void cv::cuda::BFMatcher_CUDA::knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::cuda::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }; static const caller_t callersL2[] = { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }; static const caller_t callersHamming[] = { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; const int nTrain = train.rows; if (k == 2) { ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); } else { ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx); ensureSizeIsEnough(nQuery, k, CV_32F, distance); ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist); } trainIdx.setTo(Scalar::all(-1), stream); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream)); }
void cv::cuda::rotate(InputArray _src, OutputArray _dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream); static const func_t funcs[6][4] = { {NppRotate<CV_8U, nppiRotate_8u_C1R>::call, 0, NppRotate<CV_8U, nppiRotate_8u_C3R>::call, NppRotate<CV_8U, nppiRotate_8u_C4R>::call}, {0,0,0,0}, {NppRotate<CV_16U, nppiRotate_16u_C1R>::call, 0, NppRotate<CV_16U, nppiRotate_16u_C3R>::call, NppRotate<CV_16U, nppiRotate_16u_C4R>::call}, {0,0,0,0}, {0,0,0,0}, {NppRotate<CV_32F, nppiRotate_32f_C1R>::call, 0, NppRotate<CV_32F, nppiRotate_32f_C3R>::call, NppRotate<CV_32F, nppiRotate_32f_C4R>::call} }; GpuMat src = _src.getGpuMat(); CV_Assert( src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F ); CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 ); CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC ); _dst.create(dsize, src.type()); GpuMat dst = _dst.getGpuMat(); dst.setTo(Scalar::all(0), stream); funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream)); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::gpu::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, cudaStream_t stream); static const caller_t callers[3][6] = { { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }, { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }, { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ } }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); const int nQuery = query.rows; const int nTrain = train.rows; if (k == 2) { ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); } else { ensureSizeIsEnough(nQuery, k, CV_32S, trainIdx); ensureSizeIsEnough(nQuery, k, CV_32F, distance); ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist); } if (stream) stream.enqueueMemSet(trainIdx, Scalar::all(-1)); else trainIdx.setTo(Scalar::all(-1)); caller_t func = callers[distType][query.depth()]; CV_Assert(func != 0); func(query, train, k, mask, trainIdx, distance, allDist, StreamAccessor::getStream(stream)); }
Scalar cv::gpu::sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf) { typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); static const func_t funcs[7][5] = { {0, ::sum::runSqr<uchar , 1>, ::sum::runSqr<uchar , 2>, ::sum::runSqr<uchar , 3>, ::sum::runSqr<uchar , 4>}, {0, ::sum::runSqr<schar , 1>, ::sum::runSqr<schar , 2>, ::sum::runSqr<schar , 3>, ::sum::runSqr<schar , 4>}, {0, ::sum::runSqr<ushort, 1>, ::sum::runSqr<ushort, 2>, ::sum::runSqr<ushort, 3>, ::sum::runSqr<ushort, 4>}, {0, ::sum::runSqr<short , 1>, ::sum::runSqr<short , 2>, ::sum::runSqr<short , 3>, ::sum::runSqr<short , 4>}, {0, ::sum::runSqr<int , 1>, ::sum::runSqr<int , 2>, ::sum::runSqr<int , 3>, ::sum::runSqr<int , 4>}, {0, ::sum::runSqr<float , 1>, ::sum::runSqr<float , 2>, ::sum::runSqr<float , 3>, ::sum::runSqr<float , 4>}, {0, ::sum::runSqr<double, 1>, ::sum::runSqr<double, 2>, ::sum::runSqr<double, 3>, ::sum::runSqr<double, 4>} }; CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) ); if (src.depth() == CV_64F) { if (!deviceSupports(NATIVE_DOUBLE)) CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double"); } Size buf_size; ::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); buf.setTo(Scalar::all(0)); const func_t func = funcs[src.depth()][src.channels()]; double result[4]; func(src, buf.data, result, mask); return Scalar(result[0], result[1], result[2], result[3]); }
void cv::gpu::BFMatcher_GPU::radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& train, float maxDistance, const PtrStepSzb& mask, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }; static const caller_t callersL2[] = { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }; static const caller_t callersHamming[] = { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ }; const int nQuery = query.rows; const int nTrain = train.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size())); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); func(query, train, maxDistance, mask, trainIdx, distance, nMatches, StreamAccessor::getStream(stream)); }
