bool MoochoPack::CrossTermExactStd_Step::do_step(Algorithm& _algo , poss_type step_poss, IterationPack::EDoStepType type, poss_type assoc_step_poss) { using LinAlgOpPack::V_MtV; using DenseLinAlgPack::norm_inf; NLPAlgo &algo = rsqp_algo(_algo); NLPAlgoState &s = algo.rsqp_state(); EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level(); std::ostream& out = algo.track().journal_out(); // print step header. if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { using IterationPack::print_algorithm_step; print_algorithm_step( _algo, step_poss, type, assoc_step_poss, out ); } // tmp = HL * Ypy DVector tmp; V_MtV( &tmp, s.HL().get_k(0), BLAS_Cpp::no_trans, s.Ypy().get_k(0)() ); // w = Z' * tmp V_MtV( &s.w().set_k(0).v(), s.Z().get_k(0), BLAS_Cpp::trans, tmp() ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n||w||inf = " << s.w().get_k(0).norm_inf() << std::endl; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nw_k =\n" << s.w().get_k(0)(); } return true; }
bool CheckDescentQuasiNormalStep_Step::do_step( Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type ,poss_type assoc_step_poss ) { using BLAS_Cpp::no_trans; using AbstractLinAlgPack::dot; using LinAlgOpPack::V_MtV; NLPAlgo &algo = rsqp_algo(_algo); NLPAlgoState &s = algo.rsqp_state(); NLP &nlp = algo.nlp(); const Range1D equ_decomp = s.equ_decomp(); EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level(); std::ostream& out = algo.track().journal_out(); // print step header. if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { using IterationPack::print_algorithm_step; print_algorithm_step( algo, step_poss, type, assoc_step_poss, out ); } const size_type nb = nlp.num_bounded_x(); // Get iteration quantities IterQuantityAccess<VectorMutable> &c_iq = s.c(), &Ypy_iq = s.Ypy(); const Vector::vec_ptr_t cd_k = c_iq.get_k(0).sub_view(equ_decomp); const Vector &Ypy_k = Ypy_iq.get_k(0); value_type descent_c = -1.0; if( s.get_iter_quant_id( Gc_name ) != AlgorithmState::DOES_NOT_EXIST ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nGc_k exists; compute descent_c = c_k(equ_decomp)'*Gc_k(:,equ_decomp)'*Ypy_k ...\n"; } const MatrixOp::mat_ptr_t Gcd_k = s.Gc().get_k(0).sub_view(Range1D(),equ_decomp); VectorSpace::vec_mut_ptr_t t = cd_k->space().create_member(); V_MtV( t.get(), *Gcd_k, BLAS_Cpp::trans, Ypy_k ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nGc_k(:,equ_decomp)'*Ypy_k =\n" << *t; } descent_c = dot( *cd_k, *t ); } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nGc_k does not exist; compute descent_c = c_k(equ_decomp)'*FDGc_k(:,equ_decomp)'*Ypy_k " << "using finite differences ...\n"; } VectorSpace::vec_mut_ptr_t t = nlp.space_c()->create_member(); calc_fd_prod().calc_deriv_product( s.x().get_k(0),nb?&nlp.xl():NULL,nb?&nlp.xu():NULL ,Ypy_k,NULL,&c_iq.get_k(0),true,&nlp ,NULL,t.get() ,static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ? &out : NULL ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nFDGc_k(:,equ_decomp)'*Ypy_k =\n" << *t->sub_view(equ_decomp); } descent_c = dot( *cd_k, *t->sub_view(equ_decomp) ); } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\ndescent_c = " << descent_c << std::endl; } if( descent_c > 0.0 ) { // ToDo: add some allowance for > 0.0 for finite difference errors! if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nError, descent_c > 0.0; this is not a descent direction\n" << "Throw TestFailed and terminate the algorithm ...\n"; } TEST_FOR_EXCEPTION( true, TestFailed ,"CheckDescentQuasiNormalStep_Step::do_step(...) : Error, descent for the decomposed constraints " "with respect to the quasi-normal step c_k(equ_decomp)'*FDGc_k(:,equ_decomp)'*Ypy_k = " << descent_c << " > 0.0; This is not a descent direction!\n" ); } return true; }
bool TangentialStepIP_Step::do_step( Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type ,poss_type assoc_step_poss ) { using BLAS_Cpp::no_trans; using Teuchos::dyn_cast; using AbstractLinAlgPack::assert_print_nan_inf; using LinAlgOpPack::Vt_S; using LinAlgOpPack::Vp_StV; using LinAlgOpPack::V_StV; using LinAlgOpPack::V_MtV; using LinAlgOpPack::V_InvMtV; using LinAlgOpPack::M_StM; using LinAlgOpPack::Mp_StM; using LinAlgOpPack::assign; NLPAlgo &algo = rsqp_algo(_algo); IpState &s = dyn_cast<IpState>(_algo.state()); EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level(); std::ostream& out = algo.track().journal_out(); // print step header. if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { using IterationPack::print_algorithm_step; print_algorithm_step( algo, step_poss, type, assoc_step_poss, out ); } // Compute qp_grad which is an approximation to rGf + Z'*(mu*(invXu*e-invXl*e) + no_cross_term // minimize round off error by calc'ing Z'*(Gf + mu*(invXu*e-invXl*e)) // qp_grad_k = Z'*(Gf + mu*(invXu*e-invXl*e)) const MatrixSymDiagStd &invXu = s.invXu().get_k(0); const MatrixSymDiagStd &invXl = s.invXl().get_k(0); const value_type &mu = s.barrier_parameter().get_k(0); const MatrixOp &Z_k = s.Z().get_k(0); Teuchos::RCP<VectorMutable> rhs = s.Gf().get_k(0).clone(); Vp_StV( rhs.get(), mu, invXu.diag() ); Vp_StV( rhs.get(), -1.0*mu, invXl.diag() ); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) { out << "\n||Gf_k + mu_k*(invXu_k-invXl_k)||inf = " << rhs->norm_inf() << std::endl; } if( (int)olevel >= (int)PRINT_VECTORS) { out << "\nGf_k + mu_k*(invXu_k-invXl_k) =\n" << *rhs; } VectorMutable &qp_grad_k = s.qp_grad().set_k(0); V_MtV(&qp_grad_k, Z_k, BLAS_Cpp::trans, *rhs); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) { out << "\n||Z_k'*(Gf_k + mu_k*(invXu_k-invXl_k))||inf = " << qp_grad_k.norm_inf() << std::endl; } if( (int)olevel >= (int)PRINT_VECTORS ) { out << "\nZ_k'*(Gf_k + mu_k*(invXu_k-invXl_k)) =\n" << qp_grad_k; } // error check for cross term value_type &zeta = s.zeta().set_k(0); const Vector &w_sigma = s.w_sigma().get_k(0); // need code to calculate damping parameter zeta = 1.0; Vp_StV(&qp_grad_k, zeta, w_sigma); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) { out << "\n||qp_grad_k||inf = " << qp_grad_k.norm_inf() << std::endl; } if( (int)olevel >= (int)PRINT_VECTORS ) { out << "\nqp_grad_k =\n" << qp_grad_k; } // build the "Hessian" term B = rHL + rHB // should this be MatrixSymOpNonsing const MatrixSymOp &rHL_k = s.rHL().get_k(0); const MatrixSymOp &rHB_k = s.rHB().get_k(0); MatrixSymOpNonsing &B_k = dyn_cast<MatrixSymOpNonsing>(s.B().set_k(0)); if (B_k.cols() != Z_k.cols()) { // Initialize space in rHB dyn_cast<MatrixSymInitDiag>(B_k).init_identity(Z_k.space_rows(), 0.0); } // M_StM(&B_k, 1.0, rHL_k, no_trans); assign(&B_k, rHL_k, BLAS_Cpp::no_trans); if( (int)olevel >= (int)PRINT_VECTORS ) { out << "\nB_k = rHL_k =\n" << B_k; } Mp_StM(&B_k, 1.0, rHB_k, BLAS_Cpp::no_trans); if( (int)olevel >= (int)PRINT_VECTORS ) { out << "\nB_k = rHL_k + rHB_k =\n" << B_k; } // Solve the system pz = - inv(rHL) * qp_grad VectorMutable &pz_k = s.pz().set_k(0); V_InvMtV( &pz_k, B_k, no_trans, qp_grad_k ); Vt_S( &pz_k, -1.0 ); // Zpz = Z * pz V_MtV( &s.Zpz().set_k(0), s.Z().get_k(0), no_trans, pz_k ); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) { out << "\n||pz||inf = " << s.pz().get_k(0).norm_inf() << "\nsum(Zpz) = " << AbstractLinAlgPack::sum(s.Zpz().get_k(0)) << std::endl; } if( (int)olevel >= (int)PRINT_VECTORS ) { out << "\npz_k = \n" << s.pz().get_k(0); out << "\nnu_k = \n" << s.nu().get_k(0); out << "\nZpz_k = \n" << s.Zpz().get_k(0); out << std::endl; } if(algo.algo_cntr().check_results()) { assert_print_nan_inf(s.pz().get_k(0), "pz_k",true,&out); assert_print_nan_inf(s.Zpz().get_k(0), "Zpz_k",true,&out); } return true; }
