Exemple #1
0
MStatus sweptEmitter::emitCountPerPoint
	(
		const MPlug &plug,
		MDataBlock &block,
		int length,					// length of emitCountPP
		MIntArray &emitCountPP		// output: emitCount for each point
	)
//
//	Descriptions:
//		Compute emitCount for each point where new particles come from.
//
{
	MStatus status;

	int plugIndex = plug.logicalIndex( &status );
	McheckErr(status, "ERROR in emitCountPerPoint: when plug.logicalIndex.\n");

	// Get rate and delta time.
	//
	double rate = rateValue( block );
	MTime dt = deltaTimeValue( plugIndex, block );

	// Compute emitCount for each point.
	//
	double dblCount = rate * dt.as( MTime::kSeconds );

	int intCount = (int)dblCount;
	for( int i = 0; i < length; i++ )
	{
		emitCountPP.append( intCount );
	}

	return( MS::kSuccess );
}
MStatus vixo_visImport::connectionBroken(const MPlug& plug,const MPlug& otherPlug,bool asSrc)
{
	if(plug.array()==this->vis)
	{
		mapObjName.erase(plug.logicalIndex());
		return MS::kSuccess;
	}
	return MPxNode::connectionMade( plug, otherPlug, asSrc );
}
    //---------------------------------------------------
    // set the bind pose for a transform
    //
    MStatus DagHelper::setBindPoseInverse ( const MObject& node, const MMatrix& bindPoseInverse )
    {
        MStatus status;
        MFnDependencyNode dgFn ( node );
        MPlug bindPosePlug = dgFn.findPlug ( "bindPose", &status );
        if ( status != MS::kSuccess )
        {
            MGlobal::displayWarning ( MString ( "No bindPose found on node " ) + dgFn.name() );
            return status;
        }

        MFnMatrixData matrixFn;
        MObject val = matrixFn.create ( bindPoseInverse.inverse(), &status );
        MObject invval = matrixFn.create ( bindPoseInverse, &status );
        if ( status != MS::kSuccess )
        {
            MGlobal::displayWarning ( MString ( "Error setting bindPose on node " ) + dgFn.name() );
            return status;
        }

        // set the bind pose on the joint itself
        bindPosePlug.setValue ( val );

        // Now, perhaps more significantly, see if there's a
        // skinCluster using this bone and update its bind
        // pose (as the joint bind pose is not connected to
        // the skin - it's set at bind time from the joint's
        // current position, and our importer may not want to
        // disturb the current scene state just to put bones
        // in a bind position before creating skin clusters)
        MObject _node ( node );
        MItDependencyGraph it ( _node, MFn::kSkinClusterFilter );
        while ( !it.isDone() )
        {
            MPlug plug = it.thisPlug();
            unsigned int idx = plug.logicalIndex();
            MFnDependencyNode skinFn ( plug.node() );
            MPlug skinBindPosePlug = skinFn.findPlug ( "bindPreMatrix", &status );

            if ( status == MS::kSuccess )
            {
                // The skinCluster stores inverse inclusive matrix
                // so notice we use invval (the MObject created off
                // the inverse matrix here)
                skinBindPosePlug = skinBindPosePlug.elementByLogicalIndex ( idx );
                skinBindPosePlug.setValue ( invval );
            }

            it.next();
        }

        return status;
    }
    // ----------------------------------------------------------
    int AnimationClip::findPlug ( const MPlug& p )
    {
        uint count = plugs.length();

        for ( uint i = 0; i < count; ++i )
        {
            if ( p == plugs[i] )
            {
                if ( !p.isElement() || p.logicalIndex() == plugs[i].logicalIndex() )
                {
                    return i;
                }
            }
        }

        return -1;
    }
Exemple #5
0
MStatus nailConstraintNode::compute(const MPlug& plug, MDataBlock& data)
{
    //std::cout << "nailConstraintNode::compute: " << plug.name() << std::endl;
    //MTime time = data.inputValue( nailConstraintNode::inTime ).asTime();
    if(plug == ca_constraint) {
        computeConstraint(plug, data);
    } else if(plug == ca_constraintParam) {
        computeConstraintParam(plug, data);
    } else if(plug.isElement()) {
        if(plug.array() == worldMatrix && plug.logicalIndex() == 0) {
            computeWorldMatrix(plug, data);
        } else {
            return MStatus::kUnknownParameter;
        }
    } else {
        return MStatus::kUnknownParameter;
    }
    return MStatus::kSuccess;
}
Exemple #6
0
int physicalIndex(MPlug& p)
{
	MPlug parent = p;
	while (parent.isChild())
		parent = parent.parent();
	
	if (!parent.isElement())
		return -1;

	if (!parent.array())
		return - 1;
	
	MPlug arrayPlug = parent.array();

	for (uint i = 0; i < arrayPlug.numElements(); i++)
		if (arrayPlug[i].logicalIndex() == parent.logicalIndex())
			return i;

	return -1;
}
Exemple #7
0
    // getBindPoseMatrix.
    // should be a relatively harmless function.
    // well you're wrong: this is one of the most stupid/difficult things in
    // Maya:
    //   1st try: just get the "bindPose"-plug, and use it as matrix:
    //             MFnIkJoint joint(jointPath.node());
    //             MPlug bindMatrixPlug = joint.findPlug("bindPose");
    //             MObject bindMatrixObject;
    //             bindMatrixPlug.getValue(bindMatrixObject);
    //             MFnMatrixData matrixData(bindMatrixObject);
    //             MMatrix bindMatrix = matrixData.matrix();
    //      Looks correct. But isn't. Not only, that we want the local
    //      transform (but that wouldn't be difficult (just look at the
    //      parent...), the bindPose plug seems
    //      to be shared between instances. If a joint is instanced, the
    //      bindMatrix would be the same as for the other instance. Bad luck :(
    //   2nd try: extract the local-transform out of the bindPose-plug. That's
    //      what is done here. (at least for now. (seen first in
    //      MS' xporttranslator).
    //      Still not the really correct way: it's possible to break the
    //      bindPose-plug. Maya still works, but our exporter doesn't.
    //   3rd (and correct way):
    //        http://www.greggman.com/pages/mayastuff.htm
    //
    // again: not yet very much error-checking...
    MMatrix
    BindPoseTool::getBindPoseMatrix(MFnIkJoint joint) const
    {
        // get bindPose-plug on joint
        MPlug tempBindPosePlug = joint.findPlug("bindPose");

        MPlugArray mapConnections;
        tempBindPosePlug.connectedTo(mapConnections, false, true);

        if (mapConnections.length() != 1)
        {
            //cout << "returning currentMatrix" << endl;
            // certainly not the most correct way of dealing with the problem...
            return joint.transformation().asMatrix();
        }

        // find the other end. actually we shouldn't call it "bindPosePlug",
        // but worldTransformPlug (as that's where it enters).

