Exemple #1
0
void WinEHStatePass::linkExceptionRegistration(IRBuilder<> &Builder,
                                               Function *Handler) {
  // Emit the .safeseh directive for this function.
  Handler->addFnAttr("safeseh");

  Type *LinkTy = getEHLinkRegistrationType();
  // Handler = Handler
  Value *HandlerI8 = Builder.CreateBitCast(Handler, Builder.getInt8PtrTy());
  Builder.CreateStore(HandlerI8, Builder.CreateStructGEP(LinkTy, Link, 1));
  // Next = [fs:00]
  Constant *FSZero =
      Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257));
  Value *Next = Builder.CreateLoad(FSZero);
  Builder.CreateStore(Next, Builder.CreateStructGEP(LinkTy, Link, 0));
  // [fs:00] = Link
  Builder.CreateStore(Link, FSZero);
}
void CNodeCodeGenVisitor::Visit(CInput* s) {
  IRBuilder<> builder = builders_.top();

  Value* ptr_offset = builder.CreateGEP(ptr_, GetPtrOffset(s->GetOffset()));
  Value* input = builder.CreateCall(get_char_);

  builder.CreateStore(input, ptr_offset);
  VisitNextCNode(s);
}
Exemple #3
0
void PrototypeAST::CreateArgumentAllocas(Function *F)
{
  Function::arg_iterator AI = F->arg_begin();
  for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI)
  {
    AllocaInst* Alloca = CreateEntryBlockAlloca(Args[Idx]->getName(), Args[Idx]->getType());
    Builder.CreateStore(AI,Alloca);
    NamedValues[Args[Idx]->getName()] = Alloca;
    typeTab[Args[Idx]->getName()] = Args[Idx]->getType();
  }
}
/// compile_set_zero - Emit Code for '0'
void BrainFTraceRecorder::compile_set_zero(BrainFTraceNode *node,
                                           IRBuilder<>& builder) {
  Constant *Zero =
    ConstantInt::get(IntegerType::getInt8Ty(Header->getContext()), 0);
  builder.CreateStore(Zero, DataPtr);
  if (node->left != (BrainFTraceNode*)~0ULL)
    compile_opcode(node->left, builder);
  else {
    HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock());
    builder.CreateBr(Header);
  }
}
void CNodeCodeGenVisitor::Visit(CAdd* s) {
  IRBuilder<> builder = builders_.top();

  Value* offset_ptr = builder.CreateGEP(ptr_, GetPtrOffset(s->GetOffset()));
  Value* offset_val = builder.CreateLoad(offset_ptr);

  Value* add_val = GetDataOffset(s->GetAmt());
  Value* result = builder.CreateAdd(offset_val, add_val);

  builder.CreateStore(result, offset_ptr);
  VisitNextCNode(s);
}
Value* VariableDef::codeGen(CodeGenContext &context) {

  IRBuilder<> *builder = context.currentBuilder();
  Value *alloc = builder->CreateAlloca(builder->getInt64Ty(), 0 , id.name.c_str());
  context.locals()[id.name] = alloc;
  if ( assExpr != NULL) {
    context.locals()[id.name] = alloc;
    Value *idValue = (*assExpr).codeGen(context);
    return builder->CreateStore(idValue, context.locals()[id.name]);
  }
  return alloc;
}
/// compile_get - Emit code for ','
void BrainFTraceRecorder::compile_get(BrainFTraceNode *node,
                                      IRBuilder<>& builder) {
  Value *Ret = builder.CreateCall(getchar_func);
  Value *Trunc =
    builder.CreateTrunc(Ret, IntegerType::get(Ret->getContext(), 8));
  builder.CreateStore(Ret, Trunc);
  if (node->left != (BrainFTraceNode*)~0ULL)
    compile_opcode(node->left, builder);
  else {
    HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock());
    builder.CreateBr(Header);
  }
}
/// compile_minus - Emit code for '-'   
void BrainFTraceRecorder::compile_minus(BrainFTraceNode *node,
                                        IRBuilder<>& builder) {
  Value *CellValue = builder.CreateLoad(DataPtr);
  Constant *One =
    ConstantInt::get(IntegerType::getInt8Ty(Header->getContext()), 1);
  Value *UpdatedValue = builder.CreateSub(CellValue, One);
  builder.CreateStore(UpdatedValue, DataPtr);
  