bool TangentialStepWithInequStd_Step::do_step( Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type ,poss_type assoc_step_poss ) { using Teuchos::RCP; using Teuchos::dyn_cast; using ::fabs; using LinAlgOpPack::Vt_S; using LinAlgOpPack::V_VpV; using LinAlgOpPack::V_VmV; using LinAlgOpPack::Vp_StV; using LinAlgOpPack::Vp_V; using LinAlgOpPack::V_StV; using LinAlgOpPack::V_MtV; // using ConstrainedOptPack::min_abs; using AbstractLinAlgPack::max_near_feas_step; typedef VectorMutable::vec_mut_ptr_t vec_mut_ptr_t; NLPAlgo &algo = rsqp_algo(_algo); NLPAlgoState &s = algo.rsqp_state(); EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level(); EJournalOutputLevel ns_olevel = algo.algo_cntr().null_space_journal_output_level(); std::ostream &out = algo.track().journal_out(); //const bool check_results = algo.algo_cntr().check_results(); // print step header. if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { using IterationPack::print_algorithm_step; print_algorithm_step( algo, step_poss, type, assoc_step_poss, out ); } // problem dimensions const size_type //n = algo.nlp().n(), m = algo.nlp().m(), r = s.equ_decomp().size(); // Get the iteration quantity container objects IterQuantityAccess<value_type> &alpha_iq = s.alpha(), &zeta_iq = s.zeta(), &eta_iq = s.eta(); IterQuantityAccess<VectorMutable> &dl_iq = dl_iq_(s), &du_iq = du_iq_(s), &nu_iq = s.nu(), *c_iq = m > 0 ? &s.c() : NULL, *lambda_iq = m > 0 ? &s.lambda() : NULL, &rGf_iq = s.rGf(), &w_iq = s.w(), &qp_grad_iq = s.qp_grad(), &py_iq = s.py(), &pz_iq = s.pz(), &Ypy_iq = s.Ypy(), &Zpz_iq = s.Zpz(); IterQuantityAccess<MatrixOp> &Z_iq = s.Z(), //*Uz_iq = (m > r) ? &s.Uz() : NULL, *Uy_iq = (m > r) ? &s.Uy() : NULL; IterQuantityAccess<MatrixSymOp> &rHL_iq = s.rHL(); IterQuantityAccess<ActSetStats> &act_set_stats_iq = act_set_stats_(s); // Accessed/modified/updated (just some) VectorMutable *Ypy_k = (m ? &Ypy_iq.get_k(0) : NULL); const MatrixOp &Z_k = Z_iq.get_k(0); VectorMutable &pz_k = pz_iq.set_k(0); VectorMutable &Zpz_k = Zpz_iq.set_k(0); // Comupte qp_grad which is an approximation to rGf + Z'*HL*Y*py // qp_grad = rGf VectorMutable &qp_grad_k = ( qp_grad_iq.set_k(0) = rGf_iq.get_k(0) ); // qp_grad += zeta * w if( w_iq.updated_k(0) ) { if(zeta_iq.updated_k(0)) Vp_StV( &qp_grad_k, zeta_iq.get_k(0), w_iq.get_k(0) ); else Vp_V( &qp_grad_k, w_iq.get_k(0) ); } // // Set the bounds for: // // dl <= Z*pz + Y*py <= du -> dl - Ypy <= Z*pz <= du - Ypz vec_mut_ptr_t bl = s.space_x().create_member(), bu = s.space_x().create_member(); if(m) { // bl = dl_k - Ypy_k V_VmV( bl.get(), dl_iq.get_k(0), *Ypy_k ); // bu = du_k - Ypy_k V_VmV( bu.get(), du_iq.get_k(0), *Ypy_k ); } else { *bl = dl_iq.get_k(0); *bu = du_iq.get_k(0); } // Print out the QP bounds for the constraints if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nqp_grad_k = \n" << qp_grad_k; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nbl = \n" << *bl; out << "\nbu = \n" << *bu; } // // Determine if we should perform a warm start or not. // bool do_warm_start = false; if( act_set_stats_iq.updated_k(-1) ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nDetermining if the QP should use a warm start ...\n"; } // We need to see if we should preform a warm start for the next iteration ActSetStats &stats = act_set_stats_iq.get_k(-1); const size_type num_active = stats.num_active(), num_adds = stats.num_adds(), num_drops = stats.num_drops(); const value_type frac_same = ( num_adds == ActSetStats::NOT_KNOWN || num_active == 0 ? 0.0 : my_max(((double)(num_active)-num_adds-num_drops) / num_active, 0.0 ) ); do_warm_start = ( num_active > 0 && frac_same >= warm_start_frac() ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nnum_active = " << num_active; if( num_active ) { out << "\nmax(num_active-num_adds-num_drops,0)/(num_active) = " << "max("<<num_active<<"-"<<num_adds<<"-"<<num_drops<<",0)/("<<num_active<<") = " << frac_same; if( do_warm_start ) out << " >= "; else out << " < "; out << "warm_start_frac = " << warm_start_frac(); } if( do_warm_start ) out << "\nUse a warm start this time!\n"; else out << "\nDon't use a warm start this time!\n"; } } // Use active set from last iteration as an estimate for current active set // if we are to use a warm start. // // ToDo: If the selection of dependent and independent variables changes // then you will have to adjust this or not perform a warm start at all! if( do_warm_start ) { nu_iq.set_k(0,-1); } else { nu_iq.set_k(0) = 0.0; // No guess of the active set } VectorMutable &nu_k = nu_iq.get_k(0); // // Setup the reduced QP subproblem // // The call to the QP is setup for the more flexible call to the QPSolverRelaxed // interface to deal with the three independent variabilities: using simple // bounds for pz or not, general inequalities included or not, and extra equality // constraints included or not. // If this method of calling the QP solver were not used then 4 separate // calls to solve_qp(...) would have to be included to handle the four possible // QP formulations. // // The numeric arguments for the QP solver (in the nomenclatrue of QPSolverRelaxed) const value_type qp_bnd_inf = NLP::infinite_bound(); const Vector &qp_g = qp_grad_k; const MatrixSymOp &qp_G = rHL_iq.get_k(0); const value_type qp_etaL = 0.0; vec_mut_ptr_t qp_dL = Teuchos::null; vec_mut_ptr_t qp_dU = Teuchos::null; Teuchos::RCP<const MatrixOp> qp_E = Teuchos::null; BLAS_Cpp::Transp qp_trans_E = BLAS_Cpp::no_trans; vec_mut_ptr_t qp_b = Teuchos::null; vec_mut_ptr_t qp_eL = Teuchos::null; vec_mut_ptr_t qp_eU = Teuchos::null; Teuchos::RCP<const MatrixOp> qp_F = Teuchos::null; BLAS_Cpp::Transp qp_trans_F = BLAS_Cpp::no_trans; vec_mut_ptr_t qp_f = Teuchos::null; value_type qp_eta = 0.0; VectorMutable &qp_d = pz_k; // pz_k will be updated directly! vec_mut_ptr_t qp_nu = Teuchos::null; vec_mut_ptr_t qp_mu = Teuchos::null; vec_mut_ptr_t qp_Ed = Teuchos::null; vec_mut_ptr_t qp_lambda = Teuchos::null; // // Determine if we can use simple bounds on pz. // // If we have a variable-reduction null-space matrix // (with any choice for Y) then: // // d = Z*pz + (1-eta) * Y*py // // [ d(var_dep) ] = [ D ] * pz + (1-eta) * [ Ypy(var_dep) ] // [ d(var_indep) ] [ I ] [ Ypy(var_indep) ] // // For a cooridinate decomposition (Y = [ I ; 0 ]) then Ypy(var_indep) == // 0.0 and in this case the bounds on d(var_indep) become simple bounds on // pz even with the relaxation. Also, if dl(var_dep) and du(var_dep) are // unbounded, then we can also use simple bounds since we don't need the // relaxation and we can set eta=0. In this case we just have to subtract // from the upper and lower bounds on pz! // // Otherwise, we can not use simple variable bounds and implement the // relaxation properly. // const MatrixIdentConcat *Zvr = dynamic_cast<const MatrixIdentConcat*>( &Z_k ); const Range1D var_dep = Zvr ? Zvr->D_rng() : Range1D::Invalid, var_indep = Zvr ? Zvr->I_rng() : Range1D(); RCP<Vector> Ypy_indep; const value_type Ypy_indep_norm_inf = ( m ? (Ypy_indep=Ypy_k->sub_view(var_indep))->norm_inf() : 0.0); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) out << "\nDetermine if we can use simple bounds on pz ...