        // theoretically someone could bind the bindPose to other nodes,
        // than the bindPose-node. in this case there's a problem.
        MPlug bindPosePlug = mapConnections[0];

        // this node should be a "dagPose"-node (in case you want to look it
        // up in the help)
        MFnDependencyNode bindPoseNode(bindPosePlug.node());

        // and as such, has the "xformMatrix"-attribute.
        MObject xformMatrixAttribute = bindPoseNode.attribute("xformMatrix");

        MPlug localTransformPlug(bindPosePlug.node(), xformMatrixAttribute);
        // xformMatrix is an array. to get our localmatrix we need to select
        // the same index, as our bindPosePlug (logicalIndex()).
        localTransformPlug.selectAncestorLogicalIndex(
                            bindPosePlug.logicalIndex(), xformMatrixAttribute);

        MObject localMatrixObject;
        localTransformPlug.getValue(localMatrixObject);
        // extract the matrix out of the object.
        return MFnMatrixData(localMatrixObject).matrix();
    }
Exemple #8
0
MStatus rigidBodyNode::compute(const MPlug& plug, MDataBlock& data)
{
    // std::cout << "rigidBodyNode::compute | plug " << plug.name() << std::endl;
    //MTime time = data.inputValue( rigidBodyNode::inTime ).asTime();
    if(plug == ca_rigidBody) {
        computeRigidBody(plug, data);
    } else if(plug == ca_rigidBodyParam) {
        computeRigidBodyParam(plug, data);
    } else if(plug == ca_solver) {
		data.inputValue(ia_solver).asBool();
    } else if(plug.isElement()) {
        if(plug.array() == worldMatrix && plug.logicalIndex() == 0) {
            computeWorldMatrix(plug, data);
        } else {
            return MStatus::kUnknownParameter;
        }
    } else {
        return MStatus::kUnknownParameter;
    }
    return MStatus::kSuccess;
}
MStatus vixo_visImport::connectionMade(const MPlug& plug,const MPlug& otherPlug,bool asSrc)
{
	if(plug.array()==this->vis)
	{
		//cout<<plug.info().asChar()<<" "<<plug.array().name().asChar()<<" "<<plug.logicalIndex()<<endl;
		MPlugArray arr;
		plug.connectedTo(arr,false,true);
		MFnDagNode dagNodeFn(arr[0].node());
		if(dagNodeFn.parentCount()<=0)
			return MS::kSuccess;
		//MFnDagNode transformFn(dagNodeFn.parent(0));
		MStringArray tempArray;
		dagNodeFn.name().split(':',tempArray);
		if(tempArray.length()<2)
			return MS::kSuccess;
		//cout<<tempArray[tempArray.length()-1].asChar()<<endl;
		mapObjName.insert(pair<int,string>(plug.logicalIndex(),tempArray[tempArray.length()-1].asChar()));
		return MS::kSuccess;
	}
	return MPxNode::connectionMade( plug, otherPlug, asSrc );

}
Exemple #10
0
MStatus dynExprField::compute(const MPlug& plug, MDataBlock& block)
//
//	Descriptions:
//		compute output force.
//
{
	MStatus status;

	if( !(plug == mOutputForce) )
        return( MS::kUnknownParameter );

	// get the logical index of the element this plug refers to.
	//
	int multiIndex = plug.logicalIndex( &status );
	McheckErr(status, "ERROR in plug.logicalIndex.\n");

	// Get input data handle, use outputArrayValue since we do not
	// want to evaluate both inputs, only the one related to the
	// requested multiIndex. Evaluating both inputs at once would cause
	// a dependency graph loop.
	
	MArrayDataHandle hInputArray = block.outputArrayValue( mInputData, &status );
	McheckErr(status,"ERROR in hInputArray = block.outputArrayValue().\n");
	
	status = hInputArray.jumpToElement( multiIndex );
	McheckErr(status, "ERROR: hInputArray.jumpToElement failed.\n");
	
	// get children of aInputData.
	
	MDataHandle hCompond = hInputArray.inputValue( &status );
	McheckErr(status, "ERROR in hCompond=hInputArray.inputValue\n");
	
	MDataHandle hPosition = hCompond.child( mInputPositions );
	MObject dPosition = hPosition.data();
	MFnVectorArrayData fnPosition( dPosition );
	MVectorArray points = fnPosition.array( &status );
	McheckErr(status, "ERROR in fnPosition.array(), not find points.\n");
	
	// Comment out the following since velocity, and mass are 
	// not needed in this field.
	//
	// MDataHandle hVelocity = hCompond.child( mInputVelocities );
	// MObject dVelocity = hVelocity.data();
	// MFnVectorArrayData fnVelocity( dVelocity );
	// MVectorArray velocities = fnVelocity.array( &status );
	// McheckErr(status, "ERROR in fnVelocity.array(), not find velocities.\n");
	//
	// MDataHandle hMass = hCompond.child( mInputMass );
	// MObject dMass = hMass.data();
	// MFnDoubleArrayData fnMass( dMass );
	// MDoubleArray masses = fnMass.array( &status );
	// McheckErr(status, "ERROR in fnMass.array(), not find masses.\n");

	// The attribute mInputPPData contains the attribute in an array form 
	// parpared by the particleShape if the particleShape has per particle 
	// attribute fieldName_attrName.  
	//
	// Suppose a field with the name dynExprField1 is connecting to 
	// particleShape1, and the particleShape1 has per particle float attribute
	// dynExprField1_magnitude and vector attribute dynExprField1_direction,
	// then hInputPPArray will contains a MdoubleArray with the corresponding
	// name "magnitude" and a MvectorArray with the name "direction".  This 
	// is a mechanism to allow the field attributes being driven by dynamic 
	// expression.
	MArrayDataHandle mhInputPPData = block.inputArrayValue( mInputPPData, &status );
	McheckErr(status,"ERROR in mhInputPPData = block.inputArrayValue().\n");

	status = mhInputPPData.jumpToElement( multiIndex );
	McheckErr(status, "ERROR: mhInputPPArray.jumpToElement failed.\n");

	MDataHandle hInputPPData = mhInputPPData.inputValue( &status );
	McheckErr(status, "ERROR in hInputPPData = mhInputPPData.inputValue\n");

	MObject dInputPPData = hInputPPData.data();
	MFnArrayAttrsData inputPPArray( dInputPPData );

	MDataHandle hOwnerPPData = block.inputValue( mOwnerPPData, &status );
	McheckErr(status, "ERROR in hOwnerPPData = block.inputValue\n");

	MObject dOwnerPPData = hOwnerPPData.data();
	MFnArrayAttrsData ownerPPArray( dOwnerPPData );

	const MString magString("magnitude");
	MFnArrayAttrsData::Type doubleType(MFnArrayAttrsData::kDoubleArray);

	bool arrayExist;
	MDoubleArray magnitudeArray;
	arrayExist = inputPPArray.checkArrayExist(magString, doubleType, &status);
	// McheckErr(status, "ERROR in checkArrayExist(magnitude)\n");
	if(arrayExist) {
	    magnitudeArray = inputPPArray.getDoubleData(magString, &status);
	    // McheckErr(status, "ERROR in inputPPArray.doubleArray(magnitude)\n");
	}

	MDoubleArray magnitudeOwnerArray;
	arrayExist = ownerPPArray.checkArrayExist(magString, doubleType, &status);
	// McheckErr(status, "ERROR in checkArrayExist(magnitude)\n");
	if(arrayExist) {
	    magnitudeOwnerArray = ownerPPArray.getDoubleData(magString, &status);
	    // McheckErr(status, "ERROR in ownerPPArray.doubleArray(magnitude)\n");
	}

	const MString dirString("direction");
	MFnArrayAttrsData::Type vectorType(MFnArrayAttrsData::kVectorArray);

	arrayExist = inputPPArray.checkArrayExist(dirString, vectorType, &status);
        MVectorArray directionArray;
	// McheckErr(status, "ERROR in checkArrayExist(direction)\n");
	if(arrayExist) {
	    directionArray = inputPPArray.getVectorData(dirString, &status);
	    // McheckErr(status, "ERROR in inputPPArray.vectorArray(direction)\n");
	}

	arrayExist = ownerPPArray.checkArrayExist(dirString, vectorType, &status);
        MVectorArray directionOwnerArray;
	// McheckErr(status, "ERROR in checkArrayExist(direction)\n");
	if(arrayExist) {
	    directionOwnerArray = ownerPPArray.getVectorData(dirString, &status);
	    // McheckErr(status, "ERROR in ownerPPArray.vectorArray(direction)\n");
	}

