void netcdf_mpas_read_xyzvertex ( string filename, int nvertices, double xvertex[], double yvertex[], double zvertex[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_CELLS gets the cell center coordinates. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2011 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NVERTICES, the number of vertices. // // Output, double XVERTEX[NVERTICES], YVERTEXL[NVERTICES], // ZVERTEX[NVERTICES], the coordinates of the nodes. // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "xVertex" ); (*var_id).get ( &xvertex[0], nvertices ); var_id = ncid.get_var ( "yVertex" ); (*var_id).get ( &yvertex[0], nvertices ); var_id = ncid.get_var ( "zVertex" ); (*var_id).get ( &zvertex[0], nvertices ); // // Close the file. // ncid.close ( ); return; }
void netcdf_mpas_read_xyzcell ( string filename, int ncells, double xcell[], double ycell[], double zcell[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_XYZCELL reads xCell, yCell, zCell. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NCELLS, the number of nodes. // // Output, double XCELL[NCELLS], YCELL[NCELLS], ZCELL[NCELLS], the // coordinates of the nodes. // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "xCell" ); (*var_id).get ( &xcell[0], ncells ); var_id = ncid.get_var ( "yCell" ); (*var_id).get ( &ycell[0], ncells ); var_id = ncid.get_var ( "zCell" ); (*var_id).get ( &zcell[0], ncells ); // // Close the file. // ncid.close ( ); return; }
void netcdf_mpas_read_verticesoncell ( string filename, int maxedges, int ncells, int verticesoncell[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_VERTICESONCELLS gets verticesOnCells. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2011 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int MAXEDGES, the maximum number of edges for a cell. // // Input, int NCELLS, the number of cells. // // Output, int VERTICESONCELLS[MAXEDGES*NCELLS]; // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "verticesOnCell" ); (*var_id).get ( &verticesoncell[0], ncells, maxedges ); // // Close the file. // ncid.close ( ); return; }
int netcdf_mpas_read_maxedges ( string filename ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_MAXEDGES gets MAXEDGES. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 January 2011 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Output, int NETCDF_MPAS_READ_MAXEDGES, the value of MAXEDGES. // { int maxedges; long int maxedges_size; NcDim *maxedges_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get MAXEDGES, which is a NETCDF dimension. // maxedges_id = ncid.get_dim ( "maxEdges" ); maxedges_size = (*maxedges_id).size ( ); // // Close the file. // ncid.close ( ); maxedges = ( int ) maxedges_size; return maxedges; }
int netcdf_mpas_read_nvertices ( string filename ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_NVERTICES gets the number of vertices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Output, int NETCDF_MPAS_READ_NVERTICES, the value of NVERTICES. // { int nvertices; long int nvertices_size; NcDim *nvertices_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get NCELLS, which is a NETCDF dimension. // nvertices_id = ncid.get_dim ( "nVertices" ); nvertices_size = (*nvertices_id).size ( ); // // Close the file. // ncid.close ( ); nvertices = ( int ) nvertices_size; return nvertices; }
bool FileArome::isValid(std::string iFilename) { bool status = false; NcFile file = NcFile(iFilename.c_str(), NcFile::ReadOnly); if(file.is_valid()) { status = hasDim(file, "time") && hasDim(file, "x") && hasDim(file, "y") && !hasDim(file, "ensemble_member") && hasVar(file, "latitude") && hasVar(file, "longitude"); } file.close(); return status; }