\n" << " m = " << m << std::endl << " dynamic_cast<const MatrixIdentConcat*>(&Z_k) = " << Zvr << std::endl << " ||Ypy_k(var_indep)||inf = " << Ypy_indep_norm_inf << std::endl; const bool bounded_var_dep = ( m > 0 && num_bounded( *bl->sub_view(var_dep), *bu->sub_view(var_dep), qp_bnd_inf ) ); const bool use_simple_pz_bounds = ( m == 0 || ( Zvr != NULL && ( Ypy_indep_norm_inf == 0.0 || bounded_var_dep == 0 ) ) ); if( (int)olevel >= (int)PRINT_ALGORITHM_STEPS ) out << (use_simple_pz_bounds ? "\nUsing simple bounds on pz ...\n" : "\nUsing bounds on full Z*pz ...\n") << (bounded_var_dep ? "\nThere are finite bounds on dependent variables. Adding extra inequality constrints for D*pz ...\n" : "\nThere are no finite bounds on dependent variables. There will be no extra inequality constraints added on D*pz ...\n" ) ; if( use_simple_pz_bounds ) { // Set simple bound constraints on pz qp_dL = bl->sub_view(var_indep); qp_dU = bu->sub_view(var_indep); qp_nu = nu_k.sub_view(var_indep); // nu_k(var_indep) will be updated directly! if( m && bounded_var_dep ) { // Set general inequality constraints for D*pz qp_E = Teuchos::rcp(&Zvr->D(),false); qp_b = Ypy_k->sub_view(var_dep); qp_eL = bl->sub_view(var_dep); qp_eU = bu->sub_view(var_dep); qp_mu = nu_k.sub_view(var_dep); // nu_k(var_dep) will be updated directly! qp_Ed = Zpz_k.sub_view(var_dep); // Zpz_k(var_dep) will be updated directly! } else { // Leave these as NULL since there is no extra general inequality constraints } } else if( !use_simple_pz_bounds ) { // ToDo: Leave out parts for unbounded dependent variables! // There are no simple bounds! (leave qp_dL, qp_dU and qp_nu as null) // Set general inequality constraints for Z*pz qp_E = Teuchos::rcp(&Z_k,false); qp_b = Teuchos::rcp(Ypy_k,false); qp_eL = bl; qp_eU = bu; qp_mu = Teuchos::rcp(&nu_k,false); qp_Ed = Teuchos::rcp(&Zpz_k,false); // Zpz_k will be updated directly! } else { TEST_FOR_EXCEPT(true); } // Set the general equality constriants (if they exist) Range1D equ_undecomp = s.equ_undecomp(); if( m > r && m > 0 ) { // qp_f = Uy_k * py_k + c_k(equ_undecomp) qp_f = s.space_c().sub_space(equ_undecomp)->create_member(); V_MtV( qp_f.get(), Uy_iq->get_k(0), BLAS_Cpp::no_trans, py_iq.get_k(0) ); Vp_V( qp_f.get(), *c_iq->get_k(0).sub_view(equ_undecomp) ); // Must resize for the undecomposed constriants if it has not already been qp_F = Teuchos::rcp(&Uy_iq->get_k(0),false); qp_lambda = lambda_iq->set_k(0).sub_view(equ_undecomp); // lambda_k(equ_undecomp), will be updated directly! } // Setup the rest of the arguments QPSolverRelaxed::EOutputLevel qp_olevel; switch( olevel ) { case PRINT_NOTHING: qp_olevel = QPSolverRelaxed::PRINT_NONE; break; case PRINT_BASIC_ALGORITHM_INFO: qp_olevel = QPSolverRelaxed::PRINT_NONE; break; case PRINT_ALGORITHM_STEPS: qp_olevel = QPSolverRelaxed::PRINT_BASIC_INFO; break; case PRINT_ACTIVE_SET: qp_olevel = QPSolverRelaxed::PRINT_ITER_SUMMARY; break; case PRINT_VECTORS: qp_olevel = QPSolverRelaxed::PRINT_ITER_VECTORS; break; case PRINT_ITERATION_QUANTITIES: qp_olevel = QPSolverRelaxed::PRINT_EVERY_THING; break; default: TEST_FOR_EXCEPT(true); } // ToDo: Set print options so that only vectors matrices etc // are only printed in the null space // // Solve the QP // qp_solver().infinite_bound(qp_bnd_inf); const QPSolverStats::ESolutionType solution_type = qp_solver().solve_qp( int(olevel) == int(PRINT_NOTHING) ? NULL : &out ,qp_olevel ,( algo.algo_cntr().check_results() ? QPSolverRelaxed::RUN_TESTS : QPSolverRelaxed::NO_TESTS ) ,qp_g, qp_G, qp_etaL, qp_dL.get(), qp_dU.get() ,qp_E.get(), qp_trans_E, qp_E.get() ? qp_b.get() : NULL ,qp_E.get() ? qp_eL.get() : NULL, qp_E.get() ? qp_eU.get() : NULL ,qp_F.get(), qp_trans_F, qp_F.get() ? qp_f.get() : NULL ,NULL // obj_d ,&qp_eta, &qp_d ,qp_nu.get() ,qp_mu.get(), qp_E.get() ? qp_Ed.get() : NULL ,qp_F.get() ? qp_lambda.get() : NULL ,NULL // qp_Fd ); // // Check the optimality conditions for the QP // std::ostringstream omsg; bool throw_qp_failure = false; if( qp_testing() == QP_TEST || ( qp_testing() == QP_TEST_DEFAULT && algo.algo_cntr().check_results() ) ) { if( int(olevel) >= int(PRINT_ALGORITHM_STEPS) ) { out << "\nChecking the optimality conditions of the reduced QP subproblem ...\n"; } if(!qp_tester().check_optimality_conditions( solution_type,qp_solver().infinite_bound() ,int(olevel) == int(PRINT_NOTHING) ? NULL : &out ,int(olevel) >= int(PRINT_VECTORS) ? true : false ,int(olevel) >= int(PRINT_ITERATION_QUANTITIES) ? true : false ,qp_g, qp_G, qp_etaL, qp_dL.get(), qp_dU.get() ,qp_E.get(), qp_trans_E, qp_E.get() ? qp_b.get() : NULL ,qp_E.get() ? qp_eL.get() : NULL, qp_E.get() ? qp_eU.get() : NULL ,qp_F.get(), qp_trans_F, qp_F.get() ? qp_f.get() : NULL ,NULL // obj_d ,&qp_eta, &qp_d ,qp_nu.get() ,qp_mu.get(), qp_E.get() ? qp_Ed.get() : NULL ,qp_F.get() ? qp_lambda.get() : NULL ,NULL // qp_Fd )) { omsg << "\n*** Alert! at least one of the QP optimality conditions did not check out.\n"; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << omsg.str(); } throw_qp_failure = true; } } // // Set the solution // if( !use_simple_pz_bounds ) { // Everything is already updated! } else if( use_simple_pz_bounds ) { // Just have to set Zpz_k(var_indep) = pz_k *Zpz_k.sub_view(var_indep) = pz_k; if( m && !bounded_var_dep ) { // Must compute Zpz_k(var_dep) = D*pz LinAlgOpPack::V_MtV( &*Zpz_k.sub_view(var_dep), Zvr->D(), BLAS_Cpp::no_trans, pz_k ); // ToDo: Remove the compuation of Zpz here unless you must } } else { TEST_FOR_EXCEPT(true); } // Set the solution statistics qp_solver_stats_(s).set_k(0) = qp_solver().get_qp_stats(); // Cut back Ypy_k = (1-eta) * Ypy_k const value_type eps = std::numeric_limits<value_type>::epsilon(); if( fabs(qp_eta - 0.0) > eps ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n*** Alert! the QP was infeasible (eta = "<<qp_eta<<"). Cutting back Ypy_k = (1.0 - eta)*Ypy_k ...\n"; } Vt_S( Ypy_k, 1.0 - qp_eta ); } // eta_k eta_iq.set_k(0) = qp_eta; // // Modify the solution if we have to! // switch(solution_type) { case QPSolverStats::OPTIMAL_SOLUTION: break; // we are good! case QPSolverStats::PRIMAL_FEASIBLE_POINT: { omsg << "\n*** Alert! the returned QP solution is PRIMAL_FEASIBLE_POINT but not optimal!\n"; if( primal_feasible_point_error() ) omsg << "\n*** primal_feasible_point_error == true, this is an error!\n"; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << omsg.str(); } throw_qp_failure = primal_feasible_point_error(); break; } case QPSolverStats::DUAL_FEASIBLE_POINT: { omsg << "\n*** Alert! the returned QP solution is DUAL_FEASIBLE_POINT" << "\n*** but not optimal so we cut back the step ...\n"; if( dual_feasible_point_error() ) omsg << "\n*** dual_feasible_point_error == true, this is an error!\n"; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << omsg.str(); } // Cut back the step to fit in the bounds // // dl <= u*(Ypy_k+Zpz_k) <= du // vec_mut_ptr_t zero = s.space_x().create_member(0.0), d_tmp = s.space_x().create_member(); V_VpV( d_tmp.get(), *Ypy_k, Zpz_k ); const std::pair<value_type,value_type> u_steps = max_near_feas_step( *zero, *d_tmp, dl_iq.get_k(0), du_iq.get_k(0), 0.0 ); const value_type u = my_min( u_steps.first, 1.0 ); // largest positive step size alpha_iq.set_k(0) = u; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nFinding u s.t. dl <= u*(Ypy_k+Zpz_k) <= du\n" << "max step length u = " << u << std::endl << "alpha_k = u = " << alpha_iq.get_k(0) << std::endl; } throw_qp_failure = dual_feasible_point_error(); break; } case QPSolverStats::SUBOPTIMAL_POINT: { omsg << "\n*** Alert!, the returned QP solution is SUBOPTIMAL_POINT!