refcs' selects if curved surfaces should be refined\n"); return -1; } GmshInitialize(); GmshSetOption("General", "Terminal", 1.); GmshMergeFile(argv[1]); double lx = atof(argv[2]), ly = atof(argv[3]), lz = atof(argv[4]); double rmax = atof(argv[5]); int levels = (argc > 6) ? atof(argv[6]) : 1; int refineCurvedSurfaces = (argc > 7) ? atof(argv[7]) : 1; // minimum distance between points in the cloud at the coarsest // level double sampling = std::min(rmax, std::min(lx, std::min(ly, lz))); // radius of the "tube" created around parts to refine at the // coarsest level double rtube = std::max(lx, std::max(ly, lz)) * 2.; GModel *gm = GModel::current(); std::vector<SPoint3> points; Msg::Info("Filling coarse point cloud on surfaces"); for (GModel::fiter fit = gm->firstFace(); fit != gm->lastFace(); fit++) (*fit)->fillPointCloud(sampling, &points); Msg::Info(" %d points in the surface cloud", (int)points.size()); std::vector<SPoint3> refinePoints; if(levels > 1){ double s = sampling / pow(2., levels - 1); Msg::Info("Filling refined point cloud on curves and curved surfaces"); for (GModel::eiter eit = gm->firstEdge(); eit != gm->lastEdge(); eit++) fillPointCloud(*eit, s, refinePoints); // FIXME: refine this by computing e.g. "mean" curvature if(refineCurvedSurfaces){ for (GModel::fiter fit = gm->firstFace(); fit != gm->lastFace(); fit++) if((*fit)->geomType() != GEntity::Plane) (*fit)->fillPointCloud(2 * s, &refinePoints); } Msg::Info(" %d points in the refined cloud", (int)refinePoints.size()); } SBoundingBox3d bb; for(unsigned int i = 0; i < points.size(); i++) bb += points[i]; for(unsigned int i = 0; i < refinePoints.size(); i++) bb += refinePoints[i]; bb.scale(1.21, 1.21, 1.21); SVector3 range = bb.max() - bb.min(); int NX = range.x() / lx; int NY = range.y() / ly; int NZ = range.z() / lz; if(NX < 2) NX = 2; if(NY < 2) NY = 2; if(NZ < 2) NZ = 2; Msg::Info(" bounding box min: %g %g %g -- max: %g %g %g", bb.min().x(), bb.min().y(), bb.min().z(), bb.max().x(), bb.max().y(), bb.max().z()); Msg::Info(" Nx=%d Ny=%d Nz=%d", NX, NY, NZ); cartesianBox<double> box(bb.min().x(), bb.min().y(), bb.min().z(), SVector3(range.x(), 0, 0), SVector3(0, range.y(), 0), SVector3(0, 0, range.z()), NX, NY, NZ, levels); Msg::Info("Inserting active cells in the cartesian grid"); Msg::Info(" level %d", box.getLevel()); for (unsigned int i = 0; i < points.size(); i++) insertActiveCells(points[i].x(), points[i].y(), points[i].z(), rmax, box); cartesianBox<double> *parent = &box, *child; while((child = parent->getChildBox())){ Msg::Info(" level %d", child->getLevel()); for(unsigned int i = 0; i < refinePoints.size(); i++) insertActiveCells(refinePoints[i].x(), refinePoints[i].y(), refinePoints[i].z(), rtube / pow(2., (levels - child->getLevel())), *child); parent = child; } // remove child cells that do not entirely fill parent cell or for // which there is no parent neighbor; then remove parent cells that // have children Msg::Info("Removing cells to match X-FEM mesh topology constraints"); removeBadChildCells(&box); removeParentCellsWithChildren(&box); // we generate duplicate nodes at this point so we can easily access // cell values at each level; we will clean up by renumbering after // filtering Msg::Info("Initializing nodal values in the cartesian grid"); box.createNodalValues(); Msg::Info("Computing levelset on the cartesian grid"); computeLevelset(gm, box); Msg::Info("Removing cells outside the structure"); removeOutsideCells(&box); Msg::Info("Renumbering mesh vertices across levels"); box.renumberNodes(); bool decomposeInSimplex = false; box.writeMSH("yeah.msh", decomposeInSimplex); Msg::Info("Done!"); GmshFinalize(); }