	// Compute the output force.
	//
	MVectorArray forceArray;

	apply( block, points.length(), magnitudeArray, magnitudeOwnerArray, 
	       directionArray, directionOwnerArray, forceArray );

	// get output data handle
	//
	MArrayDataHandle hOutArray = block.outputArrayValue( mOutputForce, &status);
	McheckErr(status, "ERROR in hOutArray = block.outputArrayValue.\n");
	MArrayDataBuilder bOutArray = hOutArray.builder( &status );
	McheckErr(status, "ERROR in bOutArray = hOutArray.builder.\n");

	// get output force array from block.
	//
	MDataHandle hOut = bOutArray.addElement(multiIndex, &status);
	McheckErr(status, "ERROR in hOut = bOutArray.addElement.\n");

	MFnVectorArrayData fnOutputForce;
	MObject dOutputForce = fnOutputForce.create( forceArray, &status );
	McheckErr(status, "ERROR in dOutputForce = fnOutputForce.create\n");

	// update data block with new output force data.
	//
	hOut.set( dOutputForce );
	block.setClean( plug );

	return( MS::kSuccess );
}
MStatus	CmpMeshModifierCmd::transferTweaks( const MDagPath &shapePath,
										    MObject &tweakNode, 
											MDagModifier &dagMod )
{
	// Get the tweaks from the mesh shape and apply them to the 
	// to the tweak node
	MFnDagNode shapeNodeFn( shapePath );
	MPlug srcTweaksPlug = shapeNodeFn.findPlug( "pnts" );
	
	MFnDependencyNode tweakNodeFn( tweakNode );
	MPlug dstTweaksPlug = tweakNodeFn.findPlug( "tweak" );
		
	//MGlobal::displayInfo( MString( "storing tweaks from " ) + shapePath.fullPathName() + "\n" );
	
	MPlugArray plugs;
	MPlug srcTweakPlug;
	MPlug dstTweakPlug;
	MObject dataObj;
	MFloatVector tweak;
	unsigned int nTweaks = srcTweaksPlug.numElements();
	unsigned int i, j, ci, logicalIndex;
	for( i=0; i < nTweaks; i++ )
	{
		srcTweakPlug = srcTweaksPlug.elementByPhysicalIndex( i );
		if( !srcTweakPlug.isNull() )
		{
			logicalIndex = srcTweakPlug.logicalIndex();
			
			// Set tweak node tweak element
			srcTweakPlug.getValue( dataObj );			
			MFnNumericData numDataFn( dataObj );
			numDataFn.getData( tweak[0], tweak[1], tweak[2] );
			
			dagMod.commandToExecute( MString( "setAttr " ) + tweakNodeFn.name() + ".tweak[" + logicalIndex + "] " + 
									 tweak[0] + " " + tweak[1] + " " + tweak[2] );

			// Handle transfer of incoming and outgoing connections to "pnts" elements
			dstTweakPlug = dstTweaksPlug.elementByLogicalIndex(logicalIndex);

			if( srcTweakPlug.isConnected() )
			{
				// As source, transfer source to tweak node tweak
				srcTweakPlug.connectedTo( plugs, false, true );
				for( j=0; j < plugs.length(); j++ )
				{
					dagMod.disconnect( srcTweakPlug, plugs[j] );
					dagMod.connect( dstTweakPlug, plugs[j] );
				}
				
				// As destination, transfer destination to tweak node tweak
				srcTweakPlug.connectedTo( plugs, true, false );
				if( plugs.length() == 1 ) // There can only be one input connection
				{
					dagMod.disconnect( plugs[0], srcTweakPlug );
					dagMod.connect( plugs[0], dstTweakPlug );
				}	
			}
			else // Check children
			{
				MPlug srcTweakChildPlug;
				MPlug dstTweakChildPlug;
				
				for( ci=0; ci < srcTweakPlug.numChildren(); ci++ )
				{
					srcTweakChildPlug = srcTweakPlug.child(ci);
					dstTweakChildPlug = dstTweakPlug.child(ci);
					if( srcTweakChildPlug.isConnected() )
					{
						// As souce, transfer source to tweak node tweak
						srcTweakChildPlug.connectedTo( plugs, false, true );
						for( j=0; j < plugs.length(); j++ )
						{
							dagMod.disconnect( srcTweakChildPlug, plugs[j] );
							dagMod.connect( dstTweakChildPlug, plugs[j] );
						}
						
						// As destination, transfer destination to tweak node tweak
						srcTweakChildPlug.connectedTo( plugs, true, false );
						if( plugs.length() == 1 ) // There can only be one input connection
						{
							dagMod.disconnect( plugs[0], srcTweakChildPlug );
							dagMod.connect( plugs[0], dstTweakChildPlug );
						}
					}	
				}				
			}
									
			// With the tweak values and any connections now transferred to
			// the tweak node's tweak element, this source element can be reset
			dagMod.commandToExecute( MString( "setAttr " ) + shapePath.fullPathName() + ".pnts[" + logicalIndex + "] 0 0 0" );									
			
			//MGlobal::displayInfo( MString(" tweak: ") + tweakIndices[i] + ": " + tweaks[i].x + ", " + tweaks[i].y + ", " + tweaks[i].z + "\n" );
		}
	}

	return MS::kSuccess;
}
Exemple #12
0
// --------------------------------------------------------------------------------------------
MStatus polyModifierCmd::processTweaks( modifyPolyData& data )
// --------------------------------------------------------------------------------------------
{
	MStatus status = MS::kSuccess;

	// Clear tweak undo information (to be rebuilt)
	//
	fTweakIndexArray.clear();
	fTweakVectorArray.clear();

	// Extract the tweaks and place them into a polyTweak node. This polyTweak node
	// will be placed ahead of the modifier node to maintain the order of operations.
	// Special care must be taken into recreating the tweaks:
	//
	//		1) Copy tweak info (including connections!)
	//		2) Remove tweak info from both meshNode and a duplicate meshNode (if applicable)
	//		3) Cache tweak info for undo operations
	//
	//if( fHasTweaks && fHasHistory && !speedupTweakProcessing())
	if( fHasTweaks && fHasHistory )
	{
		// Declare our function sets
		//
		MFnDependencyNode depNodeFn;

		// Declare our attributes and plugs
		//
		MPlug	meshTweakPlug;
		MPlug	upstreamTweakPlug;
		MObject tweakNodeTweakAttr;

		// Declare our tweak processing variables
		//
		MPlug				tweak;
		MPlug				tweakChild;
		MObject				tweakData;
		MObjectArray		tweakDataArray;
		MFloatVector		tweakVector;

		MIntArray			tweakSrcConnectionCountArray;
		MPlugArray			tweakSrcConnectionPlugArray;
		MIntArray			tweakDstConnectionCountArray;
		MPlugArray			tweakDstConnectionPlugArray;

		MPlugArray			tempPlugArray;

		unsigned i;
		unsigned j;
		unsigned k;

		// Create the tweak node and get its attributes
		//
		data.tweakNode = fDGModifier.MDGModifier::createNode( "polyTweak" );
		depNodeFn.setObject( data.tweakNode );
		data.tweakNodeSrcAttr = depNodeFn.attribute( "output" );
		data.tweakNodeDestAttr = depNodeFn.attribute( "inputPolymesh" );
		tweakNodeTweakAttr = depNodeFn.attribute( "tweak" );

		depNodeFn.setObject( data.meshNodeShape );
		meshTweakPlug = depNodeFn.findPlug( "pnts" );

		// ASSERT: meshTweakPlug should be an array plug!
		//
		MStatusAssert( (meshTweakPlug.isArray()),
					   "meshTweakPlug.isArray() -- meshTweakPlug is not an array plug" );
		unsigned numElements = meshTweakPlug.numElements();

