void HashDifficultyEnforcer_Gadget::generateConstraints() { // enforce that both representations are equal hashValueUnpacker_->generateConstraints(); // add constraints asserting that the first 'difficultyBits' bits of 'hashValue' equal 0. Note // endianness, unpacked()[0] is LSB and unpacked()[63] is MSB for (size_t i = 0; i < difficultyBits_; ++i) { addUnaryConstraint(hashValue_.unpacked()[63 - i], GADGETLIB2_FMT("hashValue[%u] == 0", 63 - i)); } }
void NAND_Gadget::generateConstraints() { // we will invoke the AND gate constraint generator andGadget_->generateConstraints(); // and add our out negation constraint in order to make this a NAND gate addRank1Constraint(1, 1 - andResult_, output_, "1 * (1 - andResult) = output"); // Another way to write the same constraint is: // addUnaryConstraint(1 - andResult_ - output_, "1 - andResult == output"); // // At first look, it would seem that this is enough. However, the AND_Gadget expects all of its // inputs to be boolean, a dishonest prover could put non-boolean inputs, so we must check this // here. Notice 'FlagVariable' means a variable which we intend to hold only '0' or '1', but // this is just a convention (it is a typedef for Variable) and we must enforce it. // Look into the internals of the R1P implementation of AND_Gadget and see that // {2, 1, 0} as inputs with {1} as output would satisfy all constraints, even though this is // clearly not our intent! for (const auto& input : inputs_) { enforceBooleanity(input); // This adds a constraint of the form: input * (1 - input) == 0 } }
// And now for a test which will exemplify the usage: TEST(Examples, NAND_Gadget) { // initialize the field initPublicParamsFromDefaultPp(); // create a protoboard for a system of rank 1 constraints over a prime field. ProtoboardPtr pb = Protoboard::create(R1P); // create 5 variables inputs[0]...iputs[4]. The string "inputs" is used for debug messages FlagVariableArray inputs(5, "inputs"); FlagVariable output("output"); GadgetPtr nandGadget = NAND_Gadget::create(pb, inputs, output); // now we can generate a constraint system (or circuit) nandGadget->generateConstraints(); // if we try to evaluate the circuit now, an exception will be thrown, because we will // be attempting to evaluate unasigned variables. EXPECT_ANY_THROW(pb->isSatisfied()); // so lets assign the input variables for NAND and try again after creating the witness for (const auto& input : inputs) { pb->val(input) = 1; } nandGadget->generateWitness(); EXPECT_TRUE(pb->isSatisfied()); EXPECT_TRUE(pb->val(output) == 0); // now lets try to ruin something and see what happens pb->val(inputs[2]) = 0; EXPECT_FALSE(pb->isSatisfied()); // now let try to cheat. If we hadn't enforced booleanity, this would have worked! pb->val(inputs[1]) = 2; EXPECT_FALSE(pb->isSatisfied()); // now lets reset inputs[1] to a valid value pb->val(inputs[1]) = 1; // before, we set both the inputs and the output. Notice the output is still set to '0' EXPECT_TRUE(pb->val(output) == 0); // Now we will let the gadget compute the result using generateWitness() and see what happens nandGadget->generateWitness(); EXPECT_TRUE(pb->val(output) == 1); EXPECT_TRUE(pb->isSatisfied()); }