  if (node->left != (BrainFTraceNode*)~0ULL)
    compile_opcode(node->left, builder);
  else {
    HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock());
    builder.CreateBr(Header);
  }
}
void WinEHStatePass::unlinkExceptionRegistration(IRBuilder<> &Builder) {
  // Clone Link into the current BB for better address mode folding.
  if (auto *GEP = dyn_cast<GetElementPtrInst>(Link)) {
    GEP = cast<GetElementPtrInst>(GEP->clone());
    Builder.Insert(GEP);
    Link = GEP;
  }
  Type *LinkTy = getEHLinkRegistrationType();
  // [fs:00] = Link->Next
  Value *Next =
      Builder.CreateLoad(Builder.CreateStructGEP(LinkTy, Link, 0));
  Constant *FSZero =
      Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257));
  Builder.CreateStore(Next, FSZero);
}
Exemple #10
0
void
code_emitter::commit_set_const_value (value_t *value, Value *llvm_value)
{
    Value *addr = emit_const_value_addr(value);
    llvm_value = promote(llvm_value, value->compvar->type);

#ifdef DEBUG_OUTPUT
    printf("storing value ");
    compiler_print_value(value);
    printf(" with llvm value ");
    llvm_value->dump();
    printf(" at addr ");
    addr->dump();
#endif

    builder->CreateStore(llvm_value, addr);
    set_value_name(llvm_value, value);
}
void CNodeCodeGenVisitor::Visit(CMul* s) {
  IRBuilder<> builder = builders_.top();

  int op_offset = s->GetOpOffset();
  int target_offset = s->GetTargetOffset();
  int amt = s->GetAmt();

  Value* op_offset_ptr = builder.CreateGEP(ptr_, GetPtrOffset(op_offset));
  Value* target_offset_ptr =
      builder.CreateGEP(ptr_, GetPtrOffset(target_offset));
  Value* mul_val = GetDataOffset(amt);

  Value* op_val = builder.CreateLoad(op_offset_ptr);
  Value* target_val = builder.CreateLoad(target_offset_ptr);
  Value* mul_result = builder.CreateMul(op_val, mul_val);
  Value* add_result = builder.CreateAdd(target_val, mul_result);

  builder.CreateStore(add_result, target_offset_ptr);
  VisitNextCNode(s);
}
Exemple #12
0
Value*
code_emitter::convert_complex_return_value (Value *result)
{
    /* The result is complex, whose representation
       differs between archs, and we need to transform
       it into another arch-dependent
       representation. */
    if (sizeof(gpointer) == 4)
    {
	Value *local = complex_copy_var;
	Value *local_ptr = builder->CreateBitCast(local, PointerType::getUnqual(Type::Int64Ty));
	builder->CreateStore(result, local_ptr);
	result = builder->CreateLoad(local);
    }
    else if (sizeof(gpointer) == 8)
	result = builder->CreateExtractValue(result, 0);
    else
	g_assert_not_reached();

    return result;
}
static void IncrementTimeCounter(Value* Inc, Value* calle, unsigned Index, GlobalVariable* Counters, IRBuilder<>& Builder, Value* Point)
{
   LLVMContext &Context = Inc->getContext();
   //In order to insert instruction after Point, we use the nextIns function.
   Value* nextIns = getNextIns(Point);
   Builder.SetInsertPoint(dyn_cast<Instruction>(nextIns));

   // Create the getelementptr constant expression
   std::vector<Constant*> Indices(2);
   Indices[0] = Constant::getNullValue(Type::getInt32Ty(Context));
   Indices[1] = ConstantInt::get(Type::getInt32Ty(Context), Index);
   Constant *ElementPtr =
      ConstantExpr::getGetElementPtr(Counters, Indices);

   // Load, increment and store the value back.
   // Use this formula: a = a + end_time - start_time
   ArrayRef<Value*> args;
   CallInst* Inc_end = Builder.CreateCall(calle, args, "");
   Value* OldVal = Builder.CreateLoad(ElementPtr, "OldTimeCounter");
   Value* TmpVal = Builder.CreateFSub(OldVal, Inc, "TmpTimeCounter");
   Value* NewVal = Builder.CreateFAdd(TmpVal, Inc_end, "NewTimeCounter");
   Builder.CreateStore(NewVal, ElementPtr);
}
Value* FunctionDef::codeGen(CodeGenContext &context) {
  IRBuilder<> *builder = context.currentBuilder();
  std::vector<Type*> argsType;
  ArgsDefList::const_iterator it;

  for (it = argsDefList.begin(); it != argsDefList.end(); it++) {
    argsType.push_back(builder->getInt64Ty());
  }

