bool AMDGPUInstructionSelector::selectG_ADD(MachineInstr &I) const { MachineBasicBlock *BB = I.getParent(); MachineFunction *MF = BB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); unsigned Size = RBI.getSizeInBits(I.getOperand(0).getReg(), MRI, TRI); unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); if (Size != 64) return false; DebugLoc DL = I.getDebugLoc(); MachineOperand Lo1(getSubOperand64(I.getOperand(1), AMDGPU::sub0)); MachineOperand Lo2(getSubOperand64(I.getOperand(2), AMDGPU::sub0)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo) .add(Lo1) .add(Lo2); MachineOperand Hi1(getSubOperand64(I.getOperand(1), AMDGPU::sub1)); MachineOperand Hi2(getSubOperand64(I.getOperand(2), AMDGPU::sub1)); BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi) .add(Hi1) .add(Hi2); BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), I.getOperand(0).getReg()) .addReg(DstLo) .addImm(AMDGPU::sub0) .addReg(DstHi) .addImm(AMDGPU::sub1); for (MachineOperand &MO : I.explicit_operands()) { if (!MO.isReg() || TargetRegisterInfo::isPhysicalRegister(MO.getReg())) continue; RBI.constrainGenericRegister(MO.getReg(), AMDGPU::SReg_64RegClass, MRI); } I.eraseFromParent(); return true; }
// For EVEX instructions that can be encoded using VEX encoding // replace them by the VEX encoding in order to reduce size. bool EvexToVexInstPass::CompressEvexToVexImpl(MachineInstr &MI) const { // VEX format. // # of bytes: 0,2,3 1 1 0,1 0,1,2,4 0,1 // [Prefixes] [VEX] OPCODE ModR/M [SIB] [DISP] [IMM] // // EVEX format. // # of bytes: 4 1 1 1 4 / 1 1 // [Prefixes] EVEX Opcode ModR/M [SIB] [Disp32] / [Disp8*N] [Immediate] const MCInstrDesc &Desc = MI.getDesc(); // Check for EVEX instructions only. if ((Desc.TSFlags & X86II::EncodingMask) != X86II::EVEX) return false; // Check for EVEX instructions with mask or broadcast as in these cases // the EVEX prefix is needed in order to carry this information // thus preventing the transformation to VEX encoding. if (Desc.TSFlags & (X86II::EVEX_K | X86II::EVEX_B)) return false; // Check for non EVEX_V512 instrs only. // EVEX_V512 instr: bit EVEX_L2 = 1; bit VEX_L = 0. if ((Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L)) return false; // EVEX_V128 instr: bit EVEX_L2 = 0, bit VEX_L = 0. bool IsEVEX_V128 = (!(Desc.TSFlags & X86II::EVEX_L2) && !(Desc.TSFlags & X86II::VEX_L)); // EVEX_V256 instr: bit EVEX_L2 = 0, bit VEX_L = 1. bool IsEVEX_V256 = (!(Desc.TSFlags & X86II::EVEX_L2) && (Desc.TSFlags & X86II::VEX_L)); unsigned NewOpc = 0; // Check for EVEX_V256 instructions. if (IsEVEX_V256) { // Search for opcode in the EvexToVex256 table. auto It = EvexToVex256Table.find(MI.getOpcode()); if (It != EvexToVex256Table.end()) NewOpc = It->second; } // Check for EVEX_V128 or Scalar instructions. else if (IsEVEX_V128) { // Search for opcode in the EvexToVex128 table. auto It = EvexToVex128Table.find(MI.getOpcode()); if (It != EvexToVex128Table.end()) NewOpc = It->second; } if (!NewOpc) return false; auto isHiRegIdx = [](unsigned Reg) { // Check for XMM register with indexes between 16 - 31. if (Reg >= X86::XMM16 && Reg <= X86::XMM31) return true; // Check for YMM register with indexes between 16 - 31. if (Reg >= X86::YMM16 && Reg <= X86::YMM31) return true; return false; }; // Check that operands are not ZMM regs or // XMM/YMM regs with hi indexes between 16 - 31. for (const MachineOperand &MO : MI.explicit_operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); assert (!(Reg >= X86::ZMM0 && Reg <= X86::ZMM31)); if (isHiRegIdx(Reg)) return false; } const MCInstrDesc &MCID = TII->get(NewOpc); MI.setDesc(MCID); MI.setAsmPrinterFlag(AC_EVEX_2_VEX); return true; }