		// Gather meshTweakPlug data
		//
		for( i = 0; i < numElements; i++ )
		{
			// MPlug::numElements() only returns the number of physical elements
			// in the array plug. Thus we must use elementByPhysical index when using
			// the index i.
			//
			tweak = meshTweakPlug.elementByPhysicalIndex(i);

			// If the method fails, the element is NULL. Only append the index
			// if it is a valid plug.
			//
			if( !tweak.isNull() )
			{
				// Cache the logical index of this element plug
				//
				unsigned logicalIndex = tweak.logicalIndex();

				// Collect tweak data and cache the indices and float vectors
				//
				tweak.getValue( tweakData );
				tweakDataArray.append( tweakData );
				getFloat3PlugValue( tweak, tweakVector );
				fTweakIndexArray.append( logicalIndex );
				fTweakVectorArray.append( tweakVector );

				// Collect tweak connection data
				//
				// Parse down to the deepest level of the plug tree and check
				// for connections - look at the child nodes of the element plugs.
				// If any connections are found, record the connection and disconnect
				// it.
				//

				// ASSERT: The element plug should be compound!
				//
				MStatusAssert( (tweak.isCompound()),
							   "tweak.isCompound() -- Element tweak plug is not compound" );

				unsigned numChildren = tweak.numChildren();
				for( j = 0; j < numChildren; j++ )
				{
					tweakChild = tweak.child(j);
					if( tweakChild.isConnected() )
					{
						// Get all connections with this plug as source, if they exist
						//
						tempPlugArray.clear();
						if( tweakChild.connectedTo( tempPlugArray, false, true ) )
						{
							unsigned numSrcConnections = tempPlugArray.length();
							tweakSrcConnectionCountArray.append( numSrcConnections );

							for( k = 0; k < numSrcConnections; k++ )
							{
								tweakSrcConnectionPlugArray.append( tempPlugArray[k] );
								fDGModifier.disconnect( tweakChild, tempPlugArray[k] );
							}
						}
						else
						{
							tweakSrcConnectionCountArray.append(0);
						}

						// Get the connection with this plug as destination, if it exists
						//
						tempPlugArray.clear();
						if( tweakChild.connectedTo( tempPlugArray, true, false ) )
						{
							// ASSERT: tweakChild should only have one connection as destination!
							//
							MStatusAssert( (tempPlugArray.length() == 1),
										   "tempPlugArray.length() == 1 -- 0 or >1 connections on tweakChild" );

							tweakDstConnectionCountArray.append(1);
							tweakDstConnectionPlugArray.append( tempPlugArray[0] );
							fDGModifier.disconnect( tempPlugArray[0], tweakChild );
						}
						else
						{
							tweakDstConnectionCountArray.append(0);
						}
					}
					else
					{
						tweakSrcConnectionCountArray.append(0);
						tweakDstConnectionCountArray.append(0);
					}
				}
			}
		}

		// Apply meshTweakPlug data to our polyTweak node
		//
		MPlug polyTweakPlug( data.tweakNode, tweakNodeTweakAttr );
		unsigned numTweaks = fTweakIndexArray.length();
		int srcOffset = 0;
		int dstOffset = 0;
		
		
		//Progress initialisieren
		progressBar progress("Processing Tweaks", numTweaks);
		

		for( i = 0; i < numTweaks; i++ )
		{
			// Apply tweak data
			//
			tweak = polyTweakPlug.elementByLogicalIndex( fTweakIndexArray[i] );
			tweak.setValue( tweakDataArray[i] );

			// ASSERT: Element plug should be compound!
			//
			MStatusAssert( (tweak.isCompound()),
						   "tweak.isCompound() -- Element plug, 'tweak', is not compound" );

			unsigned numChildren = tweak.numChildren();
			for( j = 0; j < numChildren; j++ )
			{
				tweakChild = tweak.child(j);

				// Apply tweak source connection data
				//
				if( 0 < tweakSrcConnectionCountArray[i*numChildren + j] )
				{
					for( k = 0;
						 k < (unsigned) tweakSrcConnectionCountArray[i*numChildren + j];
						 k++ )
					{
						fDGModifier.connect( tweakChild,
											 tweakSrcConnectionPlugArray[srcOffset] );
						srcOffset++;
					}
				}
						
				// Apply tweak destination connection data
				//
				if( 0 < tweakDstConnectionCountArray[i*numChildren + j] )
				{
					fDGModifier.connect( tweakDstConnectionPlugArray[dstOffset],
										 tweakChild );
					dstOffset++;
				}
			}

			if(i%50 == 0)
			{	
				progress.set(i);
			}
		}

		


		// Now, set the tweak values on the meshNode(s) to zero (History dependent)
		//
		MFnNumericData numDataFn;
		MObject nullVector;

		// Create a NULL vector (0,0,0) using MFnNumericData to pass into the plug
		//
		numDataFn.create( MFnNumericData::k3Float );
		numDataFn.setData( 0, 0, 0 );
		nullVector = numDataFn.object();

		for( i = 0; i < numTweaks; i++ )
		{
			// Access using logical indices since they are the only plugs guaranteed
			// to hold tweak data.
			//
			tweak = meshTweakPlug.elementByLogicalIndex( fTweakIndexArray[i] );
			tweak.setValue( nullVector );
		}

		// Only have to clear the tweaks off the duplicate mesh if we do not have history
		// and we want history.
		//
		if( !fHasHistory && fHasRecordHistory )
		{
			depNodeFn.setObject( data.upstreamNodeShape );
			upstreamTweakPlug = depNodeFn.findPlug( "pnts" );

			if( !upstreamTweakPlug.isNull() )
			{
				for( i = 0; i < numTweaks; i++ )
				{
					tweak = meshTweakPlug.elementByLogicalIndex( fTweakIndexArray[i] );
					tweak.setValue( nullVector );
				}
			}
		}
	}
	else
		fHasTweaks = false;

	return status;
}
MStatus finalproject::compute(const MPlug& plug, MDataBlock& data)
{
	// do this if we are using an OpenMP implementation that is not the same as Maya's.
	// Even if it is the same, it does no harm to make this call.
	MThreadUtils::syncNumOpenMPThreads();

	MStatus status = MStatus::kUnknownParameter;
 	if (plug.attribute() != outputGeom) {
		return status;
	}

	unsigned int index = plug.logicalIndex();
	MObject thisNode = this->thisMObject();

	// get input value
	MPlug inPlug(thisNode,input);
	inPlug.selectAncestorLogicalIndex(index,input);
	MDataHandle hInput = data.inputValue(inPlug, &status);
	MCheckStatus(status, "ERROR getting input mesh\n");
	
	// get the input geometry
	MDataHandle inputData = hInput.child(inputGeom);
	if (inputData.type() != MFnData::kMesh) {
 		printf("Incorrect input geometry type\n");
		return MStatus::kFailure;
 	}

	// get the input groupId - ignored for now...
	MDataHandle hGroup = inputData.child(groupId);
	unsigned int groupId = hGroup.asLong();

	// get deforming mesh
	MDataHandle deformData = data.inputValue(deformingMesh, &status);
	MCheckStatus(status, "ERROR getting deforming mesh\n");
    if (deformData.type() != MFnData::kMesh) {
		printf("Incorrect deformer geometry type %d\n", deformData.type());
		return MStatus::kFailure;
	}
	
   MDataHandle offloadData = data.inputValue(offload, &status);

   //gathers world space positions of the object and the magnet
  	MObject dSurf = deformData.asMeshTransformed();
  	MObject iSurf = inputData.asMeshTransformed();
 	MFnMesh fnDeformingMesh, fnInputMesh;
 	fnDeformingMesh.setObject( dSurf ) ;
 	fnInputMesh.setObject( iSurf ) ;