void cv::gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& s) { CV_Assert(frame0.type() == CV_32FC1); CV_Assert(frame1.size() == frame0.size() && frame1.type() == frame0.type()); CV_Assert(fu.size() == frame0.size() && fu.type() == frame0.type()); CV_Assert(fv.size() == frame0.size() && fv.type() == frame0.type()); CV_Assert(bu.size() == frame0.size() && bu.type() == frame0.type()); CV_Assert(bv.size() == frame0.size() && bv.type() == frame0.type()); newFrame.create(frame0.size(), frame0.type()); buf.create(6 * frame0.rows, frame0.cols, CV_32FC1); buf.setTo(Scalar::all(0)); // occlusion masks GpuMat occ0 = buf.rowRange(0 * frame0.rows, 1 * frame0.rows); GpuMat occ1 = buf.rowRange(1 * frame0.rows, 2 * frame0.rows); // interpolated forward flow GpuMat fui = buf.rowRange(2 * frame0.rows, 3 * frame0.rows); GpuMat fvi = buf.rowRange(3 * frame0.rows, 4 * frame0.rows); // interpolated backward flow GpuMat bui = buf.rowRange(4 * frame0.rows, 5 * frame0.rows); GpuMat bvi = buf.rowRange(5 * frame0.rows, 6 * frame0.rows); size_t step = frame0.step; CV_Assert(frame1.step == step && fu.step == step && fv.step == step && bu.step == step && bv.step == step && newFrame.step == step && buf.step == step); cudaStream_t stream = StreamAccessor::getStream(s); NppStStreamHandler h(stream); NppStInterpolationState state; state.size = NcvSize32u(frame0.cols, frame0.rows); state.nStep = static_cast<Ncv32u>(step); state.pSrcFrame0 = const_cast<Ncv32f*>(frame0.ptr<Ncv32f>()); state.pSrcFrame1 = const_cast<Ncv32f*>(frame1.ptr<Ncv32f>()); state.pFU = const_cast<Ncv32f*>(fu.ptr<Ncv32f>()); state.pFV = const_cast<Ncv32f*>(fv.ptr<Ncv32f>()); state.pBU = const_cast<Ncv32f*>(bu.ptr<Ncv32f>()); state.pBV = const_cast<Ncv32f*>(bv.ptr<Ncv32f>()); state.pos = pos; state.pNewFrame = newFrame.ptr<Ncv32f>(); state.ppBuffers[0] = occ0.ptr<Ncv32f>(); state.ppBuffers[1] = occ1.ptr<Ncv32f>(); state.ppBuffers[2] = fui.ptr<Ncv32f>(); state.ppBuffers[3] = fvi.ptr<Ncv32f>(); state.ppBuffers[4] = bui.ptr<Ncv32f>(); state.ppBuffers[5] = bvi.ptr<Ncv32f>(); ncvSafeCall( nppiStInterpolateFrames(&state) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); }
void cv::cuda::BFMatcher_CUDA::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const std::vector<GpuMat>& masks, Stream& stream) { if (query.empty() || empty()) return; using namespace cv::cuda::device::bf_radius_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches, cudaStream_t stream); static const caller_t callersL1[] = { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }; static const caller_t callersL2[] = { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }; static const caller_t callersHamming[] = { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ }; const int nQuery = query.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance); } nMatches.setTo(Scalar::all(0), stream); caller_t func = callers[query.depth()]; CV_Assert(func != 0); std::vector<PtrStepSzb> trains_(trainDescCollection.begin(), trainDescCollection.end()); std::vector<PtrStepSzb> masks_(masks.begin(), masks.end()); func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], trainIdx, imgIdx, distance, nMatches, StreamAccessor::getStream(stream)); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const vector<GpuMat>& masks, Stream& stream) { if (query.empty() || empty()) return; using namespace cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb* trains, int n, float maxDistance, const PtrStepSzb* masks, const PtrStepSzi& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzf& distance, const PtrStepSz<unsigned int>& nMatches, cudaStream_t stream); static const caller_t callers[3][6] = { { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }, { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }, { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ } }; const int nQuery = query.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[distType][query.depth()]; CV_Assert(func != 0); vector<PtrStepSzb> trains_(trainDescCollection.begin(), trainDescCollection.end()); vector<PtrStepSzb> masks_(masks.begin(), masks.end()); func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], trainIdx, imgIdx, distance, nMatches, StreamAccessor::getStream(stream)); }
void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream) { CV_Assert(src.type() == CV_8UC1); hist.create(1, 256, CV_32SC1); hist.setTo(Scalar::all(0)); hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream)); }