PView *GMSH_BubblesPlugin::execute(PView *v) { double shrink = (double)BubblesOptions_Number[0].def; std::string fileName = BubblesOptions_String[0].def; FILE *fp = Fopen(fileName.c_str(), "w"); if(!fp){ Msg::Error("Could not open output file '%s'", fileName.c_str()); return v; } GModel *m = GModel::current(); int p = m->getMaxElementaryNumber(0) + 1; int l = m->getMaxElementaryNumber(1) + 1; int s = m->getMaxElementaryNumber(2) + 1; int ll = s, ps = 1; SBoundingBox3d bbox = m->bounds(); double lc = norm(SVector3(bbox.max(), bbox.min())) / 100; fprintf(fp, "lc = %g;\n", lc); for(GModel::viter vit = m->firstVertex(); vit != m->lastVertex(); vit++) (*vit)->writeGEO(fp, "lc"); for(GModel::eiter eit = m->firstEdge(); eit != m->lastEdge(); eit++) (*eit)->writeGEO(fp); for(GModel::fiter fit = m->firstFace(); fit != m->lastFace(); fit++){ (*fit)->writeGEO(fp); fprintf(fp, "Delete { Surface {%d}; }\n", (*fit)->tag()); int sbeg = s; int llbeg = ll; // compute vertex-to-triangle_barycenter map std::map<MVertex*, std::vector<SPoint3> > v2t; for(unsigned int i = 0; i < (*fit)->triangles.size(); i++) for(int j = 0; j < 3; j++) v2t[(*fit)->triangles[i]->getVertex(j)].push_back((*fit)->triangles[i]->barycenter()); // add boundary vertices in map to get cells "closer" to the boundary for(std::map<MVertex*, std::vector<SPoint3> >::iterator it = v2t.begin(); it != v2t.end(); it++){ MVertex *v = it->first; if(v->onWhat() && v->onWhat()->dim() < 2) it->second.push_back(SPoint3(it->first->x(), it->first->y(), it->first->z())); } for(std::map<MVertex*, std::vector<SPoint3> >::iterator it = v2t.begin(); it != v2t.end(); it++){ if(it->second.size() > 2){ // get barycenter of cell boundary points and order them SPoint3 bc; for(unsigned int i = 0; i < it->second.size(); i++) bc += it->second[i]; bc *= 1. / (double)it->second.size(); compareAngle comp(bc); std::sort(it->second.begin(), it->second.end(), comp); // shrink cells if(shrink){ for(unsigned int i = 0; i < it->second.size(); i++){ double dir[3] = {it->second[i].x() - bc.x(), it->second[i].y() - bc.y(), it->second[i].z() - bc.z()}; it->second[i][0] -= shrink * dir[0]; it->second[i][1] -= shrink * dir[1]; it->second[i][2] -= shrink * dir[2]; } } // create b-spline bounded surface for each cell int nump = it->second.size(); for(int i = 0; i < nump; i++){ SPoint3 &b(it->second[i]); fprintf(fp, "Point(%d) = {%.16g, %.16g, %.16g, lc};\n", p++, b.x(), b.y(), b.z()); } fprintf(fp, "BSpline(%d) = {", l++); for(int i = nump - 1; i >= 0; i--) fprintf(fp, "%d,", p - i - 1); fprintf(fp, "%d};\n", p - nump); fprintf(fp, "Line Loop(%d) = {%d};\n", ll++, l - 1); fprintf(fp, "Plane Surface(%d) = {%d};\n", s++, ll - 1); } } fprintf(fp, "Physical Surface(%d) = {%d:%d};\n", ps++, sbeg, s - 1); fprintf(fp, "Plane Surface(%d) = {%d, %d:%d};\n", s++, (*fit)->tag(), llbeg, ll - 1); fprintf(fp, "Physical Surface(%d) = {%d};\n", ps++, s - 1); } fclose(fp); return v; }