Exemple #1
0
void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
                                         IRBuilder<> &IRB, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite) {
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);

  Type *ShadowTy  = IntegerType::get(
      *C, std::max(8U, TypeSize >> MappingScale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue = IRB.CreateLoad(
      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);

  Instruction *CheckTerm = splitBlockAndInsertIfThen(
      cast<Instruction>(Cmp)->getNextNode(), Cmp);
  IRBuilder<> IRB2(CheckTerm);

  size_t Granularity = 1 << MappingScale;
  if (TypeSize < 8 * Granularity) {
    // Addr & (Granularity - 1)
    Value *Lower3Bits = IRB2.CreateAnd(
        AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
    // (Addr & (Granularity - 1)) + size - 1
    Value *LastAccessedByte = IRB2.CreateAdd(
        Lower3Bits, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
    // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
    LastAccessedByte = IRB2.CreateIntCast(
        LastAccessedByte, IRB.getInt8Ty(), false);
    // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
    Value *Cmp2 = IRB2.CreateICmpSGE(LastAccessedByte, ShadowValue);

    CheckTerm = splitBlockAndInsertIfThen(CheckTerm, Cmp2);
  }

  IRBuilder<> IRB1(CheckTerm);
  Instruction *Crash = generateCrashCode(IRB1, AddrLong, IsWrite, TypeSize);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
  ReplaceInstWithInst(CheckTerm, new UnreachableInst(*C));
}
void AddressSanitizer::instrumentAddress(AsanFunctionContext &AFC,
                                         Instruction *OrigIns,
                                         IRBuilder<> &IRB, Value *Addr,
                                         uint32_t TypeSize, bool IsWrite) {
  Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);

  Type *ShadowTy  = IntegerType::get(
      *C, std::max(8U, TypeSize >> MappingScale));
  Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
  Value *ShadowPtr = memToShadow(AddrLong, IRB);
  Value *CmpVal = Constant::getNullValue(ShadowTy);
  Value *ShadowValue = IRB.CreateLoad(
      IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));

  Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
  size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
  size_t Granularity = 1 << MappingScale;
  TerminatorInst *CrashTerm = 0;

  if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    TerminatorInst *CheckTerm = splitBlockAndInsertIfThen(Cmp, false);
    assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
    BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    IRB.SetInsertPoint(CheckTerm);
    Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    BasicBlock *CrashBlock = BasicBlock::Create(*C, "", &AFC.F, NextBB);
    CrashTerm = new UnreachableInst(*C, CrashBlock);
    BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
    ReplaceInstWithInst(CheckTerm, NewTerm);
  } else {
    CrashTerm = splitBlockAndInsertIfThen(Cmp, true);
  }

  Instruction *Crash =
      generateCrashCode(CrashTerm, AddrLong, IsWrite, AccessSizeIndex);
  Crash->setDebugLoc(OrigIns->getDebugLoc());
}
Exemple #3
0
codegen_value ast::distribution::createConstructor(Module *module, IRBuilder<> &builder,
						   const string &ctor_name,
						   Type *parameter_type,
						   const vector<type_spec> &param_type_list,
						   Value *eval, Value *sample, Value *pdf, Value *emit,
						   Function *dtor) {
  //create function accepting parameters as arguments
  vector<Type*> arg_types;
  for (auto it = param_type_list.begin(); it != param_type_list.end(); ++it) arg_types.push_back((*it)->llvm_type());

  FunctionType *ft = FunctionType::get(state->types["dfunc"]->llvm_type(), arg_types, false);
  Function *f = Function::Create(ft, Function::ExternalLinkage, ctor_name, module);
  BasicBlock *bb = BasicBlock::Create(getGlobalContext(), "func_entry", f);
  builder.SetInsertPoint(bb);
  
  //setup arguments for the alloc call
  Value *gd_scene = module->getNamedGlobal(".__gd_scene");
  assert(gd_scene != NULL);
  Value *scene_ptr = builder.CreateLoad(gd_scene);

  //compute the shader flags
  codegen_value flag_val = codegen_all_flags(module, builder);

  return errors::codegen_call(flag_val, [&] (Value *&flag_bitmask) -> codegen_value {
      //get memory for a new distribution object
      Value *dfunc_ptr = state->types["dfunc"]->allocate(module, builder);
  