void cv::gpu::BFMatcher_GPU::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream) { if (query.empty() || trainCollection.empty()) return; using namespace cv::gpu::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream); static const caller_t callersL1[] = { match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/, match2L1_gpu<unsigned short>, match2L1_gpu<short>, match2L1_gpu<int>, match2L1_gpu<float> }; static const caller_t callersL2[] = { 0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/, 0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/, 0/*match2L2_gpu<int>*/, match2L2_gpu<float> }; static const caller_t callersHamming[] = { match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/, match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/, match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/ }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(norm == NORM_L1 || norm == NORM_L2 || norm == NORM_HAMMING); const caller_t* callers = norm == NORM_L1 ? callersL1 : norm == NORM_L2 ? callersL2 : callersHamming; const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); if (stream) stream.enqueueMemSet(trainIdx, Scalar::all(-1)); else trainIdx.setTo(Scalar::all(-1)); caller_t func = callers[query.depth()]; CV_Assert(func != 0); DeviceInfo info; int cc = info.majorVersion() * 10 + info.minorVersion(); func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, cc, StreamAccessor::getStream(stream)); }
void cv::gpu::calcHist(InputArray _src, OutputArray _hist, Stream& stream) { GpuMat src = _src.getGpuMat(); CV_Assert( src.type() == CV_8UC1 ); _hist.create(1, 256, CV_32SC1); GpuMat hist = _hist.getGpuMat(); hist.setTo(Scalar::all(0), stream); hist::histogram256(src, hist.ptr<int>(), StreamAccessor::getStream(stream)); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection, Stream& stream) { if (query.empty() || trainCollection.empty()) return; using namespace cv::gpu::device::bf_knnmatch; typedef void (*caller_t)(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, cudaStream_t stream); static const caller_t callers[3][6] = { { match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/, match2L1_gpu<unsigned short>, match2L1_gpu<short>, match2L1_gpu<int>, match2L1_gpu<float> }, { 0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/, 0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/, 0/*match2L2_gpu<int>*/, match2L2_gpu<float> }, { match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/, match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/, match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/ } }; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); const int nQuery = query.rows; ensureSizeIsEnough(1, nQuery, CV_32SC2, trainIdx); ensureSizeIsEnough(1, nQuery, CV_32SC2, imgIdx); ensureSizeIsEnough(1, nQuery, CV_32FC2, distance); if (stream) stream.enqueueMemSet(trainIdx, Scalar::all(-1)); else trainIdx.setTo(Scalar::all(-1)); caller_t func = callers[distType][query.depth()]; CV_Assert(func != 0); func(query, trainCollection, maskCollection, trainIdx, imgIdx, distance, StreamAccessor::getStream(stream)); }
Scalar cv::gpu::absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf) { typedef void (*func_t)(PtrStepSzb src, void* buf, double* sum, PtrStepSzb mask); #ifdef OPENCV_TINY_GPU_MODULE static const func_t funcs[7][5] = { {0, ::sum::runAbs<uchar , 1>, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, ::sum::runAbs<float , 1>, 0, 0, 0}, {0, 0, 0, 0, 0}, }; #else static const func_t funcs[7][5] = { {0, ::sum::runAbs<uchar , 1>, ::sum::runAbs<uchar , 2>, ::sum::runAbs<uchar , 3>, ::sum::runAbs<uchar , 4>}, {0, ::sum::runAbs<schar , 1>, ::sum::runAbs<schar , 2>, ::sum::runAbs<schar , 3>, ::sum::runAbs<schar , 4>}, {0, ::sum::runAbs<ushort, 1>, ::sum::runAbs<ushort, 2>, ::sum::runAbs<ushort, 3>, ::sum::runAbs<ushort, 4>}, {0, ::sum::runAbs<short , 1>, ::sum::runAbs<short , 2>, ::sum::runAbs<short , 3>, ::sum::runAbs<short , 4>}, {0, ::sum::runAbs<int , 1>, ::sum::runAbs<int , 2>, ::sum::runAbs<int , 3>, ::sum::runAbs<int , 4>}, {0, ::sum::runAbs<float , 1>, ::sum::runAbs<float , 2>, ::sum::runAbs<float , 3>, ::sum::runAbs<float , 4>}, {0, ::sum::runAbs<double, 1>, ::sum::runAbs<double, 2>, ::sum::runAbs<double, 3>, ::sum::runAbs<double, 4>} }; #endif CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == src.size()) ); if (src.depth() == CV_64F) { if (!deviceSupports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } Size buf_size; ::sum::getBufSize(src.cols, src.rows, src.channels(), buf_size.width, buf_size.height); ensureSizeIsEnough(buf_size, CV_8U, buf); buf.setTo(Scalar::all(0)); const func_t func = funcs[src.depth()][src.channels()]; if (!func) CV_Error(CV_StsUnsupportedFormat, "Unsupported combination of source and destination types"); double result[4]; func(src, buf.data, result, mask); return Scalar(result[0], result[1], result[2], result[3]); }