  FunctionType *ftype = FunctionType::get(builder->getInt64Ty()
      , ArrayRef<Type*>(argsType), false);

  Function *function = Function::Create(ftype, GlobalValue::InternalLinkage
      , functionName.name.c_str(), context.module);

  BasicBlock *fBBlock = BasicBlock::Create(getGlobalContext()
      , "entry", function, 0);
  context.pushBlock(fBBlock);

  builder = context.currentBuilder();
  Function::arg_iterator args = function->arg_begin();

  for (it = argsDefList.begin(); it != argsDefList.end(); it++) {
    Value* a = args++;
    Id &argId = (**it);
    cout<<"argument name is "<<argId.name.c_str()<<endl;
    a->setName(argId.name.c_str());

    Value *alloc = builder->CreateAlloca(builder->getInt64Ty(), 0 , argId.name.c_str());
    context.locals()[argId.name] = alloc;
    builder->CreateStore(a, context.locals()[argId.name]);
  }

  (*functionBlock).codeGen(context);
  context.popBlock();
  return NULL;
}
/// compile_if - Emit code for '['
void BrainFTraceRecorder::compile_if(BrainFTraceNode *node,
                                     IRBuilder<>& builder) {
  BasicBlock *ZeroChild = 0;
  BasicBlock *NonZeroChild = 0;
  BasicBlock *Parent = builder.GetInsertBlock();
  
  LLVMContext &Context = Header->getContext();
  
  // If both directions of the branch go back to the trace-head, just
  // jump there directly.
  if (node->left == (BrainFTraceNode*)~0ULL &&
      node->right == (BrainFTraceNode*)~0ULL) {
    HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock());
    builder.CreateBr(Header);
    return;
  }
  
  // Otherwise, there are two cases to handle for each direction:
  //   ~0ULL - A branch back to the trace head
  //   0 - A branch out of the trace
  //   * - A branch to a node we haven't compiled yet.
  // Go ahead and generate code for both targets.
  
  if (node->left == (BrainFTraceNode*)~0ULL) {
    NonZeroChild = Header;
    HeaderPHI->addIncoming(DataPtr, Parent);
  } else if (node->left == 0) {
    NonZeroChild = BasicBlock::Create(Context,
                                   "exit_left_"+utostr(node->pc),
                                   Header->getParent());
    builder.SetInsertPoint(NonZeroChild);
    
    // Set the extension leaf, which is a pointer to the leaf of the trace
    // tree from which we are side exiting.
    ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node);
    builder.CreateStore(ExtLeaf, ext_leaf);
    
    ConstantInt *NewPc = ConstantInt::get(int_type, node->pc+1);
    Value *BytecodeIndex =
      builder.CreateConstInBoundsGEP1_32(bytecode_array, node->pc+1);
    Value *Target = builder.CreateLoad(BytecodeIndex);
    CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr));
    Call->setTailCall();
    builder.CreateRetVoid();
  } else {
    NonZeroChild = BasicBlock::Create(Context, 
                                      utostr(node->left->pc), 
                                      Header->getParent());
    builder.SetInsertPoint(NonZeroChild);
    compile_opcode(node->left, builder);
  }
  
  if (node->right == (BrainFTraceNode*)~0ULL) {
    ZeroChild = Header;
    HeaderPHI->addIncoming(DataPtr, Parent);
  } else if (node->right == 0) {
    ZeroChild = BasicBlock::Create(Context,
                                   "exit_right_"+utostr(node->pc),
                                   Header->getParent());
    builder.SetInsertPoint(ZeroChild);
    
    // Set the extension leaf, which is a pointer to the leaf of the trace
    // tree from which we are side exiting.
    ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node);
    builder.CreateStore(ExtLeaf, ext_leaf);
    
    ConstantInt *NewPc = ConstantInt::get(int_type, JumpMap[node->pc]+1);
    Value *BytecodeIndex =
      builder.CreateConstInBoundsGEP1_32(bytecode_array, JumpMap[node->pc]+1);
    Value *Target = builder.CreateLoad(BytecodeIndex);
    CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr));
    Call->setTailCall();
    builder.CreateRetVoid();
  } else {
    ZeroChild = BasicBlock::Create(Context, 
                                      utostr(node->right->pc), 
                                      Header->getParent());
    builder.SetInsertPoint(ZeroChild);
    compile_opcode(node->right, builder);
  }
  