void netcdf_mpas_read_cellsonvertex ( string filename, int nvertices, int cellsonvertex[] ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_READ_CELLSONVERTEX gets the cellsOnVertex information. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string NC_FILENAME, the name of the NETCDF file to examine. // // Input, int NEDGES, the number of edges. // // Output, int CELLSONVERTEX[3*NVERTICES]; // { NcVar *var_id; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Get the variable values. // var_id = ncid.get_var ( "cellsOnVertex" ); (*var_id).get ( &cellsonvertex[0], nvertices, 3 ); // // Close the file. // ncid.close ( ); return; }
void CCohortdriver::createSoilClimate(BgcData *bd, EnvData *ed, Vegetation_Env *ve, string& datadir){ string file = datadir+ "calirestart.nc"; NcFile* resFile = new NcFile(file.c_str(), NcFile::Replace); NcDim * chtD = resFile->add_dim("CHTID", 1); NcDim * monD = resFile->add_dim("MON", 12); NcDim * layD = resFile->add_dim("LAYER", MAX_SOI_LAY); NcVar* drgV = resFile->add_var("DRG",ncInt, chtD); NcVar* vegV = resFile->add_var("VEG",ncInt, chtD); NcVar* numslV = resFile->add_var("NUMSL",ncInt, chtD); NcVar* rsoilcV = resFile->add_var("RSOILC", ncDouble, layD); NcVar* nsoilcV = resFile->add_var("NSOILC", ncDouble, layD); NcVar* dzV = resFile->add_var("DZ", ncDouble, layD); NcVar* typeV = resFile->add_var("TYPE", ncDouble, layD); NcVar* poroV = resFile->add_var("PORO", ncDouble, layD); NcVar* rootfracV = resFile->add_var("ROOTFRAC", ncDouble, layD); NcVar* taV = resFile->add_var("TA",ncDouble, monD); NcVar* growV = resFile->add_var("GROW",ncDouble, monD); NcVar* co2V = resFile->add_var("CO2",ncDouble, monD); NcVar* petV = resFile->add_var("PET",ncDouble, monD); NcVar* eetV = resFile->add_var("EET",ncDouble, monD); NcVar* parV = resFile->add_var("PAR",ncDouble, monD); NcVar* envlaiV = resFile->add_var("ENVLAI",ncFloat, monD); NcVar* tsV = resFile->add_var("TS", ncDouble, monD, layD); NcVar* ch4V = resFile->add_var("CH4",ncDouble, monD, layD); NcVar* liqV = resFile->add_var("LIQ",ncDouble, monD, layD); NcVar* vwcV = resFile->add_var("VSM",ncDouble, monD, layD); NcVar* swsV = resFile->add_var("SWS",ncDouble, monD, layD); NcVar* iceV = resFile->add_var("ICE",ncDouble, monD, layD); NcVar* yreetV = resFile->add_var("YREET",ncDouble, chtD); NcVar* yrpetV = resFile->add_var("YRPET",ncDouble, chtD); NcVar* yrco2V = resFile->add_var("YRCO2",ncDouble, chtD); NcVar* prveetmxV = resFile->add_var("PRVEETMX",ncDouble, chtD); NcVar* prvpetmxV = resFile->add_var("PRVPETMX",ncDouble, chtD); numslV->put(&ed->m_soid.actual_num_soil, 1); drgV->put(&ed->cd->drgtype, 1); vegV->put(&ed->cd->vegtype, 1); poroV->put(&ed->m_sois.por[0], MAX_SOI_LAY); typeV->put(&ed->m_sois.type[0], MAX_SOI_LAY); dzV->put(&ed->m_sois.dz[0], MAX_SOI_LAY); rsoilcV->put(&bd->m_sois.reac[0], MAX_SOI_LAY); nsoilcV->put(&bd->m_sois.nonc[0], MAX_SOI_LAY); rootfracV->put(&ed->m_sois.rootfrac[0], MAX_SOI_LAY); tsV->put(&ed->eq_ts[0][0], 12, MAX_SOI_LAY); ch4V->put(&ed->eq_ch4[0][0], 12, MAX_SOI_LAY); liqV->put(&ed->eq_liq[0][0], 12, MAX_SOI_LAY); iceV->put(&ed->eq_ice[0][0], 12, MAX_SOI_LAY); vwcV->put(&ed->eq_vwc[0][0], 12, MAX_SOI_LAY); swsV->put(&ed->eq_sws[0][0], 12, MAX_SOI_LAY); taV->put(&ed->eq_ta[0], 12); petV->put(&ed->eq_pet[0], 12); eetV->put(&ed->eq_eet[0], 12); co2V->put(&ed->eq_co2[0], 12); parV->put(&ed->eq_par[0], 12); growV->put(&ed->eq_grow[0], 12); envlaiV->put(&ve->envlaiall[0], 12); yreetV->put(&ed->eq_y_eet, 1); yrpetV->put(&ed->eq_y_pet, 1); yrco2V->put(&ed->eq_y_co2, 1); prveetmxV->put(&ed->eq_prveetmx); prvpetmxV->put(&ed->eq_prvpetmx); resFile->close(); delete resFile; //Yuan: if not, memory leaking may occur // exit(0); };
void netcdf_mpas_report ( string filename ) //****************************************************************************80 // // Purpose: // // NETCDF_MPAS_REPORT reads an MPAS NETCDF grid file and reports. // // Discussion: // // In this example, we want to extract all the information from a file // of unknown type. // // Here, we are pretending we have no idea what's in the file, so we // have to go step by step, making inquiries to NETCDF. // // As we go, we print out what we have discovered. We don't attempt // to return any of the data. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 December 2010 // // Author: // // John Burkardt // // Reference: // // Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne, // The NETCDF User's Guide, // Unidata Program Center, March 2009. // // Parameters: // // Input, string FILENAME, the name of the NETCDF file to examine. // { NcAtt *att; NcDim *dim; int i; int j; long int len; NcToken name; int num_atts; int num_dims; int num_vars; NcType type; NcDim *unlimdimid; NcVar *var; cout << "\n"; cout << "NETCDF_MPAS_REPORT:\n"; cout << " Report the information stored in a NETCDF\n"; cout << " file. Although we wish to examine a file containing\n"; cout << " grid data generated by MPAS, we will assume we do not\n"; cout << " have any idea of what is in the file. So we just read,\n"; cout << " inquire, and print out.\n"; cout << "\n"; cout << " The name of the file is \"" << filename << "\"\n"; // // Open the file. // NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly ); // // Return information about the NETCDF file. // num_dims = ncid.num_dims ( ); num_vars = ncid.num_vars ( ); num_atts = ncid.num_atts ( ); unlimdimid = ncid.rec_dim ( ); cout << "\n"; cout << "PRIMARY PARAMETERS:\n"; cout << "\n"; cout << " The number of dimensions NUM_DIMS = " << num_dims << "\n"; cout << " The number of variables NUM_VARS = " << num_vars << "\n"; cout << " The number of global attributes NUM_ATTS = " << num_atts << "\n"; cout << " The unlimited dimension (if any) UNLIMDIMID = \"" << (*unlimdimid).name ( ) << "\"\n"; // // Retrieve global attributes. // First, we must evaluate the constant "NC_GLOBAL". // // nc_global = netcdf.getConstant ( 'NC_GLOBAL' ); cout << "\n"; cout << "GLOBAL ATTRIBUTES:\n"; cout << " Att --------Name-------- Type Len\n"; cout << "\n"; for ( i = 0; i < num_atts; i++ ) { att = ncid.get_att ( i ); name = (*att).name ( ); type = (*att).type ( ); len = (*att).num_vals ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(4) << type << " " << setw(4) << len << "\n"; } // // Determine names and extents of dimensions. // Since each NAME is a char array, we make a cell array to hold them. // cout << "\n"; cout << "DIMENSIONS:\n"; cout << " Dim --------Name-------- Extent\n"; cout << "\n"; for ( i = 0; i < num_dims; i++ ) { dim = ncid.get_dim ( i ); name = (*dim).name ( ); len = (*dim).size ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(6) << len << "\n"; } // // Get variable names, types, dimensions, number of attributes. // cout << "\n"; cout << "VARIABLES:\n"; cout << " Var --------Name-------- Type Natts Ndims Dims\n"; cout << "\n"; for ( i = 0; i < num_vars; i++ ) { var = ncid.get_var ( i ); name = (*var).name ( ); type = (*var).type ( ); num_dims = (*var).num_dims ( ); num_atts = (*var).num_atts ( ); cout << " " << setw(2) << i << " \"" << setw(18) << name << "\"" << " " << setw(4) << type << " " << setw(4) << num_atts << " " << setw(4) << num_dims << " "; for ( j = 0; j < num_dims; j++ ) { dim = (*var).get_dim ( j ); if ( j == 0 ) { cout << "["; } cout << (*dim).name ( ); if ( j < num_dims - 1 ) { cout <<","; } else { cout << "]"; } } cout << "\n"; } // // Close the file. // ncid.close ( ); return; }
// // Creates NetCDF product // bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data, int totalsegs, int *segsindexes, MSG_header *header, MSG_data *msgdat) { struct tm *tmtime; char NcName[1024]; char reftime[64]; char projname[16]; int wd, hg; int bpp; int ncal; float *cal; NcVar *ivar; NcVar *tvar; NcDim *tdim; NcDim *ldim; NcDim *cdim; NcDim *caldim; int npix = header[0].image_structure->number_of_columns; int nlin = header[0].image_structure->number_of_lines; size_t npixperseg = npix*nlin; size_t total_size = totalsegs*npixperseg; MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size]; memset(pixels, 0, total_size*sizeof(MSG_SAMPLE)); size_t pos = 0; for (int i = 0; i < totalsegs; i ++) { if (segsindexes[i] >= 0) memcpy(pixels+pos, msgdat[segsindexes[i]].image->data, npixperseg*sizeof(MSG_SAMPLE)); pos += npixperseg; } nlin = nlin*totalsegs; // Manage