      //initialize the object and dynamically allocate parameter memory (calling a builtin function)
      Type* int_ptr_ty = Type::getInt32Ty(getGlobalContext())->getPointerTo();
      vector<Type*> alloc_arg_types({state->types["scene_ptr"]->llvm_type(),
	    Type::getInt32Ty(getGlobalContext()), state->types["shader_flag"]->llvm_type(),
	    int_ptr_ty, int_ptr_ty, int_ptr_ty, int_ptr_ty,
	    dtor->getType(), dfunc_ptr->getType()});
      FunctionType *alloc_type = FunctionType::get(Type::getInt32PtrTy(getGlobalContext()), alloc_arg_types, false);
      Function *alloc_func = GetExternalFunction(module, "gd_builtin_alloc_dfunc", alloc_type);
      
      int param_data_size = DataLayout(module).getTypeAllocSize(parameter_type);
      Constant *param_size_arg = ConstantInt::get(getGlobalContext(), APInt(8*sizeof(int), param_data_size));
      
      vector<Value*> alloc_args({scene_ptr, param_size_arg, flag_bitmask,
	    builder.CreatePointerCast(eval, int_ptr_ty),
	    builder.CreatePointerCast(sample, int_ptr_ty),
	    builder.CreatePointerCast(pdf, int_ptr_ty),
	    builder.CreatePointerCast(emit, int_ptr_ty),
	    dtor, dfunc_ptr});
      Value *param_ptr = builder.CreatePointerCast(builder.CreateCall(alloc_func, alloc_args),
						   parameter_type->getPointerTo(), "dfunc_param_ptr");
      
      //set each parameter
      auto arg_it = f->arg_begin();
      unsigned int field_idx = 0;
      for (auto it = param_type_list.begin(); it != param_type_list.end(); ++it, ++arg_it, ++field_idx) {
	Value *param_copy = (*it)->copy(arg_it, module, builder);
	(*it)->store(param_copy, builder.CreateStructGEP(param_ptr, field_idx), module, builder);
      }
      
      //return the object
      Value *rt_val = builder.CreateLoad(dfunc_ptr, "dist_ref");
      builder.CreateRet(rt_val);
      return f;
    });
}
Exemple #4
-1
JITFunction* 
CompilePipeline(Pipeline *pipeline, Thread *thread) {
    size_t i = 0;
    size_t size = 0;
    std::unique_ptr<Module> owner = make_unique<Module>("PipelineFunction", thread->context);
    Module *module = owner.get();
    std::string fname = std::string("PipelineFunction") + std::to_string(thread->functions++);
    size_t input_count = pipeline->inputData->objects.size();
    size_t output_count = pipeline->outputData->objects.size();
    size_t function_arg_count = 6;
    size_t arg_count = input_count + output_count + (function_arg_count - 2);
    size_t start_addr = input_count + output_count;
    size_t end_addr = start_addr + 1;
    size_t result_sizes_addr = end_addr + 1;
    size_t thread_nr_addr = result_sizes_addr + 1;
    IRBuilder<> *builder = &thread->builder;
    auto passmanager = CreatePassManager(module, thread->jit.get());

    module->setDataLayout(thread->jit->getTargetMachine().createDataLayout());

    Type *int8_tpe = Type::getInt8Ty(thread->context);
    Type *int8ptr_tpe = PointerType::get(int8_tpe, 0);
    Type *int8ptrptr_tpe = PointerType::get(int8ptr_tpe, 0);
    Type *int64_tpe = Type::getInt64Ty(thread->context);
    Type *int64ptr_tpe = PointerType::get(int64_tpe, 0);

    JITInformation info;

    // arguments of the function
    // the arguments are (void **result, void** inputs, size_t start, size_t end);
    // note that we don't actually use void**, we use int8**, because LLVM does not support void pointers
    std::vector<Type*> arguments(function_arg_count);
    i = 0;
    arguments[i++] = int8ptrptr_tpe;  // void** results
    arguments[i++] = int8ptrptr_tpe;  // void** inputs
    arguments[i++] = int64_tpe;       // size_t start
    arguments[i++] = int64_tpe;       // size_t end
    arguments[i++] = int64ptr_tpe;  // size_t* result_sizes
    arguments[i++] = int64_tpe;  // size_t thread_nr
    assert(i == function_arg_count);

    /*for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
        arguments[i] = PointerType::get(getLLVMType(thread->context, inputs->type), 0);
    }
    for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
        arguments[i] = PointerType::get(getLLVMType(thread->context, outputs->type), 0);
    }*/

    // create the LLVM function
    FunctionType *prototype = FunctionType::get(int64_tpe, arguments, false);
    Function *function = Function::Create(prototype, GlobalValue::ExternalLinkage, fname, module);
    function->setCallingConv(CallingConv::C);

    // create the basic blocks
    BasicBlock *loop_entry = BasicBlock::Create(thread->context, "entry", function, 0);
    BasicBlock *loop_cond  = BasicBlock::Create(thread->context, "for.cond", function, 0);
    BasicBlock *loop_body  = BasicBlock::Create(thread->context, "for.body", function, 0);
    BasicBlock *loop_inc   = BasicBlock::Create(thread->context, "for.inc", function, 0);
    BasicBlock *loop_end   = BasicBlock::Create(thread->context, "for.end", function, 0);

    info.builder = &thread->builder;
    info.context = &thread->context;
    info.function = function;
    info.loop_entry = loop_entry;
    info.loop_cond = loop_cond;
    info.loop_body = loop_body;
    info.loop_inc = loop_inc;
    info.loop_end = loop_end;
    info.current = loop_body;