  // Generate the test and branch to select between the targets.
  builder.SetInsertPoint(Parent);
  Value *Loaded = builder.CreateLoad(DataPtr);
  Value *Cmp = builder.CreateICmpEQ(Loaded, 
                                       ConstantInt::get(Loaded->getType(), 0));
  builder.CreateCondBr(Cmp, ZeroChild, NonZeroChild);
}
Exemple #16
0
Value*
code_emitter::emit_rhs (rhs_t *rhs)
{
    switch (rhs->kind) {
	case RHS_PRIMARY :
	    return emit_primary(&rhs->v.primary);
	case RHS_INTERNAL :
	    return lookup_internal(rhs->v.internal);
	case RHS_OP :
	    {
		operation_t *op = rhs->v.op.op;
		type_t promotion_type = TYPE_NIL;
		char *function_name = compiler_function_name_for_op_rhs(rhs, &promotion_type);

		if (promotion_type == TYPE_NIL)
		    assert(op->type_prop == TYPE_PROP_CONST);
		if (op->type_prop != TYPE_PROP_CONST)
		    assert(promotion_type != TYPE_NIL);

		Function *func = module->getFunction(string(function_name));
		g_assert(func);
		vector<Value*> args;
		args.push_back(invocation_arg);
		args.push_back(closure_arg);
		args.push_back(pools_arg);
		for (int i = 0; i < rhs->v.op.op->num_args; ++i) {
		    type_t type = promotion_type == TYPE_NIL ? op->arg_types[i] : promotion_type;
		    Value *val = emit_primary(&rhs->v.op.args[i], type == TYPE_FLOAT);
		    val = promote(val, type);

#ifndef __MINGW32__
		    if (sizeof(gpointer) == 4 && val->getType() == llvm_type_for_type(module, TYPE_COMPLEX))
		    {
			Value *copy = builder->CreateAlloca(llvm_type_for_type(module, TYPE_COMPLEX));
			builder->CreateStore(val, copy);
			val = copy;
		    }
#endif

#ifdef DEBUG_OUTPUT
		    val->dump();
#endif
		    args.push_back(val);
		}
#ifdef DEBUG_OUTPUT
		func->dump();
#endif
		Value *result = builder->CreateCall(func, args.begin(), args.end());
		/* FIXME: this is ugly - we should check for the type
		   of the operation or resulting value */
		if (is_complex_return_type(result->getType()))
		    result = convert_complex_return_value(result);
		return result;
	    }

	case RHS_FILTER :
	    {
		int num_args = compiler_num_filter_args(rhs->v.filter.filter);
		Value *closure = emit_closure(rhs->v.filter.filter, rhs->v.filter.args);
		Function *func = lookup_filter_function(module, rhs->v.filter.filter);
		vector<Value*> args;

		args.push_back(invocation_arg);
		args.push_back(closure);
		args.push_back(emit_primary(&rhs->v.filter.args[num_args - 3]));
		args.push_back(emit_primary(&rhs->v.filter.args[num_args - 2]));
		args.push_back(emit_primary(&rhs->v.filter.args[num_args - 1]));
		args.push_back(pools_arg);

		return builder->CreateCall(func, args.begin(), args.end());
	    }

	case RHS_CLOSURE :
	    return emit_closure(rhs->v.closure.filter, rhs->v.closure.args);

	case RHS_TUPLE :
	case RHS_TREE_VECTOR :
	    {
		Function *set_func = module->getFunction(string("tuple_set"));
		Value *tuple = builder->CreateCall2(module->getFunction(string("alloc_tuple")),
						    pools_arg,
						    make_int_const(rhs->v.tuple.length));
		int i;

		for (i = 0; i < rhs->v.tuple.length; ++i)
		{
		    Value *val = emit_primary(&rhs->v.tuple.args[i], true);
		    builder->CreateCall3(set_func, tuple, make_int_const(i), val);
		}

		if (rhs->kind == RHS_TREE_VECTOR)
		{
		    return builder->CreateCall3(module->getFunction(string("alloc_tree_vector")),
						pools_arg,
						make_int_const(rhs->v.tuple.length),
						tuple);
		}
		else
		    return tuple;
	    }