	MDataHandle outputData = data.outputValue(plug);
	outputData.copy(inputData);
 	if (outputData.type() != MFnData::kMesh) {
		printf("Incorrect output mesh type\n");
		return MStatus::kFailure;
	}
	
	MItGeometry iter(outputData, groupId, false);

	// get all points at once. Faster to query, and also better for
	// threading than using iterator
	MPointArray objVerts;
	iter.allPositions(objVerts);
	int objNumPoints = objVerts.length();
 	
 	MPointArray magVerts, tempverts;
 	fnDeformingMesh.getPoints(magVerts);
 	fnInputMesh.getPoints(tempverts);
 	int magNumPoints = magVerts.length();
 	
 	double min = DBL_MAX, max = -DBL_MAX;
   
   //finds min and max z-coordinate values to determine middle point (choice of z-axis was ours)
 	for (int i = 0; i < magNumPoints; i++) {
      min = magVerts[i].z < min ? magVerts[i].z : min;
      max = magVerts[i].z > max ? magVerts[i].z : max;
   }

   double middle = (min + max) / 2;
   double polarity[magNumPoints];
   
   //assigns polarity based on middle point of mesh
   for (int i = 0; i < magNumPoints; i++) {
      polarity[i] = magVerts[i].z > middle ? max / magVerts[i].z : -min / magVerts[i].z;
   }
 	
 	double* objdVerts = (double *)malloc(sizeof(double) * objNumPoints * 3);
 	double* magdVerts = (double *)malloc(sizeof(double) * magNumPoints * 3);
 	
   //creates handles to use attribute data
 	MDataHandle vecX = data.inputValue(transX, &status);
   MDataHandle vecY = data.inputValue(transY, &status);
   MDataHandle vecZ = data.inputValue(transZ, &status);
   
   //gathers previously stored coordinates of the center of the object
   double moveX = vecX.asFloat();
   double moveY = vecY.asFloat();
   double moveZ = vecZ.asFloat();
 	
   //translates object based on the position stored in the attribute values
 	for (int i=0; i<objNumPoints; i++) {
 	   objdVerts[i * 3] = tempverts[i].x + moveX;
 	   objdVerts[i * 3 + 1] = tempverts[i].y + moveY;
 	   objdVerts[i * 3 + 2] = tempverts[i].z + moveZ;
 	}
 	
 	for (int i=0; i<magNumPoints; i++) {
 	   magdVerts[i * 3] = magVerts[i].x;
 	   magdVerts[i * 3 + 1] = magVerts[i].y;
 	   magdVerts[i * 3 + 2] = magVerts[i].z;
 	}
 	
 	double teslaData = data.inputValue(tesla, &status).asDouble();
   MDataHandle posiData = data.inputValue(positivelycharged, &status);
   
   double pivot[6] = {DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX};
   
   //finds the pivot point of the object in world space prior to being affected by the magnet
 	for (int i = 0; i < tempverts.length(); i++) {
      pivot[0] = tempverts[i].x < pivot[0] ? tempverts[i].x : pivot[0];
      pivot[1] = tempverts[i].x > pivot[1] ? tempverts[i].x : pivot[1];
      pivot[2] = tempverts[i].y < pivot[2] ? tempverts[i].y : pivot[2];
      pivot[3] = tempverts[i].y > pivot[3] ? tempverts[i].y : pivot[3];
      pivot[4] = tempverts[i].z < pivot[4] ? tempverts[i].z : pivot[4];
      pivot[5] = tempverts[i].z > pivot[5] ? tempverts[i].z : pivot[5];
   }
   
   MTimer timer; timer.beginTimer();
 	
   //main function call
   magnetForce(magNumPoints, objNumPoints, teslaData, magdVerts, 
      objdVerts, polarity, posiData.asBool(), offloadData.asBool());
      
   timer.endTimer(); printf("Runtime for threaded loop %f\n", timer.elapsedTime());
 	
 	for (int i=0; i<objNumPoints; i++) {
 	   objVerts[i].x = objdVerts[i * 3 + 0];
 	   objVerts[i].y = objdVerts[i * 3 + 1];
 	   objVerts[i].z = objdVerts[i * 3 + 2];      
 	}
 	
   //finds the pivot point of object in world space after being affected by the magnet
   double objCenter[6] = {DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX, DBL_MAX, -DBL_MAX};
 	for (int i = 0; i < tempverts.length(); i++) {
      objCenter[0] = objVerts[i].x < objCenter[0] ? objVerts[i].x : objCenter[0];
      objCenter[1] = objVerts[i].x > objCenter[1] ? objVerts[i].x : objCenter[1];
      objCenter[2] = objVerts[i].y < objCenter[2] ? objVerts[i].y : objCenter[2];
      objCenter[3] = objVerts[i].y > objCenter[3] ? objVerts[i].y : objCenter[3];
      objCenter[4] = objVerts[i].z < objCenter[4] ? objVerts[i].z : objCenter[4];
      objCenter[5] = objVerts[i].z > objCenter[5] ? objVerts[i].z : objCenter[5];
   }
 	
   //creates vector based on the two calculated pivot points
 	moveX = (objCenter[0] + objCenter[1]) / 2 - (pivot[0] + pivot[1]) / 2;
 	moveY = (objCenter[2] + objCenter[3]) / 2 - (pivot[2] + pivot[3]) / 2;
 	moveZ = (objCenter[4] + objCenter[5]) / 2 - (pivot[4] + pivot[5]) / 2;
 	
   //stores pivot vector for next computation
 	if (teslaData) {
 	   vecX.setFloat(moveX);
 	   vecY.setFloat(moveY);
 	   vecZ.setFloat(moveZ);
 	}
 	
	// write values back onto output using fast set method on iterator
	iter.setAllPositions(objVerts, MSpace::kWorld);
   
   free(objdVerts);
   free(magdVerts);

	return status;
}
MStatus proWater::compute(const MPlug& plug, MDataBlock& dataBlock)
{
    MStatus status = MStatus::kUnknownParameter;
    if (plug.attribute() == outputGeom) {
        // get the input corresponding to this output
        //
        unsigned int index = plug.logicalIndex();
        MObject thisNode = this->thisMObject();
        MPlug inPlug(thisNode,input);
        inPlug.selectAncestorLogicalIndex(index,input);
        MDataHandle hInput = dataBlock.inputValue(inPlug);
        
        // get the input geometry and input groupId
        //
        MDataHandle hGeom = hInput.child(inputGeom);
        MDataHandle hGroup = hInput.child(groupId);
        
        
        
        unsigned int groupId = hGroup.asLong();
        MDataHandle hOutput = dataBlock.outputValue(plug);
        hOutput.copy(hGeom);
        
        
        MStatus returnStatus;
        
        MDataHandle envData = dataBlock.inputValue(envelope, &returnStatus);
        if (MS::kSuccess != returnStatus) return returnStatus;
        float env = envData.asFloat();
        
        MDataHandle timeData = dataBlock.inputValue(time, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double t = timeData.asDouble();
        
        MDataHandle dirData = dataBlock.inputValue(dir, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double dirDeg = dirData.asDouble();
        
        MDataHandle bigData = dataBlock.inputValue(bigFreq, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double bigFreqAmp = bigData.asDouble();
        
        MDataHandle ampData = dataBlock.inputValue(amplitude1, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double amp1 = ampData.asDouble();
        
        MDataHandle freqData = dataBlock.inputValue(frequency1, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double freq1 = freqData.asDouble();
        
        MDataHandle ampData2 = dataBlock.inputValue(amplitude2, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double amp2 = ampData2.asDouble();
        
        MDataHandle freqData2 = dataBlock.inputValue(frequency2, &returnStatus);
        if(MS::kSuccess != returnStatus) return returnStatus;
        double freq2 = freqData2.asDouble();
        
