void WinEHStatePass::linkExceptionRegistration(IRBuilder<> &Builder, Function *Handler) { // Emit the .safeseh directive for this function. Handler->addFnAttr("safeseh"); Type *LinkTy = getEHLinkRegistrationType(); // Handler = Handler Value *HandlerI8 = Builder.CreateBitCast(Handler, Builder.getInt8PtrTy()); Builder.CreateStore(HandlerI8, Builder.CreateStructGEP(LinkTy, Link, 1)); // Next = [fs:00] Constant *FSZero = Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257)); Value *Next = Builder.CreateLoad(FSZero); Builder.CreateStore(Next, Builder.CreateStructGEP(LinkTy, Link, 0)); // [fs:00] = Link Builder.CreateStore(Link, FSZero); }
void CNodeCodeGenVisitor::Visit(CInput* s) { IRBuilder<> builder = builders_.top(); Value* ptr_offset = builder.CreateGEP(ptr_, GetPtrOffset(s->GetOffset())); Value* input = builder.CreateCall(get_char_); builder.CreateStore(input, ptr_offset); VisitNextCNode(s); }
void PrototypeAST::CreateArgumentAllocas(Function *F) { Function::arg_iterator AI = F->arg_begin(); for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { AllocaInst* Alloca = CreateEntryBlockAlloca(Args[Idx]->getName(), Args[Idx]->getType()); Builder.CreateStore(AI,Alloca); NamedValues[Args[Idx]->getName()] = Alloca; typeTab[Args[Idx]->getName()] = Args[Idx]->getType(); } }
/// compile_set_zero - Emit Code for '0' void BrainFTraceRecorder::compile_set_zero(BrainFTraceNode *node, IRBuilder<>& builder) { Constant *Zero = ConstantInt::get(IntegerType::getInt8Ty(Header->getContext()), 0); builder.CreateStore(Zero, DataPtr); if (node->left != (BrainFTraceNode*)~0ULL) compile_opcode(node->left, builder); else { HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock()); builder.CreateBr(Header); } }
void CNodeCodeGenVisitor::Visit(CAdd* s) { IRBuilder<> builder = builders_.top(); Value* offset_ptr = builder.CreateGEP(ptr_, GetPtrOffset(s->GetOffset())); Value* offset_val = builder.CreateLoad(offset_ptr); Value* add_val = GetDataOffset(s->GetAmt()); Value* result = builder.CreateAdd(offset_val, add_val); builder.CreateStore(result, offset_ptr); VisitNextCNode(s); }
Value* VariableDef::codeGen(CodeGenContext &context) { IRBuilder<> *builder = context.currentBuilder(); Value *alloc = builder->CreateAlloca(builder->getInt64Ty(), 0 , id.name.c_str()); context.locals()[id.name] = alloc; if ( assExpr != NULL) { context.locals()[id.name] = alloc; Value *idValue = (*assExpr).codeGen(context); return builder->CreateStore(idValue, context.locals()[id.name]); } return alloc; }
/// compile_get - Emit code for ',' void BrainFTraceRecorder::compile_get(BrainFTraceNode *node, IRBuilder<>& builder) { Value *Ret = builder.CreateCall(getchar_func); Value *Trunc = builder.CreateTrunc(Ret, IntegerType::get(Ret->getContext(), 8)); builder.CreateStore(Ret, Trunc); if (node->left != (BrainFTraceNode*)~0ULL) compile_opcode(node->left, builder); else { HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock()); builder.CreateBr(Header); } }
/// compile_minus - Emit code for '-' void BrainFTraceRecorder::compile_minus(BrainFTraceNode *node, IRBuilder<>& builder) { Value *CellValue = builder.CreateLoad(DataPtr); Constant *One = ConstantInt::get(IntegerType::getInt8Ty(Header->getContext()), 1); Value *UpdatedValue = builder.CreateSub(CellValue, One); builder.CreateStore(UpdatedValue, DataPtr); if (node->left != (BrainFTraceNode*)~0ULL) compile_opcode(node->left, builder); else { HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock()); builder.CreateBr(Header); } }