	default :
	    g_assert_not_reached();
    }
}
void ASTCodeGenVisitor::Visit(GetInput* s) {
  IRBuilder<> builder = builders_.top();
  Value* input = builder.CreateCall(get_char_);
  builder.CreateStore(input, ptr_);
  VisitNextASTNode(s);
}
Exemple #18
-1
JITFunction* 
CompilePipeline(Pipeline *pipeline, Thread *thread) {
    size_t i = 0;
    size_t size = 0;
    std::unique_ptr<Module> owner = make_unique<Module>("PipelineFunction", thread->context);
    Module *module = owner.get();
    std::string fname = std::string("PipelineFunction") + std::to_string(thread->functions++);
    size_t input_count = pipeline->inputData->objects.size();
    size_t output_count = pipeline->outputData->objects.size();
    size_t function_arg_count = 6;
    size_t arg_count = input_count + output_count + (function_arg_count - 2);
    size_t start_addr = input_count + output_count;
    size_t end_addr = start_addr + 1;
    size_t result_sizes_addr = end_addr + 1;
    size_t thread_nr_addr = result_sizes_addr + 1;
    IRBuilder<> *builder = &thread->builder;
    auto passmanager = CreatePassManager(module, thread->jit.get());

    module->setDataLayout(thread->jit->getTargetMachine().createDataLayout());

    Type *int8_tpe = Type::getInt8Ty(thread->context);
    Type *int8ptr_tpe = PointerType::get(int8_tpe, 0);
    Type *int8ptrptr_tpe = PointerType::get(int8ptr_tpe, 0);
    Type *int64_tpe = Type::getInt64Ty(thread->context);
    Type *int64ptr_tpe = PointerType::get(int64_tpe, 0);

    JITInformation info;

    // arguments of the function
    // the arguments are (void **result, void** inputs, size_t start, size_t end);
    // note that we don't actually use void**, we use int8**, because LLVM does not support void pointers
    std::vector<Type*> arguments(function_arg_count);
    i = 0;
    arguments[i++] = int8ptrptr_tpe;  // void** results
    arguments[i++] = int8ptrptr_tpe;  // void** inputs
    arguments[i++] = int64_tpe;       // size_t start
    arguments[i++] = int64_tpe;       // size_t end
    arguments[i++] = int64ptr_tpe;  // size_t* result_sizes
    arguments[i++] = int64_tpe;  // size_t thread_nr
    assert(i == function_arg_count);

    /*for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
        arguments[i] = PointerType::get(getLLVMType(thread->context, inputs->type), 0);
    }
    for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
        arguments[i] = PointerType::get(getLLVMType(thread->context, outputs->type), 0);
    }*/

    // create the LLVM function
    FunctionType *prototype = FunctionType::get(int64_tpe, arguments, false);
    Function *function = Function::Create(prototype, GlobalValue::ExternalLinkage, fname, module);
    function->setCallingConv(CallingConv::C);

    // create the basic blocks
    BasicBlock *loop_entry = BasicBlock::Create(thread->context, "entry", function, 0);
    BasicBlock *loop_cond  = BasicBlock::Create(thread->context, "for.cond", function, 0);
    BasicBlock *loop_body  = BasicBlock::Create(thread->context, "for.body", function, 0);
    BasicBlock *loop_inc   = BasicBlock::Create(thread->context, "for.inc", function, 0);
    BasicBlock *loop_end   = BasicBlock::Create(thread->context, "for.end", function, 0);

    info.builder = &thread->builder;
    info.context = &thread->context;
    info.function = function;
    info.loop_entry = loop_entry;
    info.loop_cond = loop_cond;
    info.loop_body = loop_body;
    info.loop_inc = loop_inc;
    info.loop_end = loop_end;
    info.current = loop_body;

#ifndef _NOTDEBUG
    // argument names (for debug purposes only)
    std::vector<std::string> argument_names(arg_count);
    i = 0;
    for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
        argument_names[i] = std::string("inputs") + std::to_string(i);
    }
    for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
        argument_names[i] = std::string("outputs") + std::to_string(i - input_count);
    }
    argument_names[i++] = "start";
    argument_names[i++] = "end";
    argument_names[i++] = "result_sizes";
    argument_names[i++] = "thread_nr";
#endif