        
        // Get the MFnMesh
        MStatus stat;
        MObject inputObj = hOutput.data();
        MFnMesh * meshFn = new MFnMesh(inputObj, &stat);
        
        // do the deformation
        //
        MItGeometry iter(hOutput,groupId,false);
        
        for ( ; !iter.isDone(); iter.next()) {
            MPoint pt = iter.position();
            
            //float2 uvPoint;
            //float u,v;
            
            //uvPoint[0] = u;
            //uvPoint[1] = v;
            
            //meshFn->getUVAtPoint(pt, uvPoint, MSpace::kObject);
            
            float u = pt.x; //uvPoint[0]*100;
            float v = pt.z; //uvPoint[1]*100;
            
            float degDir = dirDeg;
            
            float dir = degDir* M_PI/180;
            
            float dirX = cos(dir);
            float dirY = sin(dir);
            
            
            float bigFreq = 0.01;
            
            float bigWaves = scaled_raw_noise_3d(0, 1, (u + 3*t*dirX)*bigFreq*dirX, (v + 3*t*dirY)*bigFreq*dirY*2, t*0.01);
            
            
            float frequency1 = freq1/10;//0.2;
            float amplitude1 = amp1;//1.3;
            
            float firstOctave = -(std::abs(scaled_raw_noise_3d(-amplitude1, amplitude1, (float)(u + 0.7*t*dirX)*frequency1*0.4, (float)(v + 0.7*t*dirY)*frequency1*0.6, 0.05*t))-amplitude1);
            
            float frequency2 = freq2/10;
            float amplitude2 = amp2;
        
            float secondOctave = - (std::abs(scaled_raw_noise_3d(-amplitude2, amplitude2, (float)(u + 0.7*t*dirX)*frequency2*0.35, (float)(v + 0.7*t*dirY)*frequency2*0.65, 0.005*t))-amplitude2);
            
            float frequency3 = freq1/10;
            float amplitude3 = amp1/1.5;
            
            float thirdOctave = - (std::abs(scaled_raw_noise_3d(-amplitude3, amplitude3, (float)(u + t*0.5*dirX)*frequency3*0.4, (float)(v + t*0.5*dirY)*frequency3*0.6, 30))-amplitude3);
            
            float frequency4 = freq2/10;
            float amplitude4 = amp2/1.5;
            
            float fourthOctave = scaled_raw_noise_3d(-amplitude4, amplitude4, (float)(u + t*0.5*dirX)*frequency4*0.4, (float)(v + t*0.5*dirY)*frequency4*0.6, 50);
            
            float frequency5 = freq2;
            float amplitude5 = amp2/2;
            
            float fifthOctave = scaled_raw_noise_3d(-amplitude5, amplitude5, (float)(u + t*0.5*dirX)*frequency5*0.15, (float)(v + t*0.5*dirY)*frequency5*0.85, 0.001*t);
            
            float disp = bigFreqAmp*bigWaves + 7*(bigWaves)*firstOctave + secondOctave + thirdOctave*thirdOctave + fourthOctave + std::abs(bigWaves-1)*fifthOctave;
            
            pt = pt + iter.normal()*disp;
            
            iter.setPosition(pt);
        }
        
        delete meshFn;
        status = MStatus::kSuccess;
    }
    
    
    return status;
}
Exemple #15
0
MStatus splatDeformer::compute(const MPlug& plug, MDataBlock& data)
{
	// do this if we are using an OpenMP implementation that is not the same as Maya's.
	// Even if it is the same, it does no harm to make this call.
	MThreadUtils::syncNumOpenMPThreads();

	MStatus status = MStatus::kUnknownParameter;
 	if (plug.attribute() != outputGeom) {
		return status;
	}

	unsigned int index = plug.logicalIndex();
	MObject thisNode = this->thisMObject();

	// get input value
	MPlug inPlug(thisNode,input);
	inPlug.selectAncestorLogicalIndex(index,input);
	MDataHandle hInput = data.inputValue(inPlug, &status);
	MCheckStatus(status, "ERROR getting input mesh\n");
	
	// get the input geometry
	MDataHandle inputData = hInput.child(inputGeom);
	if (inputData.type() != MFnData::kMesh) {
 		printf("Incorrect input geometry type\n");
		return MStatus::kFailure;
 	}

	// get the input groupId - ignored for now...
	MDataHandle hGroup = inputData.child(groupId);
	unsigned int groupId = hGroup.asLong();

	// get deforming mesh
	MDataHandle deformData = data.inputValue(deformingMesh, &status);
	MCheckStatus(status, "ERROR getting deforming mesh\n");
    if (deformData.type() != MFnData::kMesh) {
		printf("Incorrect deformer geometry type %d\n", deformData.type());
		return MStatus::kFailure;
	}

  	MObject dSurf = deformData.asMeshTransformed();
 	MFnMesh fnDeformingMesh;
 	fnDeformingMesh.setObject( dSurf ) ;

	MDataHandle outputData = data.outputValue(plug);
	outputData.copy(inputData);
 	if (outputData.type() != MFnData::kMesh) {
		printf("Incorrect output mesh type\n");
		return MStatus::kFailure;
	}
	
	MItGeometry iter(outputData, groupId, false);

	// create fast intersector structure
	MMeshIntersector intersector;
	intersector.create(dSurf);

	// get all points at once. Faster to query, and also better for
	// threading than using iterator
	MPointArray verts;
	iter.allPositions(verts);
	int nPoints = verts.length();

	// use bool variable as lightweight object for failure check in loop below
	bool failed = false;

 	MTimer timer; timer.beginTimer();

#ifdef _OPENMP
#pragma omp parallel for
#endif
 	for(int i=0; i<nPoints; i++) {

		// Cannot break out of an OpenMP loop, so if one of the
		// intersections failed, skip the rest
		if(failed) continue;

		// mesh point object must be in loop-local scope to avoid race conditions
		MPointOnMesh meshPoint;

		// Do intersection. Need to use per-thread status value as
		// MStatus has internal state and may trigger race conditions
		// if set from multiple threads. Probably benign in this case,
		// but worth being careful.
		MStatus localStatus = intersector.getClosestPoint(verts[i], meshPoint);
		if(localStatus != MStatus::kSuccess) {
			// NOTE - we cannot break out of an OpenMP region, so set
			// bad status and skip remaining iterations
			failed = true;
			continue;
		}

		// default OpenMP scheduling breaks traversal into large
		// chunks, so low risk of false sharing here in array write.
		verts[i] = meshPoint.getPoint();
 	}

 	timer.endTimer(); printf("Runtime for threaded loop %f\n", timer.elapsedTime());

	// write values back onto output using fast set method on iterator
	iter.setAllPositions(verts);

	if(failed) {
		printf("Closest point failed\n");
		return MStatus::kFailure;
	}

	return status;
}
Exemple #16
0
MStatus sweptEmitter::compute(const MPlug& plug, MDataBlock& block)
//
//	Descriptions:
//		Call emit emit method to generate new particles.
//
{
	MStatus status;

	// Determine if we are requesting the output plug for this emitter node.
	//
	if( !(plug == mOutput) )
        return( MS::kUnknownParameter );

	// Get the logical index of the element this plug refers to,
	// because the node can be emitting particles into more 
    // than one particle shape.
	//
	int multiIndex = plug.logicalIndex( &status );
	McheckErr(status, "ERROR in plug.logicalIndex.\n");

	// Get output data arrays (position, velocity, or parentId)
	// that the particle shape is holding from the previous frame.
	//
	MArrayDataHandle hOutArray = block.outputArrayValue(mOutput, &status);
	McheckErr(status, "ERROR in hOutArray = block.outputArrayValue.\n");