\n"; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << omsg.str(); } throw_qp_failure = true; break; } default: TEST_FOR_EXCEPT(true); // should not happen! } // // Output the final solution! // if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n||pz_k||inf = " << s.pz().get_k(0).norm_inf() << "\nnu_k.nz() = " << s.nu().get_k(0).nz() << "\nmax(|nu_k(i)|) = " << s.nu().get_k(0).norm_inf() // << "\nmin(|nu_k(i)|) = " << min_abs( s.nu().get_k(0)() ) ; if( m > r ) out << "\n||lambda_k(undecomp)||inf = " << s.lambda().get_k(0).norm_inf(); out << "\n||Zpz_k||2 = " << s.Zpz().get_k(0).norm_2() ; if(qp_eta > 0.0) out << "\n||Ypy||2 = " << s.Ypy().get_k(0).norm_2(); out << std::endl; } if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\npz_k = \n" << s.pz().get_k(0); if(var_indep.size()) out << "\nnu_k(var_indep) = \n" << *s.nu().get_k(0).sub_view(var_indep); } if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_VECTORS) ) { if(var_indep.size()) out << "\nZpz(var_indep)_k = \n" << *s.Zpz().get_k(0).sub_view(var_indep); out << std::endl; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { if(var_dep.size()) out << "\nZpz(var_dep)_k = \n" << *s.Zpz().get_k(0).sub_view(var_dep); out << "\nZpz_k = \n" << s.Zpz().get_k(0); out << std::endl; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nnu_k = \n" << s.nu().get_k(0); if(var_dep.size()) out << "\nnu_k(var_dep) = \n" << *s.nu().get_k(0).sub_view(var_dep); if( m > r ) out << "\nlambda_k(equ_undecomp) = \n" << *s.lambda().get_k(0).sub_view(equ_undecomp); if(qp_eta > 0.0) out << "\nYpy = \n" << s.Ypy().get_k(0); } if( qp_eta == 1.0 ) { omsg << "TangentialStepWithInequStd_Step::do_step(...) : Error, a QP relaxation parameter\n" << "of eta = " << qp_eta << " was calculated and therefore it must be assumed\n" << "that the NLP's constraints are infeasible\n" << "Throwing an InfeasibleConstraints exception!\n"; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << omsg.str(); } throw InfeasibleConstraints(omsg.str()); } if( throw_qp_failure ) throw QPFailure( omsg.str(), qp_solver().get_qp_stats() ); return true; }
QPSolverStats::ESolutionType QPSolverRelaxedQPKWIK::imp_solve_qp( std::ostream* out, EOutputLevel olevel, ERunTests test_what ,const Vector& g, const MatrixSymOp& G ,value_type etaL ,const Vector* dL, const Vector* dU ,const MatrixOp* E, BLAS_Cpp::Transp trans_E, const Vector* b ,const Vector* eL, const Vector* eU ,const MatrixOp* F, BLAS_Cpp::Transp trans_F, const Vector* f ,value_type* obj_d ,value_type* eta, VectorMutable* d ,VectorMutable* nu ,VectorMutable* mu, VectorMutable* Ed ,VectorMutable* lambda, VectorMutable* Fd ) { using Teuchos::dyn_cast; using DenseLinAlgPack::nonconst_tri_ele; using LinAlgOpPack::dot; using LinAlgOpPack::V_StV; using LinAlgOpPack::assign; using LinAlgOpPack::V_StV; using LinAlgOpPack::V_MtV; using AbstractLinAlgPack::EtaVector; using AbstractLinAlgPack::transVtMtV; using AbstractLinAlgPack::num_bounded; using ConstrainedOptPack::MatrixExtractInvCholFactor; // ///////////////////////// // Map to QPKWIK input // Validate that rHL is of the proper type. const MatrixExtractInvCholFactor &cG = dyn_cast<const MatrixExtractInvCholFactor>(G); // Determine the number of sparse bounds on variables and inequalities. // By default set for the dense case const value_type inf = this->infinite_bound(); const size_type nd = d->dim(), m_in = E ? b->dim() : 0, m_eq = F ? f->dim() : 0, nvarbounds = dL ? num_bounded(*dL,*dU,inf) : 0, ninequbounds = E ? num_bounded(*eL,*eU,inf) : 0, nequalities = F ? f->dim() : 0; // Determine if this is a QP with a structure different from the // one just solved. const bool same_qp_struct = ( N_ == nd && M1_ == nvarbounds && M2_ == ninequbounds && M3_ == nequalities ); ///////////////////////////////////////////////////////////////// // Set the input parameters to be sent to QPKWIKNEW // N N_ = nd; // M1 M1_ = nvarbounds; // M2 M2_ = ninequbounds; // M3 M3_ = nequalities; // GRAD GRAD_ = VectorDenseEncap(g)(); // UINV_AUG // // UINV_AUG = [ sqrt(bigM) 0 ] // [ 0 L' ] // UINV_AUG_.resize(N_+1,N_+1); cG.extract_inv_chol( &nonconst_tri_ele( UINV_AUG_(2,N_+1,2,N_+1), BLAS_Cpp::upper ) ); UINV_AUG_(1,1) = 1.0 / ::sqrt( NUMPARAM_[2] ); UINV_AUG_.col(1)(2,N_+1) = 0.0; UINV_AUG_.row(1)(2,N_+1) = 0.0; // LDUINV_AUG LDUINV_AUG_ = UINV_AUG_.rows(); // IBND, BL , BU, A, LDA, YPY IBND_INV_.resize( nd + m_in); std::fill( IBND_INV_.begin(), IBND_INV_.end(), 0 ); // Initialize the zero IBND_.resize( my_max( 1, M1_ + M2_ ) ); BL_.resize( my_max( 1, M1_ + M2_ ) ); BU_.resize( my_max( 1, M1_ + M2_ + M3_ ) ); LDA_ = my_max( 1, M2_ + M3_ ); A_.resize( LDA_, ( M2_ + M3_ > 0 ? N_ : 1 ) ); YPY_.resize( my_max( 1, M1_ + M2_ ) ); if(M1_) YPY_(1,M1_) = 0.0; // Must be for this QP interface // Initialize variable bound constraints if( dL ) { VectorDenseEncap dL_de(*dL); VectorDenseEncap dU_de(*dU); // read iterators AbstractLinAlgPack::sparse_bounds_itr dLU_itr( dL_de().begin(), dL_de().end() ,dU_de().begin(), dU_de().end() ,inf ); // written iterators IBND_t::iterator IBND_itr = IBND_.begin(), IBND_end = IBND_.begin() + M1_; DVector::iterator BL_itr = BL_.begin(), BU_itr = BU_.begin(), YPY_itr = YPY_.begin(); // Loop for( size_type ibnd_i = 1; IBND_itr != IBND_end; ++ibnd_i, ++dLU_itr ) { IBND_INV_[dLU_itr.index()-1] = ibnd_i; *IBND_itr++ = dLU_itr.index(); *BL_itr++ = dLU_itr.lbound(); *BU_itr++ = dLU_itr.ubound(); *YPY_itr++ = 0.0; // Must be zero with this QP interface } } // Initialize inequality constraints if(M2_) { VectorDenseEncap eL_de(*eL); VectorDenseEncap eU_de(*eU); VectorDenseEncap b_de(*b); AbstractLinAlgPack::sparse_bounds_itr eLU_itr( eL_de().begin(), eL_de().end() ,eU_de().begin(), eU_de().end() ,inf ); if( M2_ < m_in ) { // Initialize BL, BU, YPY and A for sparse bounds on general inequalities // written iterators DVector::iterator BL_itr = BL_.begin() + M1_, BU_itr = BU_.begin() + M1_, YPY_itr = YPY_.begin() + M1_; IBND_t::iterator ibnds_itr = IBND_.begin() + M1_; // loop for(size_type i = 1; i <= M2_; ++i, ++eLU_itr, ++ibnds_itr ) { TEST_FOR_EXCEPT( !( !eLU_itr.at_end() ) ); const size_type k = eLU_itr.index(); *BL_itr++ = eLU_itr.lbound(); *BU_itr++ = eLU_itr.ubound(); *YPY_itr++ = b_de()(k); *ibnds_itr = k; // Only for my record, not used by QPKWIK IBND_INV_[nd+k-1] = M1_ + i; // Add the corresponding row of op(E) to A // y == A.row(i)' // y' = e_k' * op(E) => y = op(E')*e_k DVectorSlice y = A_.row(i); EtaVector e_k(k,eL_de().dim()); V_MtV( &y( 1, N_ ), *E, BLAS_Cpp::trans_not(trans_E), e_k() ); // op(E')*e_k } } else { // // Initialize BL, BU, YPY and A for dense bounds on general inequalities // // Initialize BL(M1+1:M1+M2), BU(M1+1:M1+M2) // and IBND(M1+1:M1+M2) = identity (only for my record, not used by QPKWIK) DVector::iterator BL_itr = BL_.begin() + M1_, BU_itr = BU_.begin() + M1_; IBND_t::iterator ibnds_itr = IBND_.begin() + M1_; for(size_type i = 1; i <= m_in; ++i ) { if( !eLU_itr.at_end() && eLU_itr.index() == i ) { *BL_itr++ = eLU_itr.lbound(); *BU_itr++ = eLU_itr.ubound(); ++eLU_itr; } else { *BL_itr++ = -inf; *BU_itr++ = +inf; } *ibnds_itr++ = i; IBND_INV_[nd+i-1]= M1_ + i; } // A(1:M2,1:N) = op(E) assign( &A_(1,M2_,1,N_), *E, trans_E ); // YPY YPY_(M1_+1,M1_+M2_) = b_de(); } } // Initialize equalities if(M3_) { V_StV( &BU_( M1_ + M2_ + 1, M1_ + M2_ + M3_ ), -1.0, VectorDenseEncap(*f)() ); assign( &A_( M2_ + 1, M2_ + M3_, 1, N_ ), *F, trans_F ); } // IYPY IYPY_ = 1; // ??? // WARM WARM_ = 0; // Cold start by default // MAX_ITER MAX_ITER_ = static_cast<f_int>(max_qp_iter_frac() * N_); // INF INF_ = ( same_qp_struct ? 