    std::vector<AllocaInst*> argument_addresses(arg_count);
    builder->SetInsertPoint(loop_entry);
    {
        // allocate space for the arguments
        auto args = function->arg_begin();
        i = 0;
        for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) {
            Type *column_type = PointerType::get(getLLVMType(thread->context, outputs->source->type), 0);
            Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i, true));
            Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr");
            Value *columnptr = builder->CreatePointerCast(voidptr, column_type);
            argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]);
            builder->CreateStore(columnptr, argument_addresses[i]);
            outputs->alloca_address = (void*) argument_addresses[i];
            if (size == 0 || size == 1) {
                assert(outputs->source->size >= 0);
                size = outputs->source->size;
            }
            assert(size == outputs->source->size || outputs->source->size == 1);
        }
        args++;
        for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) {
            Type *column_type = PointerType::get(getLLVMType(thread->context, inputs->source->type), 0);
            Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i - output_count, true));
            Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr");
            Value *columnptr = builder->CreatePointerCast(voidptr, column_type);
            argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]);
            builder->CreateStore(columnptr, argument_addresses[i]);
            inputs->alloca_address = (void*) argument_addresses[i];
            if (size == 0 || size == 1) {
                assert(inputs->source->size >= 0);
                size = inputs->source->size;
            }
            assert(size == inputs->source->size || inputs->source->size == 1);
        }
        args++;
        argument_addresses[i] = builder->CreateAlloca(arguments[2], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[3], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[4], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        argument_addresses[i] = builder->CreateAlloca(arguments[5], nullptr, argument_names[i]);
        builder->CreateStore(&*args, argument_addresses[i]);
        args++; i++;
        assert(args == function->arg_end());
        assert(i == arg_count);
        info.index_addr = argument_addresses[start_addr];
        info.thread_addr = argument_addresses[thread_nr_addr];

        PerformInitialization(info, pipeline->operation);

        builder->CreateBr(loop_cond);
    }

    // for loop condition: index < end
    builder->SetInsertPoint(loop_cond);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        LoadInst *end = builder->CreateLoad(argument_addresses[end_addr], "end");
        Value *condition = builder->CreateICmpSLT(index, end, "index < end");
        builder->CreateCondBr(condition, loop_body, loop_end);
    }

    // loop body: perform the computation
    builder->SetInsertPoint(loop_body);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        info.index = index;
        info.index_addr = argument_addresses[start_addr];
        // perform the computation over the given index
        // we don't use the return value because the final assignment has already taken place
        Value *v = PerformOperation(info, thread->builder, thread->context, pipeline->operation, pipeline->inputData, pipeline->outputData);
        if (v == NULL) {
            // failed to perform operation
            printf("Failed to compile pipeline %s\n", pipeline->name);
            return NULL;
        }

        builder->CreateBr(loop_inc);
    }

    // loop increment: index++
    builder->SetInsertPoint(loop_inc);
    {
        LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index");
        Value *incremented_index = builder->CreateAdd(index, ConstantInt::get(int64_tpe, 1, true), "index++");
        builder->CreateStore(incremented_index, argument_addresses[start_addr]);

        builder->CreateBr(loop_cond);
    }

    // loop end: return; (nothing happens here because we have no return value)
    builder->SetInsertPoint(loop_end);
    {
        // return the output size of each of the columns
        int i = 0;
        Value *result_sizes = builder->CreateLoad(argument_addresses[result_sizes_addr], "result_sizes[]");
        for(auto it = pipeline->outputData->objects.begin(); it != pipeline->outputData->objects.end(); it++) {
            Value* output_count;
            if (it->index_addr) {
                output_count = builder->CreateLoad((Value*) it->index_addr, "count");
            } else {
                output_count = ConstantInt::get(int64_tpe, 1, true);
            }
            Value *output_addr = builder->CreateGEP(int64_tpe, result_sizes, ConstantInt::get(int64_tpe, i, true));
            builder->CreateStore(output_count, output_addr);
            i++;
        }

        builder->CreateRet(ConstantInt::get(int64_tpe, 0, true));
    }

#ifndef _NOTDEBUG
    verifyFunction(*function);
    verifyModule(*module);
#endif

    //printf("LLVM for pipeline %s\n", pipeline->name);
    module->dump();
    passmanager->run(*function);
    // dump generated LLVM code
    //module->dump();

    auto handle = thread->jit->addModule(std::move(owner));

    jit_function compiled_function = (jit_function) thread->jit->findSymbol(fname).getAddress();
    if (!compiled_function) {
        printf("Error creating function.\n");
        return NULL;
    }

    JITFunction *jf = CreateJITFunction(thread, pipeline);
    jf->size = size;
    jf->function = compiled_function;
    jf->jit = thread->jit.get();
    jf->handle = handle;

    assert(jf->function);
    return jf;
}