	// Create a builder to aid in the array construction efficiently.
	//
	MArrayDataBuilder bOutArray = hOutArray.builder( &status );
	McheckErr(status, "ERROR in bOutArray = hOutArray.builder.\n");

	// Get the appropriate data array that is being currently evaluated.
	//
	MDataHandle hOut = bOutArray.addElement(multiIndex, &status);
	McheckErr(status, "ERROR in hOut = bOutArray.addElement.\n");

    // Get the data and apply the function set.
    //
    MFnArrayAttrsData fnOutput;
    MObject dOutput = fnOutput.create ( &status );
    McheckErr(status, "ERROR in fnOutput.create.\n");

	// Check if the particle object has reached it's maximum,
	// hence is full. If it is full then just return with zero particles.
	//
	bool beenFull = isFullValue( multiIndex, block );
	if( beenFull )
	{
		return( MS::kSuccess );
	}

	// Get deltaTime, currentTime and startTime.
	// If deltaTime <= 0.0, or currentTime <= startTime,
	// do not emit new pariticles and return.
	//
	MTime cT = currentTimeValue( block );
	MTime sT = startTimeValue( multiIndex, block );
	MTime dT = deltaTimeValue( multiIndex, block );
	if( (cT <= sT) || (dT <= 0.0) )
	{
		// We do not emit particles before the start time, 
		// and do not emit particles when moving backwards in time.
		// 

		// This code is necessary primarily the first time to 
		// establish the new data arrays allocated, and since we have 
		// already set the data array to length zero it does 
		// not generate any new particles.
		// 
		hOut.set( dOutput );
		block.setClean( plug );

		return( MS::kSuccess );
	}

	// Get speed, direction vector, and inheritFactor attributes.
	//
	double speed = speedValue( block );
	MVector dirV = directionVector( block );
	double inheritFactor = inheritFactorValue( multiIndex, block );

	// Get the position and velocity arrays to append new particle data.
	//
	MVectorArray fnOutPos = fnOutput.vectorArray("position", &status);
	MVectorArray fnOutVel = fnOutput.vectorArray("velocity", &status);

	// Convert deltaTime into seconds.
	//
	double dt = dT.as( MTime::kSeconds );
	
	// Apply rotation to the direction vector
	MVector rotatedV = useRotation ( dirV );


	// position,
	MVectorArray inPosAry;
	// velocity
	MVectorArray inVelAry;
	// emission rate
	MIntArray emitCountPP;


	// Get the swept geometry data
	//
	MObject thisObj = this->thisMObject();
	MPlug sweptPlug( thisObj, mSweptGeometry );

	if ( sweptPlug.isConnected() ) 
	{
		MDataHandle sweptHandle = block.inputValue( mSweptGeometry );
		// MObject sweptData = sweptHandle.asSweptGeometry();
		MObject sweptData = sweptHandle.data();
		MFnDynSweptGeometryData fnSweptData( sweptData );


		// Curve emission
		//
		if (fnSweptData.lineCount() > 0) {
			int numLines = fnSweptData.lineCount();
		
			for ( int i=0; i<numLines; i++ )
			{
				inPosAry.clear();
				inVelAry.clear();
				emitCountPP.clear();

				MDynSweptLine line = fnSweptData.sweptLine( i );

				// ... process current line ...
				MVector p1 = line.vertex( 0 );
				MVector p2 = line.vertex( 1 );

				inPosAry.append( p1 );
				inPosAry.append( p2 );

				inVelAry.append( MVector( 0,0,0 ) );
				inVelAry.append( MVector( 0,0,0 ) );

				// emit Rate for two points on line
				emitCountPP.clear();
				status = emitCountPerPoint( plug, block, 2, emitCountPP );

				emit( inPosAry, inVelAry, emitCountPP,
					dt, speed, inheritFactor, rotatedV, fnOutPos, fnOutVel );

			}
		}

		// Surface emission (nurb or polygon)
		//
		if (fnSweptData.triangleCount() > 0) {
			int numTriangles = fnSweptData.triangleCount();
		
			for ( int i=0; i<numTriangles; i++ )
			{
				inPosAry.clear();
				inVelAry.clear();
				emitCountPP.clear();

				MDynSweptTriangle tri = fnSweptData.sweptTriangle( i );

				// ... process current triangle ...
				MVector p1 = tri.vertex( 0 );
				MVector p2 = tri.vertex( 1 );
				MVector p3 = tri.vertex( 2 );

				MVector center = p1 + p2 + p3;
				center /= 3.0;

				inPosAry.append( center );

				inVelAry.append( MVector( 0,0,0 ) );

				// emit Rate for two points on line
				emitCountPP.clear();
				status = emitCountPerPoint( plug, block, 1, emitCountPP );

				emit( inPosAry, inVelAry, emitCountPP,
					dt, speed, inheritFactor, rotatedV, fnOutPos, fnOutVel );

			}
		}
	}

	// Update the data block with new dOutput and set plug clean.
	//
	hOut.set( dOutput );
	block.setClean( plug );

	return( MS::kSuccess );
}
MStatus sseDeformer::compute(const MPlug& plug, MDataBlock& data)
{
    MStatus status;
    if (plug.attribute() != outputGeom) {
        printf("Ignoring requested plug\n");
        return status;
    }
    unsigned int index = plug.logicalIndex();
    MObject thisNode = this->thisMObject();

    // get input value
    MPlug inPlug(thisNode,input);
    inPlug.selectAncestorLogicalIndex(index,input);
    MDataHandle hInput = data.inputValue(inPlug, &status);
    MCheckStatus(status, "ERROR getting input mesh\n");

    // get the input geometry
    MDataHandle inputData = hInput.child(inputGeom);
    if (inputData.type() != MFnData::kMesh) {
        printf("Incorrect input geometry type\n");
        return MStatus::kFailure;
    }

    MObject iSurf = inputData.asMesh() ;
    MFnMesh inMesh;
    inMesh.setObject( iSurf ) ;

    MDataHandle outputData = data.outputValue(plug);
    outputData.copy(inputData);
    if (outputData.type() != MFnData::kMesh) {
        printf("Incorrect output mesh type\n");
        return MStatus::kFailure;
    }

    MObject oSurf = outputData.asMesh() ;
    if(oSurf.isNull()) {
        printf("Output surface is NULL\n");
        return MStatus::kFailure;
    }

    MFnMesh outMesh;
    outMesh.setObject( oSurf ) ;
    MCheckStatus(status, "ERROR setting points\n");

    // get all points at once for demo purposes. Really should get points from the current group using iterator
    MFloatPointArray pts;
    outMesh.getPoints(pts);

    int nPoints = pts.length();

    MDataHandle envData = data.inputValue(envelope, &status);
    float env = envData.asFloat();

    MDataHandle sseData = data.inputValue(sseEnabled, &status);
    bool sseEnabled = (bool) sseData.asBool();

    // NOTE: Using MTimer and possibly other classes disables
    // autovectorization with Intel <=10.1 compiler on OSX and Linux!!
    // Must compile this function with -fno-exceptions on OSX and
    // Linux to guarantee autovectorization is done. Use -fvec_report2
    // to check for vectorization status messages with Intel compiler.
    MTimer timer;
    timer.beginTimer();

    if(sseEnabled) {

        // Innter loop will autovectorize. Around 3x faster than the
        // loop below it. It would be faster if first element was
        // guaranteed to be aligned on 16 byte boundary.
        for(int i=0; i<nPoints; i++) {
            float* ptPtr = &pts[i].x;
            for(int j=0; j<4; j++) {
                ptPtr[j] = env * (cosf(ptPtr[j]) * sinf(ptPtr[j]) * tanf(ptPtr[j]));
            }
        }