1 : 0 ); // Initilize output, internal state and workspace quantities. if(!same_qp_struct) { X_.resize(N_); NACTSTORE_ = 0; IACTSTORE_.resize(N_+1); IACT_.resize(N_+1); UR_.resize(N_+1); ISTATE_.resize( QPKWIKNEW_CppDecl::qpkwiknew_listate(N_,M1_,M2_,M3_) ); LRW_ = QPKWIKNEW_CppDecl::qpkwiknew_lrw(N_,M1_,M2_,M3_); RW_.resize(LRW_); } // ///////////////////////////////////////////// // Setup a warm start form the input arguments // // Interestingly enough, QPKWIK sorts all of the // constraints according to scaled multiplier values // and mixes equality with inequality constriants. // It seems to me that you should start with equality // constraints first. WARM_ = 0; NACTSTORE_ = 0; if( m_eq ) { // Add equality constraints first since we know these will // be part of the active set. for( size_type j = 1; j <= m_eq; ++j ) { IACTSTORE_[NACTSTORE_] = 2*M1_ + 2*M2_ + j; ++NACTSTORE_; } } if( ( nu && nu->nz() ) || ( mu && mu->nz() ) ) { // Add inequality constraints const size_type nu_nz = nu ? nu->nz() : 0, mu_nz = mu ? mu->nz() : 0; // Combine all the multipliers for the bound and general inequality // constraints and sort them from the largest to the smallest. Hopefully // the constraints with the larger multiplier values will not be dropped // from the active set. SpVector gamma( nd + 1 + m_in , nu_nz + mu_nz ); typedef SpVector::element_type ele_t; if(nu && nu_nz) { VectorDenseEncap nu_de(*nu); DVectorSlice::const_iterator nu_itr = nu_de().begin(), nu_end = nu_de().end(); index_type i = 1; while( nu_itr != nu_end ) { for( ; *nu_itr == 0.0; ++nu_itr, ++i ); gamma.add_element(ele_t(i,*nu_itr)); ++nu_itr; ++i; } } if(mu && mu_nz) { VectorDenseEncap mu_de(*mu); DVectorSlice::const_iterator mu_itr = mu_de().begin(), mu_end = mu_de().end(); index_type i = 1; while( mu_itr != mu_end ) { for( ; *mu_itr == 0.0; ++mu_itr, ++i ); gamma.add_element(ele_t(i+nd,*mu_itr)); ++mu_itr; ++i; } } std::sort( gamma.begin(), gamma.end() , AbstractLinAlgPack::SortByDescendingAbsValue() ); // Now add the inequality constraints in decreasing order const SpVector::difference_type o = gamma.offset(); for( SpVector::const_iterator itr = gamma.begin(); itr != gamma.end(); ++itr ) { const size_type j = itr->index() + o; const value_type val = itr->value(); if( j <= nd ) { // Variable bound const size_type ibnd_i = IBND_INV_[j-1]; TEST_FOR_EXCEPT( !( ibnd_i ) ); IACTSTORE_[NACTSTORE_] = (val < 0.0 ? ibnd_i // lower bound (see IACT(*)) : M1_ + M2_ + ibnd_i // upper bound (see IACT(*)) ); ++NACTSTORE_; } else if( j <= nd + m_in ) { // General inequality constraint const size_type ibnd_i = IBND_INV_[j-1]; // offset into M1_ + ibnd_j TEST_FOR_EXCEPT( !( ibnd_i ) ); IACTSTORE_[NACTSTORE_] = (val < 0.0 ? ibnd_i // lower bound (see IACT(*)) : M1_ + M2_ + ibnd_i // upper bound (see IACT(*)) ); ++NACTSTORE_; } } } if( NACTSTORE_ > 0 ) WARM_ = 1; // ///////////////////////// // Call QPKWIK if( out && olevel > PRINT_NONE ) { *out << "\nCalling QPKWIK to solve QP problem ...\n"; } QPKWIKNEW_CppDecl::qpkwiknew( N_, M1_, M2_, M3_, &GRAD_(1), &UINV_AUG_(1,1), LDUINV_AUG_, &IBND_[0] ,&BL_(1), &BU_(1), &A_(1,1), LDA_, &YPY_(1), IYPY_, WARM_, NUMPARAM_, MAX_ITER_, &X_(1) ,&NACTSTORE_, &IACTSTORE_[0], &INF_, &NACT_, &IACT_[0], &UR_[0], &EXTRA_ ,&ITER_, &NUM_ADDS_, &NUM_DROPS_, &ISTATE_[0], LRW_, &RW_[0] ); // //////////////////////// // Map from QPKWIK output // eta *eta = EXTRA_; // d (VectorDenseMutableEncap(*d))() = X_(); // nu (simple variable bounds) and mu (general inequalities) if(nu) *nu = 0.0; if(mu) *mu = 0.0; // ToDo: Create VectorDenseMutableEncap views for faster access! {for(size_type i = 1; i <= NACT_; ++i) { size_type j = IACT_[i-1]; EConstraintType type = constraint_type(M1_,M2_,M3_,j); FortranTypes::f_int idc = constraint_index(M1_,M2_,M3_,&IBND_[0],type,j); switch(type) { case NU_L: nu->set_ele( idc , -UR_(i) ); break; case GAMA_L: mu->set_ele( IBND_[ M1_ + idc - 1 ], -UR_(i) ); break; case NU_U: nu->set_ele( idc, UR_(i)) ; break; case GAMA_U: mu->set_ele( IBND_[ M1_ + idc - 1 ], UR_(i) ); break; case LAMBDA: lambda->set_ele( idc, UR_(i) ); break; } }} // obj_d (This could be updated within QPKWIK in the future) if(obj_d) { // obj_d = g'*d + 1/2 * d' * G * g *obj_d = dot(g,*d) + 0.5 * transVtMtV(*d,G,BLAS_Cpp::no_trans,*d); } // Ed (This could be updated within QPKWIK in the future) if(Ed) { V_MtV( Ed, *E, trans_E, *d ); } // Fd (This could be updated within QPKWIK in the future) if(Fd) { V_MtV( Fd, *F, trans_F, *d ); } // Set the QP statistics QPSolverStats::ESolutionType solution_type; if( INF_ >= 0 ) { solution_type = QPSolverStats::OPTIMAL_SOLUTION; } else if( INF_ == -1 ) { // Infeasible constraints TEST_FOR_EXCEPTION( true, QPSolverRelaxed::Infeasible ,"QPSolverRelaxedQPKWIK::solve_qp(...) : Error, QP is infeasible" ); } else if( INF_ == -2 ) { // LRW too small TEST_FOR_EXCEPT( !( INF_ != -2 ) ); // Local programming error? } else if( INF_ == -3 ) { // Max iterations exceeded solution_type = QPSolverStats::DUAL_FEASIBLE_POINT; } else { TEST_FOR_EXCEPT(true); // Unknown return value! } qp_stats_.set_stats( solution_type, QPSolverStats::CONVEX ,ITER_, NUM_ADDS_, NUM_DROPS_ ,WARM_==1, *eta > 0.0 ); return qp_stats_.solution_type(); }
bool CalcReducedGradLagrangianStd_AddedStep::do_step( Algorithm& _algo, poss_type step_poss, IterationPack::EDoStepType type ,poss_type assoc_step_poss ) { using BLAS_Cpp::trans; using LinAlgOpPack::V_VpV; using LinAlgOpPack::V_MtV; using LinAlgOpPack::Vp_V; using LinAlgOpPack::Vp_MtV; NLPAlgo &algo = rsqp_algo(_algo); NLPAlgoState &s = algo.rsqp_state(); EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level(); EJournalOutputLevel ns_olevel = algo.algo_cntr().null_space_journal_output_level(); std::ostream& out = algo.track().journal_out(); // print step header. if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { using IterationPack::print_algorithm_step; print_algorithm_step( algo, step_poss, type, assoc_step_poss, out ); } // Calculate: rGL = rGf + Z' * nu + Uz' * lambda(equ_undecomp) IterQuantityAccess<VectorMutable> &rGL_iq = s.rGL(), &nu_iq = s.nu(), &Gf_iq = s.Gf(); VectorMutable &rGL_k = rGL_iq.set_k(0); if( nu_iq.updated_k(0) && nu_iq.get_k(0).nz() > 0 ) { // Compute rGL = Z'*(Gf + nu) to reduce the effect of roundoff in this // catastropic cancelation const Vector &nu_k = nu_iq.get_k(0); VectorSpace::vec_mut_ptr_t tmp = nu_k.space().create_member(); if( (int)olevel >= (int)PRINT_VECTORS ) out << "\nnu_k = \n" << nu_k; V_VpV( tmp.get(), Gf_iq.get_k(0), nu_k ); if( (int)olevel >= (int)PRINT_VECTORS ) out << "\nGf_k+nu_k = \n" << *tmp; V_MtV( &rGL_k, s.Z().get_k(0), trans, *tmp ); if( (int)ns_olevel >= (int)PRINT_VECTORS ) out << "\nrGL_k = \n" << rGL_k; } else { rGL_k = s.rGf().get_k(0); } // ToDo: Add terms for undecomposed equalities and inequalities! // + Uz' * lambda(equ_undecomp) if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n||rGL_k||inf = " << rGL_k.norm_inf() << "\n"; } if( static_cast<int>(ns_olevel) >= static_cast<int>(PRINT_VECTORS) ) { out << "\nrGL_k = \n" << rGL_k; } return true; }