#ifndef _NOTDEBUG
    // argument names (for debug purposes only)
    std::vector<std::string> argument_names(arg_count);
    i = 0;
    for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
        argument_names[i] = std::string("inputs") + std::to_string(i);
    }
    for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
        argument_names[i] = std::string("outputs") + std::to_string(i - input_count);
    }
    argument_names[i++] = "start";
    argument_names[i++] = "end";
    argument_names[i++] = "result_sizes";
    argument_names[i++] = "thread_nr";
#endif

    std::vector<AllocaInst*> argument_addresses(arg_count);
    builder->SetInsertPoint(loop_entry);
    {
        // allocate space for the arguments
        auto args = function->arg_begin();
        i = 0;
        for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
            Type *column_type = PointerType::get(getLLVMType(thread->context, outputs->source->type), 0);
            Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i, true));
            Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr");
            Value *columnptr = builder->CreatePointerCast(voidptr, column_type);
            argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]);
            builder->CreateStore(columnptr, argument_addresses[i]);
            outputs->alloca_address = (void*) argument_addresses[i];
            if (size == 0 || size == 1) {
                assert(outputs->source->size >= 0);
                size = outputs->source->size;
            }
            assert(size == outputs->source->size || outputs->source->size == 1);
        }
        args++;
        for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
            Type *column_type = PointerType::get(getLLVMType(thread->context, inputs->source->type), 0);
            Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i - output_count, true));
            Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr");
            Value *columnptr = builder->CreatePointerCast(voidptr, column_type);
            argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]);
            builder->CreateStore(columnptr, argument_addresses[i]);
            inputs->alloca_address = (void*) argument_addresses[i];
            if (size == 0 || size == 1) {
                assert(inputs->source->size >= 0);
                size = inputs->source->size;
            }
            assert(size == inputs->source->size || inputs->source->size == 1);
        }
        args++;
        argument_addresses[i] = builder->CreateAlloca(arguments[2], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[3], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[4], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[5], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        assert(args == function->arg_end());
        assert(i == arg_count);
        info.index_addr = argument_addresses[start_addr];
        info.thread_addr = argument_addresses[thread_nr_addr];

        PerformInitialization(info, pipeline->operation);

        builder->CreateBr(loop_cond);
    }

    // for loop condition: index < end
    builder->SetInsertPoint(loop_cond);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        LoadInst *end = builder->CreateLoad(argument_addresses[end_addr], "end");
        Value *condition = builder->CreateICmpSLT(index, end, "index < end");
        builder->CreateCondBr(condition, loop_body, loop_end);
    }

    // loop body: perform the computation
    builder->SetInsertPoint(loop_body);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        info.index = index;
        info.index_addr = argument_addresses[start_addr];
        // perform the computation over the given index
        // we don't use the return value because the final assignment has already taken place
        Value *v = PerformOperation(info, thread->builder, thread->context, pipeline->operation, pipeline->inputData, pipeline->outputData);
        if (v == NULL) {
            // failed to perform operation
            printf("Failed to compile pipeline %s\n", pipeline->name);
            return NULL;
        }

        builder->CreateBr(loop_inc);
    }

    // loop increment: index++
    builder->SetInsertPoint(loop_inc);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        Value *incremented_index = builder->CreateAdd(index, ConstantInt::get(int64_tpe, 1, true), "index++");
        builder->CreateStore(incremented_index, argument_addresses[start_addr]);

        builder->CreateBr(loop_cond);
    }

    // loop end: return; (nothing happens here because we have no return value)
    builder->SetInsertPoint(loop_end);
    {
        // return the output size of each of the columns
        int i = 0;
        Value *result_sizes = builder->CreateLoad(argument_addresses[result_sizes_addr], "result_sizes[]");
        for(auto it = pipeline->outputData->objects.begin(); it != pipeline->outputData->objects.end(); it++) {
            Value* output_count;
            if (it->index_addr) {
                output_count = builder->CreateLoad((Value*) it->index_addr, "count");
            } else {
                output_count = ConstantInt::get(int64_tpe, 1, true);
            }
            Value *output_addr = builder->CreateGEP(int64_tpe, result_sizes, ConstantInt::get(int64_tpe, i, true));
            builder->CreateStore(output_count, output_addr);
            i++;
        }

        builder->CreateRet(ConstantInt::get(int64_tpe, 0, true));
    }

#ifndef _NOTDEBUG
    verifyFunction(*function);
    verifyModule(*module);
#endif

    //printf("LLVM for pipeline %s\n", pipeline->name);
    module->dump();
    passmanager->run(*function);
    // dump generated LLVM code
    //module->dump();

    auto handle = thread->jit->addModule(std::move(owner));

    jit_function compiled_function = (jit_function) thread->jit->findSymbol(fname).getAddress();
    if (!compiled_function) {
        printf("Error creating function.\n");
        return NULL;
    }

    JITFunction *jf = CreateJITFunction(thread, pipeline);
    jf->size = size;
    jf->function = compiled_function;
    jf->jit = thread->jit.get();
    jf->handle = handle;

    assert(jf->function);
    return jf;
}