    } else {

        // This inner loop will not autovectorize.
        for(int i=0; i<nPoints; i++) {
            MFloatPoint& pt = pts[i];
            for(int j=0; j<3; j++) {
                pt[j] = env * (cosf(pt[j]) * sinf(pt[j]) * tanf(pt[j]));
            }

        }
    }

    timer.endTimer();
    if(sseEnabled) {
        printf("SSE enabled, runtime %f\n", timer.elapsedTime());
    } else {
        printf("SSE disabled, runtime %f\n", timer.elapsedTime());
    }

    outMesh.setPoints(pts);

    return status;
}
MStatus vixo_visImport::compute( const MPlug& plug, MDataBlock& data )
{
	MStatus stat=MS::kSuccess;	
	if(plug.array()!=vis)
		return MS::kSuccess;

	//cout<<plug.info().asChar()<<endl;

	int objIdx=plug.logicalIndex();

	MDataHandle file_handle=data.inputValue(file);
	MString filename=file_handle.asString();

	MDataHandle timeHandle=data.inputValue(time);
	int t=timeHandle.asTime().as(MTime::Unit::kFilm);

	if(mapObjName.count(objIdx)<=0)
		return MS::kSuccess;

	//cout<<"test"<<endl;

	MString objNameValue(mapObjName.find(objIdx)->second.c_str());
	bool res=true;
	ifstream fin(filename.asChar(),ios_base::in|ios_base::binary);
	if(fin.fail())
	{
		MDataHandle eleHandle=data.outputValue(plug);
		eleHandle.set(res);
		data.setClean(plug);
		return MS::kSuccess;
	}

	int objNum=0;
	fin.read((char*)&objNum,sizeof(int));
	vector<struct_visBasicInfo> objIndexes(objNum);
	fin.read((char*)&objIndexes[0],sizeof(struct_visBasicInfo)*objNum);

	int fileObjIndex=-1;
	for(int i=0;i<objNum;i++)
	{
		MStringArray tempArr;
		MString tempStr(objIndexes[i].objName);
		tempStr.split(':',tempArr);
		if(tempArr[tempArr.length()-1]==objNameValue)
		{
			fileObjIndex=i;
			break;
		}
	}

	if(fileObjIndex==-1)
	{
		MDataHandle eleHandle=data.outputValue(plug);
		eleHandle.set(res);
		data.setClean(plug);
		fin.close();
		return MS::kSuccess;
	}
	//cout<<"test1"<<endl;
	if(t<objIndexes[fileObjIndex].startFrame||t>objIndexes[fileObjIndex].endFrame)
	{
		fin.close();
		MDataHandle eleHandle=data.outputValue(plug);
		eleHandle.set(res);
		data.setClean(plug);
		return MS::kSuccess;
	}
	//cout<<"test2"<<endl;
	fin.seekg(objIndexes[fileObjIndex].visBegin.operator+(sizeof(char)*(t-objIndexes[fileObjIndex].startFrame)));
	char value;
	fin.read((char *)&value,sizeof(char));
	fin.close();

	//cout<<t<<" "<<(int)value<<endl;
	
	if(value==0)
		res=0;
	MDataHandle eleHandle=data.outputValue(plug);
	eleHandle.set(res);
	data.setClean(plug);

	return MS::kSuccess;
}
Exemple #19
0
MStatus HesMeshNode::compute( const MPlug& plug, MDataBlock& data )
{
	MStatus stat;
	
	MPlug pnames(thisMObject(), ameshname);
	const unsigned numMeshes = pnames.numElements();
    
	MString cacheName =  data.inputValue( input ).asString();
	std::string substitutedCacheName(cacheName.asChar());
	EnvVar::replace(substitutedCacheName);
	
	MArrayDataHandle meshNameArray = data.inputArrayValue( ameshname );
	MArrayDataHandle meshArry = data.outputArrayValue(outMesh, &stat);
	
    bool hesStat = false;
	if( plug.array() == outMesh ) {
		const unsigned idx = plug.logicalIndex();
		if(BaseUtil::IsImporting)
            hesStat = true;
        else {
            if(idx == 0) 
                AHelper::Info<std::string>(" hes mesh open file ", substitutedCacheName );
            hesStat = BaseUtil::OpenHes(substitutedCacheName, HDocument::oReadOnly);
        }
		
		if(!hesStat) {
			AHelper::Info<std::string >("hes mesh cannot open file ", substitutedCacheName);
			return MS::kFailure;
		}
        
        meshNameArray.jumpToElement(idx);
		const MString meshName = meshNameArray.inputValue().asString();
		
        if(!BaseUtil::HesDoc->find(meshName.asChar())) {
            AHelper::Info<MString>(" hes cannot find mesh ", meshName );
            return MS::kFailure;
		}
        
		meshArry.jumpToElement(idx);
		MDataHandle hmesh = meshArry.outputValue();

		HPolygonalMesh entryMesh(meshName.asChar() );
        
        APolygonalMesh dataMesh;
		entryMesh.load(&dataMesh);
        entryMesh.close();
        
        MFnMeshData dataCreator;
		MObject outMeshData = dataCreator.create(&stat);
			
		if( !stat ) {
			MGlobal::displayWarning("hes mesh cannot create " + meshName);
			return MS::kFailure;
		}
		
        AHelper::Info<MString>(" hes init mesh ", meshName);
		HesperisPolygonalMeshCreator::create(&dataMesh, outMeshData);

		hmesh.set(outMeshData);
	    
		data.setClean(plug);
		
		if( (idx+1)>=numMeshes ) {
			if(!BaseUtil::IsImporting) {
                AHelper::Info<std::string>(" hes mesh close file ", substitutedCacheName );
				BaseUtil::CloseHes();
			}
		}
	} 
	else {
		return MS::kUnknownParameter;
	}

	return MS::kSuccess;
}
Exemple #20
0
// --------------------------------------------------------------------------------------------
MStatus polyModifierCmd::cacheMeshTweaks()
// --------------------------------------------------------------------------------------------
{
	MStatus status = MS::kSuccess;

	// Clear tweak undo information (to be rebuilt)
	//
	fTweakIndexArray.clear();
	fTweakVectorArray.clear();

	// Extract the tweaks and store them in our local tweak cache members
	//
	if( fHasTweaks )
	{
		// Declare our function sets
		//
		MFnDependencyNode depNodeFn;

		MObject meshNode = fDagPath.node();
		MPlug	meshTweakPlug;

		// Declare our tweak processing variables
		//
		MPlug				tweak;
		MPlug				tweakChild;
		MObject				tweakData;
		MObjectArray		tweakDataArray;
		MFloatVector		tweakVector;

		MPlugArray			tempPlugArray;

		unsigned i;

		depNodeFn.setObject( meshNode );
		meshTweakPlug = depNodeFn.findPlug( "pnts" );

		// ASSERT: meshTweakPlug should be an array plug!
		//
		MStatusAssert( (meshTweakPlug.isArray()),
					   "meshTweakPlug.isArray() -- meshTweakPlug is not an array plug" );
		unsigned numElements = meshTweakPlug.numElements();

		// Gather meshTweakPlug data
		//
		for( i = 0; i < numElements; i++ )
		{
			// MPlug::numElements() only returns the number of physical elements
			// in the array plug. Thus we must use elementByPhysical index when using
			// the index i.
			//
			tweak = meshTweakPlug.elementByPhysicalIndex(i);

			// If the method fails, the element is NULL. Only append the index
			// if it is a valid plug.
			//
			if( !tweak.isNull() )
			{
				// Cache the logical index of this element plug
				//
				unsigned logicalIndex = tweak.logicalIndex();

				// Collect tweak data and cache the indices and float vectors
				//
				getFloat3PlugValue( tweak, tweakVector );
				fTweakIndexArray.append( logicalIndex );
				fTweakVectorArray.append( tweakVector );
			}
		}
	}

	return status;
}