subarea if (is_subarea) { if (AreaLinStart < 0 || AreaLinStart > nlin - AreaNlin || AreaNlin > nlin - AreaLinStart) { std::cerr << "Wrong Subarea in lines...." << std::endl; throw; } if (AreaPixStart < 0 || AreaPixStart > npix - AreaNpix || AreaNpix > npix - AreaPixStart) { std::cerr << "Wrong Subarea in Pixels...." << std::endl; throw; } size_t newsize = AreaNpix * AreaNlin; MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize]; memset(newpix, 0, newsize*sizeof(MSG_SAMPLE)); for (int i = 0; i < AreaNlin; i ++) memcpy(newpix + i * AreaNpix, pixels + (AreaLinStart + i) * npix + AreaPixStart, AreaNpix * sizeof(MSG_SAMPLE)); delete [ ] pixels; pixels = newpix; total_size = newsize; } else { AreaNpix = npix; AreaNlin = nlin; } tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( ); t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id; uint_1 chn = header[0].segment_id->spectral_channel_id; float sublon = header[0].image_navigation->subsatellite_longitude; int cfac = header[0].image_navigation->column_scaling_factor; int lfac = header[0].image_navigation->line_scaling_factor; int coff = header[0].image_navigation->column_offset; int loff = header[0].image_navigation->line_offset; float sh = header[0].image_navigation->satellite_h; char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( )); char *channel = chname(channelstring, strlen(channelstring) + 1); // Build up output NetCDF file name and open it sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel, tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min ); NcFile ncf ( NcName , NcFile::Replace ); if (! ncf.is_valid()) return false; // Fill arrays on creation ncf.set_fill(NcFile::Fill); // Add Global Attributes if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str())) return false; sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC", tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday, tmtime->tm_hour, tmtime->tm_min); if (! ncf.add_att("Antenna", "Fixed") ) return false; if (! ncf.add_att("Receiver", "HIMET") ) return false; if (! ncf.add_att("Time", reftime) ) return false; if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false; sprintf(projname, "GEOS(%3.1f)", sublon); if (! ncf.add_att("Projection", projname) ) return false; if (! ncf.add_att("Columns", AreaNpix ) ) return false; if (! ncf.add_att("Lines", AreaNlin ) ) return false; if (! ncf.add_att("SampleX", 1.0 ) ) return false; if (! ncf.add_att("SampleY", 1.0 ) ) return false; if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false; if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false; if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false; if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false; if (! ncf.add_att("Column_Offset", coff) ) return false; if (! ncf.add_att("Line_Offset", loff) ) return false; if (! ncf.add_att("Orbit_Radius", sh) ) return false; if (! ncf.add_att("Longitude", sublon) ) return false; if (! ncf.add_att("NortPolar", 1) ) return false; if (! ncf.add_att("NorthSouth", 1) ) return false; if (! ncf.add_att("title", TITLE) ) return false; if (! ncf.add_att("Institution", INSTITUTION) ) return false; if (! ncf.add_att("Type", TYPE) ) return false; if (! ncf.add_att("Version", HIMET_VERSION) ) return false; if (! ncf.add_att("Conventions", "COARDS") ) return false; if (! ncf.add_att("history", "Created from raw data") ) return false; // Dimensions wd = AreaNpix; hg = AreaNlin; bpp = header[0].image_structure->number_of_bits_per_pixel; ncal = (int) pow(2.0, bpp); tdim = ncf.add_dim("time"); if (!tdim->is_valid()) return false; ldim = ncf.add_dim("line", hg); if (!ldim->is_valid()) return false; cdim = ncf.add_dim("column", wd); if (!cdim->is_valid()) return false; caldim = ncf.add_dim("calibration", ncal); if (!caldim->is_valid()) return false; // Get calibration values cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp); // Add Calibration values NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim); if (!cvar->is_valid()) return false; cvar->add_att("long_name", "Calibration coefficients"); cvar->add_att("variable", channel); if (chn > 3 && chn < 12) cvar->add_att("units", "K"); else cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1"); if (!cvar->put(cal, ncal)) return false; tvar = ncf.add_var("time", ncDouble, tdim); if (!tvar->is_valid()) return false; tvar->add_att("long_name", "Time"); tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC"); double atime; time_t ttime; extern long timezone; ttime = mktime(tmtime); atime = ttime - 946684800 - timezone; if (!tvar->put(&atime, 1)) return false; ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim); if (!ivar->is_valid()) return false; if (!ivar->add_att("add_offset", 0.0)) return false; if (!ivar->add_att("scale_factor", 1.0)) return false; if (!ivar->add_att("chnum", chn)) return false; // Write output values if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false; // Close NetCDF output (void) ncf.close( ); delete [ ] pixels; delete [ ] cal; return( true ); }
void size_read ( string filename, int *dim, int *vertices, int *edges, int *triangles, int *quadrilaterals, int *tetrahedrons, int *hexahedrons ) //*****************************************************************************80 // // Purpose: // // SIZE_READ reads ICE sizes from a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Parameters: // // Input, string FILENAME, the name of the file to be read. // Ordinarily, the name should include the extension ".nc". // // Output, int *DIM, the spatial dimension, which should be 2 or 3. // // Output, int *VERTICES, the number of vertices. // // Output, int *EDGES, the number of edges (may be 0). // // Output, int *TRIANGLES, the number of triangles (may be 0). // // Output, int *QUADRILATERALS, the number of quadrilaterals (may be 0). // // Output, int *TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Output, int *HEXAHEDRONS, the number of hexahedrons (may be 0). // { NcDim *dim_dimension; NcDim *dim_edges; NcDim *dim_eight; NcDim *dim_four; NcDim *dim_hexahedrons; NcToken dim_name; int dim_num; NcDim *dim_quadrilaterals; NcDim *dim_tetrahedrons; NcDim *dim_three; NcDim *dim_triangles; NcDim *dim_two; NcDim *dim_vertices; NcDim *dim_pointer; int i; // // Initialize everything to nothing. // *dim = 0; *vertices = 0; *edges = 0; *triangles = 0; *quadrilaterals = 0; *tetrahedrons = 0; *hexahedrons = 0; // // Open the file in "read only" mode. // NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "SIZE_READ: Fatal error!\n"; cout << " Could not open file.\n"; exit ( 1 ); } // // Get the dimension information. // // I would much prefer to write "0" as the size of certain dimensions, but I am not // allowed to, so I simply omit them from the file. // // Therefore, when I open the file and try to determine dimensions, some dimensions // are "missing", which I would have presumed I could discover painlessly by asking // for pointers to them, and getting NULLs back. But that doesn't seem to work either. // // So my bonehead backup is simply to read all the dimensions by index, retrieve // their names, and see what I find. // dim_num = dataFile.num_dims ( ); for ( i = 0; i < dim_num; i++ ) { dim_pointer = dataFile.get_dim ( i ); dim_name = dim_pointer->name ( ); if ( !strcmp ( dim_name, "Dimension" ) ) { *dim = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Vertices" ) ) { *vertices = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Edges" ) ) { *edges = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Triangles" ) ) { *triangles = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Quadrilaterals" ) ) { *quadrilaterals = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Tetrahedrons" ) ) { *tetrahedrons = dim_pointer->size ( ); } else if ( !strcmp ( dim_name, "Hexahedrons" ) ) { *hexahedrons = dim_pointer->size ( ); } else { cout << " Ignoring information about dimension \"" << dim_name << "\".\n"; } } // // Close the file. // dataFile.close ( ); return; }