void WinEHStatePass::unlinkExceptionRegistration(IRBuilder<> &Builder) { // Clone Link into the current BB for better address mode folding. if (auto *GEP = dyn_cast<GetElementPtrInst>(Link)) { GEP = cast<GetElementPtrInst>(GEP->clone()); Builder.Insert(GEP); Link = GEP; } Type *LinkTy = getEHLinkRegistrationType(); // [fs:00] = Link->Next Value *Next = Builder.CreateLoad(Builder.CreateStructGEP(LinkTy, Link, 0)); Constant *FSZero = Constant::getNullValue(LinkTy->getPointerTo()->getPointerTo(257)); Builder.CreateStore(Next, FSZero); }
void code_emitter::commit_set_const_value (value_t *value, Value *llvm_value) { Value *addr = emit_const_value_addr(value); llvm_value = promote(llvm_value, value->compvar->type); #ifdef DEBUG_OUTPUT printf("storing value "); compiler_print_value(value); printf(" with llvm value "); llvm_value->dump(); printf(" at addr "); addr->dump(); #endif builder->CreateStore(llvm_value, addr); set_value_name(llvm_value, value); }
void CNodeCodeGenVisitor::Visit(CMul* s) { IRBuilder<> builder = builders_.top(); int op_offset = s->GetOpOffset(); int target_offset = s->GetTargetOffset(); int amt = s->GetAmt(); Value* op_offset_ptr = builder.CreateGEP(ptr_, GetPtrOffset(op_offset)); Value* target_offset_ptr = builder.CreateGEP(ptr_, GetPtrOffset(target_offset)); Value* mul_val = GetDataOffset(amt); Value* op_val = builder.CreateLoad(op_offset_ptr); Value* target_val = builder.CreateLoad(target_offset_ptr); Value* mul_result = builder.CreateMul(op_val, mul_val); Value* add_result = builder.CreateAdd(target_val, mul_result); builder.CreateStore(add_result, target_offset_ptr); VisitNextCNode(s); }
Value* code_emitter::convert_complex_return_value (Value *result) { /* The result is complex, whose representation differs between archs, and we need to transform it into another arch-dependent representation. */ if (sizeof(gpointer) == 4) { Value *local = complex_copy_var; Value *local_ptr = builder->CreateBitCast(local, PointerType::getUnqual(Type::Int64Ty)); builder->CreateStore(result, local_ptr); result = builder->CreateLoad(local); } else if (sizeof(gpointer) == 8) result = builder->CreateExtractValue(result, 0); else g_assert_not_reached(); return result; }
static void IncrementTimeCounter(Value* Inc, Value* calle, unsigned Index, GlobalVariable* Counters, IRBuilder<>& Builder, Value* Point) { LLVMContext &Context = Inc->getContext(); //In order to insert instruction after Point, we use the nextIns function. Value* nextIns = getNextIns(Point); Builder.SetInsertPoint(dyn_cast<Instruction>(nextIns)); // Create the getelementptr constant expression std::vector<Constant*> Indices(2); Indices[0] = Constant::getNullValue(Type::getInt32Ty(Context)); Indices[1] = ConstantInt::get(Type::getInt32Ty(Context), Index); Constant *ElementPtr = ConstantExpr::getGetElementPtr(Counters, Indices); // Load, increment and store the value back. // Use this formula: a = a + end_time - start_time ArrayRef<Value*> args; CallInst* Inc_end = Builder.CreateCall(calle, args, ""); Value* OldVal = Builder.CreateLoad(ElementPtr, "OldTimeCounter"); Value* TmpVal = Builder.CreateFSub(OldVal, Inc, "TmpTimeCounter"); Value* NewVal = Builder.CreateFAdd(TmpVal, Inc_end, "NewTimeCounter"); Builder.CreateStore(NewVal, ElementPtr); }
Value* FunctionDef::codeGen(CodeGenContext &context) { IRBuilder<> *builder = context.currentBuilder(); std::vector<Type*> argsType; ArgsDefList::const_iterator it; for (it = argsDefList.begin(); it != argsDefList.end(); it++) { argsType.push_back(builder->getInt64Ty()); } FunctionType *ftype = FunctionType::get(builder->getInt64Ty() , ArrayRef<Type*>(argsType), false); Function *function = Function::Create(ftype, GlobalValue::InternalLinkage , functionName.name.c_str(), context.module); BasicBlock *fBBlock = BasicBlock::Create(getGlobalContext() , "entry", function, 0); context.pushBlock(fBBlock); builder = context.currentBuilder(); Function::arg_iterator args = function->arg_begin(); for (it = argsDefList.begin(); it != argsDefList.end(); it++) { Value* a = args++; Id &argId = (**it); cout<<"argument name is "<<argId.name.c_str()<<endl; a->setName(argId.name.c_str()); Value *alloc = builder->CreateAlloca(builder->getInt64Ty(), 0 , argId.name.c_str()); context.locals()[argId.name] = alloc; builder->CreateStore(a, context.locals()[argId.name]); } (*functionBlock).codeGen(context); context.popBlock(); return NULL; }