void cv::gpu::MOG2_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate, Stream& stream) { using namespace cv::gpu::cudev::mog; int ch = frame.channels(); int work_ch = ch; if (nframes_ == 0 || learningRate >= 1.0f || frame.size() != frameSize_ || work_ch != mean_.channels()) initialize(frame.size(), frame.type()); fgmask.create(frameSize_, CV_8UC1); fgmask.setTo(cv::Scalar::all(0)); ++nframes_; learningRate = learningRate >= 0.0f && nframes_ > 1 ? learningRate : 1.0f / std::min(2 * nframes_, history); CV_Assert(learningRate >= 0.0f); mog2_gpu(frame, frame.channels(), fgmask, bgmodelUsedModes_, weight_, variance_, mean_, learningRate, -learningRate * fCT, bShadowDetection, StreamAccessor::getStream(stream)); }
void cv::gpu::createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors) { using namespace cv::gpu::cudev::optical_flow; CV_Assert(u.type() == CV_32FC1); CV_Assert(v.type() == u.type() && v.size() == u.size()); const int NEEDLE_MAP_SCALE = 16; const int x_needles = u.cols / NEEDLE_MAP_SCALE; const int y_needles = u.rows / NEEDLE_MAP_SCALE; GpuMat u_avg(y_needles, x_needles, CV_32FC1); GpuMat v_avg(y_needles, x_needles, CV_32FC1); NeedleMapAverage_gpu(u, v, u_avg, v_avg); const int NUM_VERTS_PER_ARROW = 6; const int num_arrows = x_needles * y_needles * NUM_VERTS_PER_ARROW; vertex.create(1, num_arrows, CV_32FC3); colors.create(1, num_arrows, CV_32FC3); colors.setTo(Scalar::all(1.0)); double uMax, vMax; minMax(u_avg, 0, &uMax); minMax(v_avg, 0, &vMax); float max_flow = static_cast<float>(std::sqrt(uMax * uMax + vMax * vMax)); CreateOpticalFlowNeedleMap_gpu(u_avg, v_avg, vertex.ptr<float>(), colors.ptr<float>(), max_flow, 1.0f / u.cols, 1.0f / u.rows); cvtColor(colors, colors, COLOR_HSV2RGB); }
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2], GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane && left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4)); const Scalar zero = Scalar::all(0); cudaStream_t cudaStream = StreamAccessor::getStream(stream); //////////////////////////////////////////////////////////////////////////////////////////// // Init int rows = left.rows; int cols = left.cols; rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0))); int levels = rthis.levels; AutoBuffer<int> buf(levels * 4); int* cols_pyr = buf; int* rows_pyr = cols_pyr + levels; int* nr_plane_pyr = rows_pyr + levels; int* step_pyr = nr_plane_pyr + levels; cols_pyr[0] = cols; rows_pyr[0] = rows; nr_plane_pyr[0] = rthis.nr_plane; const int n = 64; step_pyr[0] = static_cast<int>(alignSize(cols * sizeof(T), n) / sizeof(T)); for (int i = 1; i < levels; i++) { cols_pyr[i] = (cols_pyr[i-1] + 1) / 2; rows_pyr[i] = (rows_pyr[i-1] + 1) / 2; nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2; step_pyr[i] = static_cast<int>(alignSize(cols_pyr[i] * sizeof(T), n) / sizeof(T)); } Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]); Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2); u[0].create(msg_size, DataType<T>::type); d[0].create(msg_size, DataType<T>::type); l[0].create(msg_size, DataType<T>::type); r[0].create(msg_size, DataType<T>::type); u[1].create(msg_size, DataType<T>::type); d[1].create(msg_size, DataType<T>::type); l[1].create(msg_size, DataType<T>::type); r[1].create(msg_size, DataType<T>::type); disp_selected_pyr[0].create(msg_size, DataType<T>::type); disp_selected_pyr[1].create(msg_size, DataType<T>::type); data_cost.create(data_cost_size, DataType<T>::type); data_cost_selected.create(msg_size, DataType<T>::type); step_pyr[0] = static_cast<int>(data_cost.step / sizeof(T)); Size temp_size = data_cost_size; if (data_cost_size.width * data_cost_size.height < step_pyr[levels - 1] * rows_pyr[levels - 1] * rthis.ndisp) temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * rthis.ndisp); temp.create(temp_size, DataType<T>::type); //////////////////////////////////////////////////////////////////////////// // Compute load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp); if (stream) { stream.enqueueMemSet(l[0], zero); stream.enqueueMemSet(d[0], zero); stream.enqueueMemSet(r[0], zero); stream.enqueueMemSet(u[0], zero); stream.enqueueMemSet(l[1], zero); stream.enqueueMemSet(d[1], zero); stream.enqueueMemSet(r[1], zero); stream.enqueueMemSet(u[1], zero); stream.enqueueMemSet(data_cost, zero); stream.enqueueMemSet(data_cost_selected, zero); } else { l[0].setTo(zero); d[0].setTo(zero); r[0].setTo(zero); u[0].setTo(zero); l[1].setTo(zero); d[1].setTo(zero); r[1].setTo(zero); u[1].setTo(zero); data_cost.setTo(zero); data_cost_selected.setTo(zero); } int cur_idx = 0; for (int i = levels - 1; i >= 0; i--) { if (i == levels - 1) { init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream); } else { compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1], left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream); int new_idx = (cur_idx + 1) & 1; init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(), u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1], rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream); cur_idx = new_idx; } calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[i], rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream); } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); if (stream) stream.enqueueMemSet(out, zero); else out.setTo(zero); compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[0], out, nr_plane_pyr[0], cudaStream); if (disp.type() != CV_16S) { if (stream) stream.enqueueConvert(out, disp, disp.type()); else out.convertTo(disp, disp.type()); } }
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat& mbuf, GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream) { CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane && left.rows == right.rows && left.cols == right.cols && left.type() == right.type()); CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4)); const Scalar zero = Scalar::all(0); cudaStream_t cudaStream = StreamAccessor::getStream(stream); //////////////////////////////////////////////////////////////////////////////////////////// // Init int rows = left.rows; int cols = left.cols; rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0))); int levels = rthis.levels; // compute sizes AutoBuffer<int> buf(levels * 3); int* cols_pyr = buf; int* rows_pyr = cols_pyr + levels; int* nr_plane_pyr = rows_pyr + levels; cols_pyr[0] = cols; rows_pyr[0] = rows; nr_plane_pyr[0] = rthis.nr_plane; for (int i = 1; i < levels; i++) { cols_pyr[i] = cols_pyr[i-1] / 2; rows_pyr[i] = rows_pyr[i-1] / 2; nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2; } GpuMat u[2], d[2], l[2], r[2], disp_selected_pyr[2], data_cost, data_cost_selected; //allocate buffers int buffers_count = 10; // (up + down + left + right + disp_selected_pyr) * 2 buffers_count += 2; // data_cost has twice more rows than other buffers, what's why +2, not +1; buffers_count += 1; // data_cost_selected mbuf.create(rows * rthis.nr_plane * buffers_count, cols, DataType<T>::type); data_cost = mbuf.rowRange(0, rows * rthis.nr_plane * 2); data_cost_selected = mbuf.rowRange(data_cost.rows, data_cost.rows + rows * rthis.nr_plane); for(int k = 0; k < 2; ++k) // in/out { GpuMat sub1 = mbuf.rowRange(data_cost.rows + data_cost_selected.rows, mbuf.rows); GpuMat sub2 = sub1.rowRange((k+0)*sub1.rows/2, (k+1)*sub1.rows/2); GpuMat *buf_ptrs[] = { &u[k], &d[k], &l[k], &r[k], &disp_selected_pyr[k] }; for(int _r = 0; _r < 5; ++_r) { *buf_ptrs[_r] = sub2.rowRange(_r * sub2.rows/5, (_r+1) * sub2.rows/5); assert(buf_ptrs[_r]->cols == cols && buf_ptrs[_r]->rows == rows * rthis.nr_plane); } }; size_t elem_step = mbuf.step / sizeof(T); Size temp_size = data_cost.size(); if ((size_t)temp_size.area() < elem_step * rows_pyr[levels - 1] * rthis.ndisp) temp_size = Size(static_cast<int>(elem_step), rows_pyr[levels - 1] * rthis.ndisp); temp.create(temp_size, DataType<T>::type); //////////////////////////////////////////////////////////////////////////// // Compute load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp); if (stream) { stream.enqueueMemSet(l[0], zero); stream.enqueueMemSet(d[0], zero); stream.enqueueMemSet(r[0], zero); stream.enqueueMemSet(u[0], zero); stream.enqueueMemSet(l[1], zero); stream.enqueueMemSet(d[1], zero); stream.enqueueMemSet(r[1], zero); stream.enqueueMemSet(u[1], zero); stream.enqueueMemSet(data_cost, zero); stream.enqueueMemSet(data_cost_selected, zero); } else { l[0].setTo(zero); d[0].setTo(zero); r[0].setTo(zero); u[0].setTo(zero); l[1].setTo(zero); d[1].setTo(zero); r[1].setTo(zero); u[1].setTo(zero); data_cost.setTo(zero); data_cost_selected.setTo(zero); } int cur_idx = 0; for (int i = levels - 1; i >= 0; i--) { if (i == levels - 1) { init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), elem_step, rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream); } else { compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), elem_step, left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream); int new_idx = (cur_idx + 1) & 1; init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(), u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), data_cost.ptr<T>(), elem_step, rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream); cur_idx = new_idx; } calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream); } if (disp.empty()) disp.create(rows, cols, CV_16S); out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out)); if (stream) stream.enqueueMemSet(out, zero); else out.setTo(zero); compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), elem_step, out, nr_plane_pyr[0], cudaStream); if (disp.type() != CV_16S) { if (stream) stream.enqueueConvert(out, disp, disp.type()); else out.convertTo(disp, disp.type()); } }