bool ReducedHessianSecantUpdateLPBFGS_Strategy::perform_update( DVectorSlice* s_bfgs, DVectorSlice* y_bfgs, bool first_update ,std::ostream& out, EJournalOutputLevel olevel, NLPAlgo *algo, NLPAlgoState *s ,MatrixOp *rHL_k ) { using std::setw; using std::endl; using std::right; using Teuchos::dyn_cast; namespace rcp = MemMngPack; using Teuchos::RCP; using LinAlgOpPack::V_MtV; using DenseLinAlgPack::dot; using AbstractLinAlgPack::norm_inf; using AbstractLinAlgPack::transVtMtV; typedef ConstrainedOptPack::MatrixHessianSuperBasic MHSB_t; using Teuchos::Workspace; Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n*** (LPBFGS) Full limited memory BFGS to projected BFGS ...\n"; } #ifdef _WINDOWS MHSB_t &rHL_super = dynamic_cast<MHSB_t&>(*rHL_k); #else MHSB_t &rHL_super = dyn_cast<MHSB_t>(*rHL_k); #endif const size_type n = algo->nlp().n(), r = algo->nlp().r(), n_pz = n-r; bool do_projected_rHL_RR = false; // See if we still have a limited memory BFGS update matrix RCP<MatrixSymPosDefLBFGS> // We don't want this to be deleted until we are done with it lbfgs_rHL_RR = Teuchos::rcp_const_cast<MatrixSymPosDefLBFGS>( Teuchos::rcp_dynamic_cast<const MatrixSymPosDefLBFGS>(rHL_super.B_RR_ptr()) ); if( lbfgs_rHL_RR.get() && rHL_super.Q_R().is_identity() ) { // // We have a limited memory BFGS matrix and have not started projected BFGS updating // yet so lets determine if it is time to consider switching // // Check that the current update is sufficiently p.d. before we do anything const value_type sTy = dot(*s_bfgs,*y_bfgs), yTy = dot(*y_bfgs,*y_bfgs); if( !ConstrainedOptPack::BFGS_sTy_suff_p_d( *s_bfgs,*y_bfgs,&sTy , int(olevel) >= int(PRINT_ALGORITHM_STEPS) ? &out : NULL ) && !proj_bfgs_updater().bfgs_update().use_dampening() ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nWarning! use_damening == false so there is no way we can perform any" " kind of BFGS update (projected or not) so we will skip it!\n"; } quasi_newton_stats_(*s).set_k(0).set_updated_stats( QuasiNewtonStats::INDEF_SKIPED ); return true; } // Consider if we can even look at the active set yet. const bool consider_switch = lbfgs_rHL_RR->num_secant_updates() >= min_num_updates_proj_start(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nnum_previous_updates = " << lbfgs_rHL_RR->num_secant_updates() << ( consider_switch ? " >= " : " < " ) << "min_num_updates_proj_start = " << min_num_updates_proj_start() << ( consider_switch ? "\nConsidering if we should switch to projected BFGS updating of superbasics ...\n" : "\nNot time to consider switching to projected BFGS updating of superbasics yet!" ); } if( consider_switch ) { // // Our job here is to determine if it is time to switch to projected projected // BFGS updating. // if( act_set_stats_(*s).updated_k(-1) ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nDetermining if projected BFGS updating of superbasics should begin ...\n"; } // Determine if the active set has calmed down enough const SpVector &nu_km1 = s->nu().get_k(-1); const SpVectorSlice nu_indep = nu_km1(s->var_indep()); const bool act_set_calmed_down = PBFGSPack::act_set_calmed_down( act_set_stats_(*s).get_k(-1) ,proj_bfgs_updater().act_set_frac_proj_start() ,olevel,out ), max_num_updates_exceeded = lbfgs_rHL_RR->m_bar() >= max_num_updates_proj_start(); do_projected_rHL_RR = act_set_calmed_down || max_num_updates_exceeded; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { if( act_set_calmed_down ) { out << "\nThe active set has calmed down enough so lets further consider switching to\n" << "projected BFGS updating of superbasic variables ...\n"; } else if( max_num_updates_exceeded ) { out << "\nThe active set has not calmed down enough but num_previous_updates = " << lbfgs_rHL_RR->m_bar() << " >= max_num_updates_proj_start = " << max_num_updates_proj_start() << "\nso we will further consider switching to projected BFGS updating of superbasic variables ...\n"; } else { out << "\nIt is not time to switch to projected BFGS so just keep performing full limited memory BFGS for now ...\n"; } } if( do_projected_rHL_RR ) { // // Determine the set of initially fixed and free independent variables. // typedef Workspace<size_type> i_x_t; typedef Workspace<ConstrainedOptPack::EBounds> bnd_t; i_x_t i_x_free(wss,n_pz); i_x_t i_x_fixed(wss,n_pz); bnd_t bnd_fixed(wss,n_pz); i_x_t l_x_fixed_sorted(wss,n_pz); size_type n_pz_X = 0, n_pz_R = 0; // rHL = rHL_scale * I value_type rHL_scale = sTy > 0.0 ? yTy/sTy : 1.0; if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nScaling for diagonal intitial rHL = rHL_scale*I, rHL_scale = " << rHL_scale << std::endl; } value_type sRTBRRsR = 0.0, sRTyR = 0.0, sXTBXXsX = 0.0, sXTyX = 0.0; // Get the elements in i_x_free[] for variables that are definitely free // and initialize s_R'*B_RR*s_R and s_R'*y_R PBFGSPack::init_i_x_free_sRTsR_sRTyR( nu_indep, *s_bfgs, *y_bfgs , &n_pz_R, &i_x_free[0], &sRTBRRsR, &sRTyR ); sRTBRRsR *= rHL_scale; Workspace<value_type> rHL_XX_diag_ws(wss,nu_indep.nz()); DVectorSlice rHL_XX_diag(&rHL_XX_diag_ws[0],rHL_XX_diag_ws.size()); rHL_XX_diag = rHL_scale; // Sort fixed variables according to |s_X(i)^2*B_XX(i,i)|/|sRTBRRsR| + |s_X(i)*y_X(i)|/|sRTyR| // and initialize s_X'*B_XX*s_X and s_X*y_X PBFGSPack::sort_fixed_max_cond_viol( nu_indep,*s_bfgs,*y_bfgs,rHL_XX_diag,sRTBRRsR,sRTyR ,&sXTBXXsX,&sXTyX,&l_x_fixed_sorted[0]); // Pick initial set of i_x_free[] and i_x_fixed[] (sorted!) PBFGSPack::choose_fixed_free( proj_bfgs_updater().project_error_tol() ,proj_bfgs_updater().super_basic_mult_drop_tol(),nu_indep ,*s_bfgs,*y_bfgs,rHL_XX_diag,&l_x_fixed_sorted[0] ,olevel,out,&sRTBRRsR,&sRTyR,&sXTBXXsX,&sXTyX ,&n_pz_X,&n_pz_R,&i_x_free[0],&i_x_fixed[0],&bnd_fixed[0] ); if( n_pz_R < n_pz ) { // // We are ready to transition to projected BFGS updating! // // Determine if we are be using dense or limited memory BFGS? const bool low_num_super_basics = n_pz_R <= num_superbasics_switch_dense(); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_BASIC_ALGORITHM_INFO) ) { out << "\nSwitching to projected BFGS updating ..." << "\nn_pz_R = " << n_pz_R << ( low_num_super_basics ? " <= " : " > " ) << " num_superbasics_switch_dense = " << num_superbasics_switch_dense() << ( low_num_super_basics ? "\nThere are not too many superbasic variables so use dense projected BFGS ...\n" : "\nThere are too many superbasic variables so use limited memory projected BFGS ...\n" ); } // Create new matrix to use for rHL_RR initialized to rHL_RR = rHL_scale*I RCP<MatrixSymSecant> rHL_RR = NULL; if( low_num_super_basics ) { rHL_RR = new MatrixSymPosDefCholFactor( NULL // Let it allocate its own memory ,NULL // ... ,n_pz // maximum size ,lbfgs_rHL_RR->maintain_original() ,lbfgs_rHL_RR->maintain_inverse() ); } else { rHL_RR = new MatrixSymPosDefLBFGS( n_pz, lbfgs_rHL_RR->m() ,lbfgs_rHL_RR->maintain_original() ,lbfgs_rHL_RR->maintain_inverse() ,lbfgs_rHL_RR->auto_rescaling() ); } rHL_RR->init_identity( n_pz_R, rHL_scale ); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nrHL_RR after intialized to rHL_RR = rHL_scale*I but before performing current BFGS update:\nrHL_RR =\n" << dynamic_cast<MatrixOp&>(*rHL_RR); // I know this is okay! } // Initialize rHL_XX = rHL_scale*I #ifdef _WINDOWS MatrixSymInitDiag &rHL_XX = dynamic_cast<MatrixSymInitDiag&>( const_cast<MatrixSymOp&>(*rHL_super.B_XX_ptr())); #else MatrixSymInitDiag &rHL_XX = dyn_cast<MatrixSymInitDiag>( const_cast<MatrixSymOp&>(*rHL_super.B_XX_ptr())); #endif rHL_XX.init_identity( n_pz_X, rHL_scale ); // Reinitialize rHL rHL_super.initialize( n_pz, n_pz_R, &i_x_free[0], &i_x_fixed[0], &bnd_fixed[0] ,Teuchos::rcp_const_cast<const MatrixSymWithOpFactorized>( Teuchos::rcp_dynamic_cast<MatrixSymWithOpFactorized>(rHL_RR)) ,NULL,BLAS_Cpp::no_trans,rHL_super.B_XX_ptr() ); // // Perform