/// compile_if - Emit code for '[' void BrainFTraceRecorder::compile_if(BrainFTraceNode *node, IRBuilder<>& builder) { BasicBlock *ZeroChild = 0; BasicBlock *NonZeroChild = 0; BasicBlock *Parent = builder.GetInsertBlock(); LLVMContext &Context = Header->getContext(); // If both directions of the branch go back to the trace-head, just // jump there directly. if (node->left == (BrainFTraceNode*)~0ULL && node->right == (BrainFTraceNode*)~0ULL) { HeaderPHI->addIncoming(DataPtr, builder.GetInsertBlock()); builder.CreateBr(Header); return; } // Otherwise, there are two cases to handle for each direction: // ~0ULL - A branch back to the trace head // 0 - A branch out of the trace // * - A branch to a node we haven't compiled yet. // Go ahead and generate code for both targets. if (node->left == (BrainFTraceNode*)~0ULL) { NonZeroChild = Header; HeaderPHI->addIncoming(DataPtr, Parent); } else if (node->left == 0) { NonZeroChild = BasicBlock::Create(Context, "exit_left_"+utostr(node->pc), Header->getParent()); builder.SetInsertPoint(NonZeroChild); // Set the extension leaf, which is a pointer to the leaf of the trace // tree from which we are side exiting. ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node); builder.CreateStore(ExtLeaf, ext_leaf); ConstantInt *NewPc = ConstantInt::get(int_type, node->pc+1); Value *BytecodeIndex = builder.CreateConstInBoundsGEP1_32(bytecode_array, node->pc+1); Value *Target = builder.CreateLoad(BytecodeIndex); CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr)); Call->setTailCall(); builder.CreateRetVoid(); } else { NonZeroChild = BasicBlock::Create(Context, utostr(node->left->pc), Header->getParent()); builder.SetInsertPoint(NonZeroChild); compile_opcode(node->left, builder); } if (node->right == (BrainFTraceNode*)~0ULL) { ZeroChild = Header; HeaderPHI->addIncoming(DataPtr, Parent); } else if (node->right == 0) { ZeroChild = BasicBlock::Create(Context, "exit_right_"+utostr(node->pc), Header->getParent()); builder.SetInsertPoint(ZeroChild); // Set the extension leaf, which is a pointer to the leaf of the trace // tree from which we are side exiting. ConstantInt *ExtLeaf = ConstantInt::get(int_type, (intptr_t)node); builder.CreateStore(ExtLeaf, ext_leaf); ConstantInt *NewPc = ConstantInt::get(int_type, JumpMap[node->pc]+1); Value *BytecodeIndex = builder.CreateConstInBoundsGEP1_32(bytecode_array, JumpMap[node->pc]+1); Value *Target = builder.CreateLoad(BytecodeIndex); CallInst *Call =cast<CallInst>(builder.CreateCall2(Target, NewPc, DataPtr)); Call->setTailCall(); builder.CreateRetVoid(); } else { ZeroChild = BasicBlock::Create(Context, utostr(node->right->pc), Header->getParent()); builder.SetInsertPoint(ZeroChild); compile_opcode(node->right, builder); } // Generate the test and branch to select between the targets. builder.SetInsertPoint(Parent); Value *Loaded = builder.CreateLoad(DataPtr); Value *Cmp = builder.CreateICmpEQ(Loaded, ConstantInt::get(Loaded->getType(), 0)); builder.CreateCondBr(Cmp, ZeroChild, NonZeroChild); }