inline void Stream::enqueueMemSet(GpuMat& src, Scalar val) { src.setTo(val, *this); }
void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const GpuMat& src3, double beta, GpuMat& dst, int flags, Stream& stream) { #ifndef HAVE_CUBLAS (void)src1; (void)src2; (void)alpha; (void)src3; (void)beta; (void)dst; (void)flags; (void)stream; CV_Error(CV_StsNotImplemented, "The library was build without CUBLAS"); #else // CUBLAS works with column-major matrices CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2); CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type())); if (src1.depth() == CV_64F) { if (!deviceSupports(NATIVE_DOUBLE)) CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double"); } bool tr1 = (flags & GEMM_1_T) != 0; bool tr2 = (flags & GEMM_2_T) != 0; bool tr3 = (flags & GEMM_3_T) != 0; if (src1.type() == CV_64FC2) { if (tr1 || tr2 || tr3) CV_Error(CV_StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type"); } Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size(); Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size(); Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size(); Size dstSize(src2Size.width, src1Size.height); CV_Assert(src1Size.width == src2Size.height); CV_Assert(src3.empty() || src3Size == dstSize); dst.create(dstSize, src1.type()); if (beta != 0) { if (src3.empty()) { if (stream) stream.enqueueMemSet(dst, Scalar::all(0)); else dst.setTo(Scalar::all(0)); } else { if (tr3) { transpose(src3, dst, stream); } else { if (stream) stream.enqueueCopy(src3, dst); else src3.copyTo(dst); } } } cublasHandle_t handle; cublasSafeCall( cublasCreate_v2(&handle) ); cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) ); cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) ); const float alphaf = static_cast<float>(alpha); const float betaf = static_cast<float>(beta); const cuComplex alphacf = make_cuComplex(alphaf, 0); const cuComplex betacf = make_cuComplex(betaf, 0); const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0); const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0); cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N; cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N; switch (src1.type()) { case CV_32FC1: cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, &alphaf, src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)), src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)), &betaf, dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) ); break; case CV_64FC1: cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, &alpha, src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)), src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)), &beta, dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) ); break; case CV_32FC2: cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, &alphacf, src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)), src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)), &betacf, dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) ); break; case CV_64FC2: cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows, &alphac, src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)), src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)), &betac, dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) ); break; } cublasSafeCall( cublasDestroy_v2(handle) ); #endif }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const vector<GpuMat>& masks, Stream& stream) { if (query.empty() || empty()) return; using namespace cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream); static const caller_t callers[3][6] = { { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }, { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }, { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ } }; DeviceInfo info; int cc = info.majorVersion() * 10 + info.minorVersion(); if (!TargetArchs::builtWith(GLOBAL_ATOMICS) || !DeviceInfo().supports(GLOBAL_ATOMICS)) CV_Error(CV_StsNotImplemented, "The device doesn't support global atomics"); const int nQuery = query.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size() && trainIdx.size() == imgIdx.size())); ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32SC1, imgIdx); ensureSizeIsEnough(nQuery, std::max((nQuery / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[distType][query.depth()]; CV_Assert(func != 0); vector<DevMem2Db> trains_(trainDescCollection.begin(), trainDescCollection.end()); vector<DevMem2Db> masks_(masks.begin(), masks.end()); func(query, &trains_[0], static_cast<int>(trains_.size()), maxDistance, masks_.size() == 0 ? 0 : &masks_[0], trainIdx, imgIdx, distance, nMatches, cc, StreamAccessor::getStream(stream)); }