the current BFGS update first // MatrixSymOp &rHL_RR_op = dynamic_cast<MatrixSymOp&>(*rHL_RR); const GenPermMatrixSlice &Q_R = rHL_super.Q_R(), &Q_X = rHL_super.Q_X(); // Get projected BFGS update vectors y_bfgs_R, s_bfgs_R Workspace<value_type> y_bfgs_R_ws(wss,Q_R.cols()), s_bfgs_R_ws(wss,Q_R.cols()), y_bfgs_X_ws(wss,Q_X.cols()), s_bfgs_X_ws(wss,Q_X.cols()); DVectorSlice y_bfgs_R(&y_bfgs_R_ws[0],y_bfgs_R_ws.size()); DVectorSlice s_bfgs_R(&s_bfgs_R_ws[0],s_bfgs_R_ws.size()); DVectorSlice y_bfgs_X(&y_bfgs_X_ws[0],y_bfgs_X_ws.size()); DVectorSlice s_bfgs_X(&s_bfgs_X_ws[0],s_bfgs_X_ws.size()); V_MtV( &y_bfgs_R, Q_R, BLAS_Cpp::trans, *y_bfgs ); // y_bfgs_R = Q_R'*y_bfgs V_MtV( &s_bfgs_R, Q_R, BLAS_Cpp::trans, *s_bfgs ); // s_bfgs_R = Q_R'*s_bfgs V_MtV( &y_bfgs_X, Q_X, BLAS_Cpp::trans, *y_bfgs ); // y_bfgs_X = Q_X'*y_bfgs V_MtV( &s_bfgs_X, Q_X, BLAS_Cpp::trans, *s_bfgs ); // s_bfgs_X = Q_X'*s_bfgs // Update rHL_RR if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nPerform current BFGS update on " << n_pz_R << " x " << n_pz_R << " projected " << "reduced Hessian for the superbasic variables where B = rHL_RR...\n"; } QuasiNewtonStats quasi_newton_stats; proj_bfgs_updater().bfgs_update().perform_update( &s_bfgs_R(),&y_bfgs_R(),false,out,olevel,algo->algo_cntr().check_results() ,&rHL_RR_op, &quasi_newton_stats ); // Perform previous updates if possible if( lbfgs_rHL_RR->m_bar() ) { const size_type num_add_updates = std::_MIN(num_add_recent_updates(),lbfgs_rHL_RR->m_bar()); if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nAdd the min(num_previous_updates,num_add_recent_updates) = min(" << lbfgs_rHL_RR->m_bar() << "," << num_add_recent_updates() << ") = " << num_add_updates << " most recent BFGS updates if possible ...\n"; } // Now add previous update vectors const value_type project_error_tol = proj_bfgs_updater().project_error_tol(); const DMatrixSlice S = lbfgs_rHL_RR->S(), Y = lbfgs_rHL_RR->Y(); size_type k = lbfgs_rHL_RR->k_bar(); // Location in S and Y of most recent update vectors for( size_type l = 1; l <= num_add_updates; ++l, --k ) { if(k == 0) k = lbfgs_rHL_RR->m_bar(); // see MatrixSymPosDefLBFGS // Check to see if this update satisfies the required conditions. // Start with the condition on s'*y since this are cheap to check. V_MtV( &s_bfgs_X(), Q_X, BLAS_Cpp::trans, S.col(k) ); // s_bfgs_X = Q_X'*s_bfgs V_MtV( &y_bfgs_X(), Q_X, BLAS_Cpp::trans, Y.col(k) ); // y_bfgs_X = Q_X'*y_bfgs sRTyR = dot( s_bfgs_R, y_bfgs_R ); sXTyX = dot( s_bfgs_X, y_bfgs_X ); bool sXTyX_cond = ::fabs(sXTyX/sRTyR) <= project_error_tol, do_update = sXTyX_cond, sXTBXXsX_cond = false; if( sXTyX_cond ) { // Check the second more expensive condition V_MtV( &s_bfgs_R(), Q_R, BLAS_Cpp::trans, S.col(k) ); // s_bfgs_R = Q_R'*s_bfgs V_MtV( &y_bfgs_R(), Q_R, BLAS_Cpp::trans, Y.col(k) ); // y_bfgs_R = Q_R'*y_bfgs sRTBRRsR = transVtMtV( s_bfgs_R, rHL_RR_op, BLAS_Cpp::no_trans, s_bfgs_R ); sXTBXXsX = rHL_scale * dot( s_bfgs_X, s_bfgs_X ); sXTBXXsX_cond = sXTBXXsX/sRTBRRsR <= project_error_tol; do_update = sXTBXXsX_cond && sXTyX_cond; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n---------------------------------------------------------------------" << "\nprevious update " << l << "\n\nChecking projection error:\n" << "\n|s_X'*y_X|/|s_R'*y_R| = |" << sXTyX << "|/|" << sRTyR << "| = " << ::fabs(sXTyX/sRTyR) << ( sXTyX_cond ? " <= " : " > " ) << " project_error_tol = " << project_error_tol; if( sXTyX_cond ) { out << "\n(s_X'*rHL_XX*s_X/s_R'*rHL_RR*s_R) = (" << sXTBXXsX << ") = " << (sXTBXXsX/sRTBRRsR) << ( sXTBXXsX_cond ? " <= " : " > " ) << " project_error_tol = " << project_error_tol; } out << ( do_update ? "\n\nAttemping to add this previous update where B = rHL_RR ...\n" : "\n\nCan not add this previous update ...\n" ); } if( do_update ) { // ( rHL_RR, s_bfgs_R, y_bfgs_R ) -> rHL_RR (this should not throw an exception!) try { proj_bfgs_updater().bfgs_update().perform_update( &s_bfgs_R(),&y_bfgs_R(),false,out,olevel,algo->algo_cntr().check_results() ,&rHL_RR_op, &quasi_newton_stats ); } catch( const MatrixSymSecant::UpdateSkippedException& excpt ) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nOops! The " << l << "th most recent BFGS update was rejected?:\n" << excpt.what() << std::endl; } } } } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\n---------------------------------------------------------------------\n"; } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nrHL_RR after adding previous BFGS updates:\nrHL_BRR =\n" << dynamic_cast<MatrixOp&>(*rHL_RR); } } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nThere were no previous update vectors to add!\n"; } } if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ITERATION_QUANTITIES) ) { out << "\nFull rHL after complete reinitialization:\nrHL =\n" << *rHL_k; } quasi_newton_stats_(*s).set_k(0).set_updated_stats( QuasiNewtonStats::REINITIALIZED ); return true; } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nn_pz_R == n_pz = " << n_pz_R << ", No variables would be removed from " << "the superbasis so just keep on performing limited memory BFGS for now ...\n"; } do_projected_rHL_RR = false; } } } } // If we have not switched to PBFGS then just update the full limited memory BFGS matrix if(!do_projected_rHL_RR) { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nPerform current BFGS update on " << n_pz << " x " << n_pz << " full " << "limited memory reduced Hessian B = rHL ...\n"; } proj_bfgs_updater().bfgs_update().perform_update( s_bfgs,y_bfgs,first_update,out,olevel,algo->algo_cntr().check_results() ,lbfgs_rHL_RR.get() ,&quasi_newton_stats_(*s).set_k(0) ); return true; } } else { if( static_cast<int>(olevel) >= static_cast<int>(PRINT_ALGORITHM_STEPS) ) { out << "\nWe have already switched to projected BFGS updating ...\n"; } } // // If we get here then we must have switched to // projected updating so lets just pass it on! // return proj_bfgs_updater().perform_update( s_bfgs,y_bfgs,first_update,out,olevel,algo,s,rHL_k); }
void MatrixSymPosDefLBFGS::secant_update( VectorMutable* s, VectorMutable* y, VectorMutable* Bs ) { using AbstractLinAlgPack::BFGS_sTy_suff_p_d; using AbstractLinAlgPack::dot; using LinAlgOpPack::V_MtV; using Teuchos::Workspace; Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get(); assert_initialized(); // Check skipping the BFGS update const value_type sTy = dot(*s,*y); std::ostringstream omsg; if( !BFGS_sTy_suff_p_d(*s,*y,&sTy,&omsg,"MatrixSymPosDefLBFGS::secant_update(...)" ) ) { throw UpdateSkippedException( omsg.str() ); } try { // Update counters if( m_bar_ == m_ ) { // We are at the end of the storage so remove the oldest stored update // and move updates to make room for the new update. This has to be done for the // the matrix to behave properly {for( size_type k = 1; k <= m_-1; ++k ) { S_->col(k) = S_->col(k+1); // Shift S.col() to the left Y_->col(k) = Y_->col(k+1); // Shift Y.col() to the left STY_.col(k)(1,m_-1) = STY_.col(k+1)(2,m_); // Move submatrix STY(2,m-1,2,m-1) up and left STSYTY_.col(k)(k+1,m_) = STSYTY_.col(k+1)(k+2,m_+1); // Move triangular submatrix STS(2,m-1,2,m-1) up and left STSYTY_.col(k+1)(1,k) = STSYTY_.col(k+2)(2,k+1); // Move triangular submatrix YTY(2,m-1,2,m-1) up and left }} // ToDo: Create an abstract interface, call it MultiVectorShiftVecs, to rearrange S and Y all at once. // This will be important for parallel performance. } else { m_bar_++; } // Set the update vectors *S_->col(m_bar_) = *s; *Y_->col(m_bar_) = *y; // ///////////////////////////////////////////////////////////////////////////////////// // Update S'Y // // Update the row and column m_bar // // S'Y = // // [ s(1)'*y(1) ... s(1)'*y(m_bar) ... s(1)'*y(m_bar) ] // [ . . . ] row // [ s(m_bar)'*y(1) ... s(m_bar)'*y(m_bar) ... s(m_bar)'*y(m_bar) ] m_bar // [ . . . ] // [ s(m_bar)'*y(1) ... s(m_bar)'*y(m_bar) ... s(m_bar)'*y(m_bar) ] // // col m_bar // // Therefore we set: // (S'Y)(:,m_bar) = S'*y(m_bar) // (S'Y)(m_bar,:) = s(m_bar)'*Y const multi_vec_ptr_t S = this->S(), Y = this->Y(); VectorSpace::vec_mut_ptr_t t = S->space_rows().create_member(); // temporary workspace // (S'Y)(:,m_bar) = S'*y(m_bar) V_MtV( t.get(), *S, BLAS_Cpp::trans, *y ); STY_.col(m_bar_)(1,m_bar_) = VectorDenseEncap(*t)(); // (S'Y)(m_bar,:)' = Y'*s(m_bar) V_MtV( t.get(), *Y, BLAS_Cpp::trans, *s ); STY_.row(m_bar_)(1,m_bar_) = VectorDenseEncap(*t)(); // ///////////////////////////////////////////////////////////////// // Update S'S // // S'S = // // [ s(1)'*s(1) ... symmetric symmetric ] // [ . . . ] row // [ s(m_bar)'*s(1) ... s(m_bar)'*s(m_bar) ... symmetric ] m_bar // [ . . . ] // [ s(m_bar)'*s(1) ... s(m_bar)'*s(m_bar) ... s(m_bar)'*s(m_bar) ] // // col m_bar // // Here we will update the lower triangular part of S'S. To do this we // only need to compute: // t = S'*s(m_bar) = { s(m_bar)' * [ s(1),..,s(m_bar),..,s(m_bar) ] }' // then set the appropriate rows and columns of S'S. Workspace<value_type> work_ws(wss,m_bar_); DVectorSlice work(&work_ws[0],work_ws.size()); // work = S'*s(m_bar) V_MtV( t.get(), *S, BLAS_Cpp::trans, *s ); work = VectorDenseEncap(*t)(); // Set row elements STSYTY_.row(m_bar_+1)(1,m_bar_) = work; // Set column elements STSYTY_.col(m_bar_)(m_bar_+1,m_bar_+1) = work(m_bar_,m_bar_); // ///////////////////////////////////////////////////////////////////////////////////// // Update Y'Y // // Update the row and column m_bar // // Y'Y = // // [ y(1)'*y(1) ... y(1)'*y(m_bar) ... y(1)'*y(m_bar) ] // [ . . . ] row // [ symmetric ... y(m_bar)'*y(m_bar) ... y(m_bar)'*y(m_bar) ] m_bar // [ . . . ] // [ symmetric ... symmetric ... y(m_bar)'*y(m_bar) ] // // col m_bar // // Here we will update the upper triangular part of Y'Y. To do this we // only need to compute: // t = Y'*y(m_bar) = { y(m_bar)' * [ y(1),..,y(m_bar),..,y(m_bar) ] }' // then set the appropriate rows and columns of Y'Y. // work = Y'*y(m_bar) V_MtV( t.get(), *Y, BLAS_Cpp::trans, *y ); work = VectorDenseEncap(*t)(); // Set row elements STSYTY_.col(m_bar_+1)(1,m_bar_) = work; // Set column elements STSYTY_.row(m_bar_)(m_bar_+1,m_bar_+1) = work(m_bar_,m_bar_); // ///////////////////////////// // Update gamma_k // gamma_k = s'*y / y'*y if(auto_rescaling_) gamma_k_ = STY_(m_bar_,m_bar_) / STSYTY_(m_bar_,m_bar_+1); // We do not initially update Q unless we have to form a matrix-vector // product later. Q_updated_ = false; num_secant_updates_++; } // end try catch(...) { // If we throw any exception the we should make the matrix uninitialized // so that we do not leave this object in an inconsistant state. n_ = 0; throw; } }
void MatrixSymPosDefLBFGS::V_InvMtV( VectorMutable* y, BLAS_Cpp::Transp trans_rhs1 , const Vector& x ) const { using AbstractLinAlgPack::Vp_StMtV; using DenseLinAlgPack::V_InvMtV; using LinAlgOpPack::V_mV; using LinAlgOpPack::V_StV; using LinAlgOpPack::Vp_V; using LinAlgOpPack::V_MtV; using LinAlgOpPack::V_StMtV; using LinAlgOpPack::Vp_MtV; using DenseLinAlgPack::Vp_StMtV; typedef VectorDenseEncap vde; typedef VectorDenseMutableEncap vdme; using Teuchos::Workspace; Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get(); assert_initialized(); TEUCHOS_TEST_FOR_EXCEPT( !( inverse_is_updated_ ) ); // For now just always update // y = inv(Bk) * x = Hk * x // // = gk*x + [S gk*Y] * [ inv(R')*(D+gk*Y'Y)*inv(R) -inv(R') ] * [ S' ] * x // [ -inv(R) 0 ] [ gk*Y' ] // // Perform in the following (in order): // // y = gk*x // // t1 = [ S'*x ] <: R^(2*m) // [ gk*Y'*x ] // // t2 = inv(R) * t1(1:m) <: R^(m) // // t3 = - inv(R') * t1(m+1,2*m) <: R^(m) // // t4 = gk * Y'Y * t2 <: R^(m) // // t4 += D*t2 // // t5 = inv(R') * t4 <: R^(m) // // t5 += t3 // // y += S*t5 // // y += -gk*Y*t2 // y = gk*x V_StV( y, gamma_k_, x ); const size_type mb = m_bar_; if( !mb ) return; // No updates have been performed. const multi_vec_ptr_t S = this->S(), Y = this->Y(); // Get workspace Workspace<value_type> t1_ws(wss,2*mb); DVectorSlice t1(&t1_ws[0],t1_ws.size()); Workspace<value_type> t2_ws(wss,mb); DVectorSlice t2(&t2_ws[0],t2_ws.size()); Workspace<value_type> t3_ws(wss,mb); DVectorSlice t3(&t3_ws[0],t3_ws.size()); Workspace<value_type> t4_ws(wss,mb); DVectorSlice t4(&t4_ws[0],t4_ws.size()); Workspace<value_type> t5_ws(wss,mb); DVectorSlice t5(&t5_ws[0],t5_ws.size()); VectorSpace::vec_mut_ptr_t t = S->space_rows().create_member(); const DMatrixSliceTri &R = this->R(); const DMatrixSliceSym &YTY = this->YTY(); // t1 = [ S'*x ] // [ gk*Y'*x ] V_MtV( t.get(), *S, BLAS_Cpp::trans, x ); t1(1,mb) = vde(*t)(); V_StMtV( t.get(), gamma_k_, *Y, BLAS_Cpp::trans, x ); t1(mb+1,2*mb) = vde(*t)(); // t2 = inv(R) * t1(1:m) V_InvMtV( &t2, R, BLAS_Cpp::no_trans, t1(1,mb) ); // t3 = - inv(R') * t1(m+1,2*m) V_mV( &t3, t1(mb+1,2*mb) ); V_InvMtV( &t3, R, BLAS_Cpp::trans, t3 ); // t4 = gk * Y'Y * t2 V_StMtV( &t4, gamma_k_, YTY, BLAS_Cpp::no_trans, t2 ); // t4 += D*t2 Vp_DtV( &t4, t2 ); // t5 = inv(R') * t4 V_InvMtV( &t5, R, BLAS_Cpp::trans, t4 ); // t5 += t3 Vp_V( &t5, t3 ); // y += S*t5 (vdme(*t)() = t5); Vp_MtV( y, *S, BLAS_Cpp::no_trans, *t ); // y += -gk*Y*t2 (vdme(*t)() = t2); Vp_StMtV( y, -gamma_k_, *Y, BLAS_Cpp::no_trans, *t ); }
void MatrixSymPosDefLBFGS::Vp_StMtV( VectorMutable* y, value_type alpha, BLAS_Cpp::Transp trans_rhs1 , const Vector& x, value_type beta ) const { using AbstractLinAlgPack::Vt_S; using AbstractLinAlgPack::Vp_StV; using AbstractLinAlgPack::Vp_StMtV; using LinAlgOpPack::V_StMtV; using LinAlgOpPack::V_MtV; typedef VectorDenseEncap vde; typedef VectorDenseMutableEncap vdme; using Teuchos::Workspace; Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get(); assert_initialized(); TEUCHOS_TEST_FOR_EXCEPT( !( original_is_updated_ ) ); // For now just always update // y = b*y + Bk * x // // y = b*y + (1/gk)*x - [ (1/gk)*S Y ] * inv(Q) * [ (1/gk)*S' ] * x // [ Y' ] // Perform the following operations (in order): // // y = b*y // // y += (1/gk)*x // // t1 = [ (1/gk)*S'*x ] <: R^(2*m) // [ Y'*x ] // // t2 = inv(Q) * t1 <: R^(2*m) // // y += -(1/gk) * S * t2(1:m) // // y += -1.0 * Y * t2(m+1,2m) const value_type invgk = 1.0 / gamma_k_; // y = b*y Vt_S( y, beta ); // y += (1/gk)*x Vp_StV( y, invgk, x ); if( !m_bar_ ) return; // No updates have been added yet. const multi_vec_ptr_t S = this->S(), Y = this->Y(); // Get workspace const size_type mb = m_bar_; Workspace<value_type> t1_ws(wss,2*mb); DVectorSlice t1(&t1_ws[0],t1_ws.size()); Workspace<value_type> t2_ws(wss,2*mb); DVectorSlice t2(&t2_ws[0],t2_ws.size()); VectorSpace::vec_mut_ptr_t t = S->space_rows().create_member(); // t1 = [ (1/gk)*S'*x ] // [ Y'*x ] V_StMtV( t.get(), invgk, *S, BLAS_Cpp::trans, x ); t1(1,mb) = vde(*t)(); V_MtV( t.get(), *Y, BLAS_Cpp::trans, x ); t1(mb+1,2*mb) = vde(*t)(); // t2 = inv(Q) * t1 V_invQtV( &t2, t1 ); // y += -(1/gk) * S * t2(1:m) (vdme(*t)() = t2(1,mb)); Vp_StMtV( y, -invgk, *S, BLAS_Cpp::no_trans, *t ); // y += -1.0 * Y * t2(m+1,2m (vdme(*t)() = t2(mb+1,2*mb)); Vp_StMtV( y, -1.0, *Y, BLAS_Cpp::no_trans, *t ); }