Value* code_emitter::emit_rhs (rhs_t *rhs) { switch (rhs->kind) { case RHS_PRIMARY : return emit_primary(&rhs->v.primary); case RHS_INTERNAL : return lookup_internal(rhs->v.internal); case RHS_OP : { operation_t *op = rhs->v.op.op; type_t promotion_type = TYPE_NIL; char *function_name = compiler_function_name_for_op_rhs(rhs, &promotion_type); if (promotion_type == TYPE_NIL) assert(op->type_prop == TYPE_PROP_CONST); if (op->type_prop != TYPE_PROP_CONST) assert(promotion_type != TYPE_NIL); Function *func = module->getFunction(string(function_name)); g_assert(func); vector<Value*> args; args.push_back(invocation_arg); args.push_back(closure_arg); args.push_back(pools_arg); for (int i = 0; i < rhs->v.op.op->num_args; ++i) { type_t type = promotion_type == TYPE_NIL ? op->arg_types[i] : promotion_type; Value *val = emit_primary(&rhs->v.op.args[i], type == TYPE_FLOAT); val = promote(val, type); #ifndef __MINGW32__ if (sizeof(gpointer) == 4 && val->getType() == llvm_type_for_type(module, TYPE_COMPLEX)) { Value *copy = builder->CreateAlloca(llvm_type_for_type(module, TYPE_COMPLEX)); builder->CreateStore(val, copy); val = copy; } #endif #ifdef DEBUG_OUTPUT val->dump(); #endif args.push_back(val); } #ifdef DEBUG_OUTPUT func->dump(); #endif Value *result = builder->CreateCall(func, args.begin(), args.end()); /* FIXME: this is ugly - we should check for the type of the operation or resulting value */ if (is_complex_return_type(result->getType())) result = convert_complex_return_value(result); return result; } case RHS_FILTER : { int num_args = compiler_num_filter_args(rhs->v.filter.filter); Value *closure = emit_closure(rhs->v.filter.filter, rhs->v.filter.args); Function *func = lookup_filter_function(module, rhs->v.filter.filter); vector<Value*> args; args.push_back(invocation_arg); args.push_back(closure); args.push_back(emit_primary(&rhs->v.filter.args[num_args - 3])); args.push_back(emit_primary(&rhs->v.filter.args[num_args - 2])); args.push_back(emit_primary(&rhs->v.filter.args[num_args - 1])); args.push_back(pools_arg); return builder->CreateCall(func, args.begin(), args.end()); } case RHS_CLOSURE : return emit_closure(rhs->v.closure.filter, rhs->v.closure.args); case RHS_TUPLE : case RHS_TREE_VECTOR : { Function *set_func = module->getFunction(string("tuple_set")); Value *tuple = builder->CreateCall2(module->getFunction(string("alloc_tuple")), pools_arg, make_int_const(rhs->v.tuple.length)); int i; for (i = 0; i < rhs->v.tuple.length; ++i) { Value *val = emit_primary(&rhs->v.tuple.args[i], true); builder->CreateCall3(set_func, tuple, make_int_const(i), val); } if (rhs->kind == RHS_TREE_VECTOR) { return builder->CreateCall3(module->getFunction(string("alloc_tree_vector")), pools_arg, make_int_const(rhs->v.tuple.length), tuple); } else return tuple; } default : g_assert_not_reached(); } }
void ASTCodeGenVisitor::Visit(GetInput* s) { IRBuilder<> builder = builders_.top(); Value* input = builder.CreateCall(get_char_); builder.CreateStore(input, ptr_); VisitNextASTNode(s); }
JITFunction* CompilePipeline(Pipeline *pipeline, Thread *thread) { size_t i = 0; size_t size = 0; std::unique_ptr<Module> owner = make_unique<Module>("PipelineFunction", thread->context); Module *module = owner.get(); std::string fname = std::string("PipelineFunction") + std::to_string(thread->functions++); size_t input_count = pipeline->inputData->objects.size(); size_t output_count = pipeline->outputData->objects.size(); size_t function_arg_count = 6; size_t arg_count = input_count + output_count + (function_arg_count - 2); size_t start_addr = input_count + output_count; size_t end_addr = start_addr + 1; size_t result_sizes_addr = end_addr + 1; size_t thread_nr_addr = result_sizes_addr + 1; IRBuilder<> *builder = &thread->builder; auto passmanager = CreatePassManager(module, thread->jit.get()); module->setDataLayout(thread->jit->getTargetMachine().createDataLayout()); Type *int8_tpe = Type::getInt8Ty(thread->context); Type *int8ptr_tpe = PointerType::get(int8_tpe, 0); Type *int8ptrptr_tpe = PointerType::get(int8ptr_tpe, 0); Type *int64_tpe = Type::getInt64Ty(thread->context); Type *int64ptr_tpe = PointerType::get(int64_tpe, 0); JITInformation info; // arguments of the function // the arguments are (void **result, void** inputs, size_t start, size_t end); // note that we don't actually use void**, we use int8**, because LLVM does not support void pointers std::vector<Type*> arguments(function_arg_count); i = 0; arguments[i++] = int8ptrptr_tpe; // void** results arguments[i++] = int8ptrptr_tpe; // void** inputs arguments[i++] = int64_tpe; // size_t start arguments[i++] = int64_tpe; // size_t end arguments[i++] = int64ptr_tpe; // size_t* result_sizes arguments[i++] = int64_tpe; // size_t thread_nr assert(i == function_arg_count); /*for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { arguments[i] = PointerType::get(getLLVMType(thread->context, inputs->type), 0); } for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { arguments[i] = PointerType::get(getLLVMType(thread->context, outputs->type), 0); }*/ // create the LLVM function FunctionType *prototype = FunctionType::get(int64_tpe, arguments, false); Function *function = Function::Create(prototype, GlobalValue::ExternalLinkage, fname, module); function->setCallingConv(CallingConv::C); // create the basic blocks BasicBlock *loop_entry = BasicBlock::Create(thread->context, "entry", function, 0); BasicBlock *loop_cond = BasicBlock::Create(thread->context, "for.cond", function, 0); BasicBlock *loop_body = BasicBlock::Create(thread->context, "for.body", function, 0); BasicBlock *loop_inc = BasicBlock::Create(thread->context, "for.inc", function, 0); BasicBlock *loop_end = BasicBlock::Create(thread->context, "for.end", function, 0); info.builder = &thread->builder; info.context = &thread->context; info.function = function; info.loop_entry = loop_entry; info.loop_cond = loop_cond; info.loop_body = loop_body; info.loop_inc = loop_inc; info.loop_end = loop_end; info.current = loop_body; #ifndef _NOTDEBUG // argument names (for debug purposes only) std::vector<std::string> argument_names(arg_count); i = 0; for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { argument_names[i] = std::string("inputs") + std::to_string(i); } for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { argument_names[i] = std::string("outputs") + std::to_string(i - input_count); } argument_names[i++] = "start"; argument_names[i++] = "end"; argument_names[i++] = "result_sizes"; argument_names[i++] = "thread_nr"; #endif std::vector<AllocaInst*> argument_addresses(arg_count); builder->SetInsertPoint(loop_entry); { // allocate space for the arguments auto args = function->arg_begin(); i = 0; for(auto outputs = pipeline->outputData->objects.begin(); outputs != pipeline->outputData->objects.end(); outputs++, i++) { Type *column_type = PointerType::get(getLLVMType(thread->context, outputs->source->type), 0); Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i, true)); Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr"); Value *columnptr = builder->CreatePointerCast(voidptr, column_type); argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]); builder->CreateStore(columnptr, argument_addresses[i]); outputs->alloca_address = (void*) argument_addresses[i]; if (size == 0 || size == 1) { assert(outputs->source->size >= 0); size = outputs->source->size; } assert(size == outputs->source->size || outputs->source->size == 1); } args++; for(auto inputs = pipeline->inputData->objects.begin(); inputs != pipeline->inputData->objects.end(); inputs++, i++) { Type *column_type = PointerType::get(getLLVMType(thread->context, inputs->source->type), 0); Value *voidptrptr = builder->CreateGEP(int8ptr_tpe, &*args, ConstantInt::get(int64_tpe, i - output_count, true)); Value *voidptr = builder->CreateLoad(voidptrptr, "voidptr"); Value *columnptr = builder->CreatePointerCast(voidptr, column_type); argument_addresses[i] = builder->CreateAlloca(column_type, nullptr, argument_names[i]); builder->CreateStore(columnptr, argument_addresses[i]); inputs->alloca_address = (void*) argument_addresses[i]; if (size == 0 || size == 1) { assert(inputs->source->size >= 0); size = inputs->source->size; } assert(size == inputs->source->size || inputs->source->size == 1); } args++; argument_addresses[i] = builder->CreateAlloca(arguments[2], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[3], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[4], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; argument_addresses[i] = builder->CreateAlloca(arguments[5], nullptr, argument_names[i]); builder->CreateStore(&*args, argument_addresses[i]); args++; i++; assert(args == function->arg_end()); assert(i == arg_count); info.index_addr = argument_addresses[start_addr]; info.thread_addr = argument_addresses[thread_nr_addr]; PerformInitialization(info, pipeline->operation); builder->CreateBr(loop_cond); } // for loop condition: index < end builder->SetInsertPoint(loop_cond); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); LoadInst *end = builder->CreateLoad(argument_addresses[end_addr], "end"); Value *condition = builder->CreateICmpSLT(index, end, "index < end"); builder->CreateCondBr(condition, loop_body, loop_end); } // loop body: perform the computation builder->SetInsertPoint(loop_body); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); info.index = index; info.index_addr = argument_addresses[start_addr]; // perform the computation over the given index // we don't use the return value because the final assignment has already taken place Value *v = PerformOperation(info, thread->builder, thread->context, pipeline->operation, pipeline->inputData, pipeline->outputData); if (v == NULL) { // failed to perform operation printf("Failed to compile pipeline %s\n", pipeline->name); return NULL; } builder->CreateBr(loop_inc); } // loop increment: index++ builder->SetInsertPoint(loop_inc); { LoadInst *index = builder->CreateLoad(argument_addresses[start_addr], "index"); Value *incremented_index = builder->CreateAdd(index, ConstantInt::get(int64_tpe, 1, true), "index++"); builder->CreateStore(incremented_index, argument_addresses[start_addr]); builder->CreateBr(loop_cond); } // loop end: return; (nothing happens here because we have no return value) builder->SetInsertPoint(loop_end); { // return the output size of each of the columns int i = 0; Value *result_sizes = builder->CreateLoad(argument_addresses[result_sizes_addr], "result_sizes[]"); for(auto it = pipeline->outputData->objects.begin(); it != pipeline->outputData->objects.end(); it++) { Value* output_count; if (it->index_addr) { output_count = builder->CreateLoad((Value*) it->index_addr, "count"); } else { output_count = ConstantInt::get(int64_tpe, 1, true); } Value *output_addr = builder->CreateGEP(int64_tpe, result_sizes, ConstantInt::get(int64_tpe, i, true)); builder->CreateStore(output_count, output_addr); i++; } builder->CreateRet(ConstantInt::get(int64_tpe, 0, true)); } #ifndef _NOTDEBUG verifyFunction(*function); verifyModule(*module); #endif //printf("LLVM for pipeline %s\n", pipeline->name); module->dump(); passmanager->run(*function); // dump generated LLVM code //module->dump(); auto handle = thread->jit->addModule(std::move(owner)); jit_function compiled_function = (jit_function) thread->jit->findSymbol(fname).getAddress(); if (!compiled_function) { printf("Error creating function.\n"); return NULL; } JITFunction *jf = CreateJITFunction(thread, pipeline); jf->size = size; jf->function = compiled_function; jf->jit = thread->jit.get(); jf->handle = handle; assert(jf->function); return jf; }