void cv::gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err) { using namespace cv::gpu::device::pyrlk; if (prevPts.empty()) { nextPts.release(); status.release(); if (err) err->release(); return; } dim3 block, patch; calcPatchSize(winSize, block, patch, isDeviceArch11_); CV_Assert(prevImg.type() == CV_8UC1 || prevImg.type() == CV_8UC3 || prevImg.type() == CV_8UC4); CV_Assert(prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type()); CV_Assert(maxLevel >= 0); CV_Assert(winSize.width > 2 && winSize.height > 2); CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6); CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2); if (useInitialFlow) CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == CV_32FC2); else ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); GpuMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); GpuMat temp2 = nextPts.reshape(1); multiply(temp1, Scalar::all(1.0 / (1 << maxLevel) / 2.0), temp2); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); status.setTo(Scalar::all(1)); if (err) ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); // build the image pyramids. prevPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1); int cn = prevImg.channels(); if (cn == 1 || cn == 4) { prevImg.convertTo(prevPyr_[0], CV_32F); nextImg.convertTo(nextPyr_[0], CV_32F); } else { cvtColor(prevImg, dx_calcBuf_, COLOR_BGR2BGRA); dx_calcBuf_.convertTo(prevPyr_[0], CV_32F); cvtColor(nextImg, dx_calcBuf_, COLOR_BGR2BGRA); dx_calcBuf_.convertTo(nextPyr_[0], CV_32F); } for (int level = 1; level <= maxLevel; ++level) { pyrDown(prevPyr_[level - 1], prevPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]); } loadConstants(make_int2(winSize.width, winSize.height), iters); for (int level = maxLevel; level >= 0; level--) { if (cn == 1) { lkSparse1_gpu(prevPyr_[level], nextPyr_[level], prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, level, block, patch); } else { lkSparse4_gpu(prevPyr_[level], nextPyr_[level], prevPts.ptr<float2>(), nextPts.ptr<float2>(), status.ptr(), level == 0 && err ? err->ptr<float>() : 0, prevPts.cols, level, block, patch); } } }
inline void Stream::enqueueMemSet(GpuMat& src, Scalar val, InputArray mask) { src.setTo(val, mask, *this); }
void cv::cuda::warpPerspective(InputArray _src, OutputArray _dst, InputArray _M, Size dsize, int flags, int borderMode, Scalar borderValue, Stream& stream) { GpuMat src = _src.getGpuMat(); Mat M = _M.getMat(); CV_Assert( M.rows == 3 && M.cols == 3 ); const int interpolation = flags & INTER_MAX; CV_Assert( src.depth() <= CV_32F && src.channels() <= 4 ); CV_Assert( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC ); CV_Assert( borderMode == BORDER_REFLECT101 || borderMode == BORDER_REPLICATE || borderMode == BORDER_CONSTANT || borderMode == BORDER_REFLECT || borderMode == BORDER_WRAP) ; _dst.create(dsize, src.type()); GpuMat dst = _dst.getGpuMat(); Size wholeSize; Point ofs; src.locateROI(wholeSize, ofs); static const bool useNppTab[6][4][3] = { { {false, false, true}, {false, false, false}, {false, true, true}, {false, false, false} }, { {false, false, false}, {false, false, false}, {false, false, false}, {false, false, false} }, { {false, true, true}, {false, false, false}, {false, true, true}, {false, false, false} }, { {false, false, false}, {false, false, false}, {false, false, false}, {false, false, false} }, { {false, true, true}, {false, false, false}, {false, true, true}, {false, false, true} }, { {false, true, true}, {false, false, false}, {false, true, true}, {false, false, true} } }; bool useNpp = borderMode == BORDER_CONSTANT && ofs.x == 0 && ofs.y == 0 && useNppTab[src.depth()][src.channels() - 1][interpolation]; // NPP bug on float data useNpp = useNpp && src.depth() != CV_32F; if (useNpp) { typedef void (*func_t)(const cv::cuda::GpuMat& src, cv::cuda::GpuMat& dst, double coeffs[][3], int flags, cudaStream_t stream); static const func_t funcs[2][6][4] = { { {NppWarp<CV_8U, nppiWarpPerspective_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspective_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspective_8u_C4R>::call}, {0, 0, 0, 0}, {NppWarp<CV_16U, nppiWarpPerspective_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspective_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspective_16u_C4R>::call}, {0, 0, 0, 0}, {NppWarp<CV_32S, nppiWarpPerspective_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspective_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspective_32s_C4R>::call}, {NppWarp<CV_32F, nppiWarpPerspective_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspective_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspective_32f_C4R>::call} }, { {NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C1R>::call, 0, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C3R>::call, NppWarp<CV_8U, nppiWarpPerspectiveBack_8u_C4R>::call}, {0, 0, 0, 0}, {NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C1R>::call, 0, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C3R>::call, NppWarp<CV_16U, nppiWarpPerspectiveBack_16u_C4R>::call}, {0, 0, 0, 0}, {NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C1R>::call, 0, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C3R>::call, NppWarp<CV_32S, nppiWarpPerspectiveBack_32s_C4R>::call}, {NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C1R>::call, 0, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C3R>::call, NppWarp<CV_32F, nppiWarpPerspectiveBack_32f_C4R>::call} } }; dst.setTo(borderValue, stream); double coeffs[3][3]; Mat coeffsMat(3, 3, CV_64F, (void*)coeffs); M.convertTo(coeffsMat, coeffsMat.type()); const func_t func = funcs[(flags & WARP_INVERSE_MAP) != 0][src.depth()][src.channels() - 1]; CV_Assert(func != 0); func(src, dst, coeffs, interpolation, StreamAccessor::getStream(stream)); } else { using namespace cv::cuda::device::imgproc; typedef void (*func_t)(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float coeffs[2 * 3], PtrStepSzb dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, bool cc20); static const func_t funcs[6][4] = { {warpPerspective_gpu<uchar> , 0 /*warpPerspective_gpu<uchar2>*/ , warpPerspective_gpu<uchar3> , warpPerspective_gpu<uchar4> }, {0 /*warpPerspective_gpu<schar>*/, 0 /*warpPerspective_gpu<char2>*/ , 0 /*warpPerspective_gpu<char3>*/, 0 /*warpPerspective_gpu<char4>*/}, {warpPerspective_gpu<ushort> , 0 /*warpPerspective_gpu<ushort2>*/, warpPerspective_gpu<ushort3> , warpPerspective_gpu<ushort4> }, {warpPerspective_gpu<short> , 0 /*warpPerspective_gpu<short2>*/ , warpPerspective_gpu<short3> , warpPerspective_gpu<short4> }, {0 /*warpPerspective_gpu<int>*/ , 0 /*warpPerspective_gpu<int2>*/ , 0 /*warpPerspective_gpu<int3>*/ , 0 /*warpPerspective_gpu<int4>*/ }, {warpPerspective_gpu<float> , 0 /*warpPerspective_gpu<float2>*/ , warpPerspective_gpu<float3> , warpPerspective_gpu<float4> } }; const func_t func = funcs[src.depth()][src.channels() - 1]; CV_Assert(func != 0); float coeffs[3 * 3]; Mat coeffsMat(3, 3, CV_32F, (void*)coeffs); if (flags & WARP_INVERSE_MAP) M.convertTo(coeffsMat, coeffsMat.type()); else { cv::Mat iM; invert(M, iM); iM.convertTo(coeffsMat, coeffsMat.type()); } Scalar_<float> borderValueFloat; borderValueFloat = borderValue; func(src, PtrStepSzb(wholeSize.height, wholeSize.width, src.datastart, src.step), ofs.x, ofs.y, coeffs, dst, interpolation, borderMode, borderValueFloat.val, StreamAccessor::getStream(stream), deviceSupports(FEATURE_SET_COMPUTE_20)); } }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask, Stream& stream) { if (query.empty() || train.empty()) return; using namespace ::cv::gpu::device::bf_radius_match; typedef void (*caller_t)(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream); static const caller_t callers[3][6] = { { matchL1_gpu<unsigned char>, 0/*matchL1_gpu<signed char>*/, matchL1_gpu<unsigned short>, matchL1_gpu<short>, matchL1_gpu<int>, matchL1_gpu<float> }, { 0/*matchL2_gpu<unsigned char>*/, 0/*matchL2_gpu<signed char>*/, 0/*matchL2_gpu<unsigned short>*/, 0/*matchL2_gpu<short>*/, 0/*matchL2_gpu<int>*/, matchL2_gpu<float> }, { matchHamming_gpu<unsigned char>, 0/*matchHamming_gpu<signed char>*/, matchHamming_gpu<unsigned short>, 0/*matchHamming_gpu<short>*/, matchHamming_gpu<int>, 0/*matchHamming_gpu<float>*/ } }; DeviceInfo info; int cc = info.majorVersion() * 10 + info.minorVersion(); CV_Assert(TargetArchs::builtWith(GLOBAL_ATOMICS) && info.supports(GLOBAL_ATOMICS)); const int nQuery = query.rows; const int nTrain = train.rows; CV_Assert(query.channels() == 1 && query.depth() < CV_64F); CV_Assert(train.type() == query.type() && train.cols == query.cols); CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size())); ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches); if (trainIdx.empty()) { ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32SC1, trainIdx); ensureSizeIsEnough(nQuery, std::max((nTrain / 100), 10), CV_32FC1, distance); } if (stream) stream.enqueueMemSet(nMatches, Scalar::all(0)); else nMatches.setTo(Scalar::all(0)); caller_t func = callers[distType][query.depth()]; CV_Assert(func != 0); func(query, train, maxDistance, mask, trainIdx, distance, nMatches, cc, StreamAccessor::getStream(stream)); }