void data_read ( string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // DATA_READ reads ICE data from a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Russ Rew, // The NetCDF C++ Interface Guide, // Unidata Program Center, August 2008. // // Parameters: // // Input, string FILENAME, the name of the file to be read. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 2 or 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Output, double VERTEX_COORDINATE[DIM*VERTICES], the coordinates // of each vertex. // // Output, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Output, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Output, int EDGE_LABEL[EDGES], a label for each edge. // // Output, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Output, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Output, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Output, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Output, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Output, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Output, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Output, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { // // Open the file in "read only" mode. // NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "DATA_READ: Fatal error!\n"; cout << " Could not open file.\n"; exit ( 1 ); } // // Vertices. // NcVar *var_vertex_coordinate = dataFile.get_var ( "Vertex_Coordinate" ); var_vertex_coordinate->get ( &vertex_coordinate[0], dim, vertices ); NcVar *var_vertex_label = dataFile.get_var ( "Vertex_Label" ); var_vertex_label->get ( &vertex_label[0], vertices ); // // Edges. // if ( 0 < edges ) { NcVar *var_edge_vertex = dataFile.get_var ( "Edge_Vertex" ); var_edge_vertex->get ( &edge_vertex[0], 2, edges ); NcVar *var_edge_label = dataFile.get_var ( "Edge_Label" ); var_edge_label->get ( &edge_label[0], edges ); } // // Triangles. // if ( 0 < triangles ) { NcVar *var_triangle_vertex = dataFile.get_var ( "Triangle_Vertex" ); var_triangle_vertex->get ( &triangle_vertex[0], 3, triangles ); NcVar *var_triangle_label = dataFile.get_var ( "Triangle_Label" ); var_triangle_label->get ( &triangle_label[0], triangles ); } // // Quadrilaterals. // if ( 0 < quadrilaterals ) { NcVar *var_quadrilateral_vertex = dataFile.get_var ( "Quadrilateral_Vertex" ); var_quadrilateral_vertex->get ( &quadrilateral_vertex[0], 4, quadrilaterals ); NcVar *var_quadrilateral_label = dataFile.get_var ( "Quadrilateral_Label" ); var_quadrilateral_label->get ( &quadrilateral_label[0], quadrilaterals ); } // // Tetrahedrons. // if ( 0 < tetrahedrons ) { NcVar *var_tetrahedron_vertex = dataFile.get_var ( "Tetrahedron_Vertex" ); var_tetrahedron_vertex->get ( &tetrahedron_vertex[0], 4, tetrahedrons ); NcVar *var_tetrahedron_label = dataFile.get_var ( "Tetrahedron_Label" ); var_tetrahedron_label->get ( &tetrahedron_label[0], tetrahedrons ); } // // Hexahedrons. // if ( 0 < hexahedrons ) { NcVar *var_hexahedron_vertex = dataFile.get_var ( "Hexahedron_Vertex" ); var_hexahedron_vertex->get ( &hexahedron_vertex[0], 8, hexahedrons ); NcVar *var_hexahedron_label = dataFile.get_var ( "Hexahedron_Label" ); var_hexahedron_label->get ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }
void ice_write ( std::string filename, int dim, int vertices, int edges, int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons, double vertex_coordinate[], int vertex_label[], int edge_vertex[], int edge_label[], int triangle_vertex[], int triangle_label[], int quadrilateral_vertex[], int quadrilateral_label[], int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[], int hexahedron_label[] ) //****************************************************************************80 // // Purpose: // // ICE_WRITE writes 3D ICE sizes and data to a NETCDF file. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 November 2010 // // Author: // // John Burkardt // // Reference: // // Pascal Frey, // MEDIT: An interactive mesh visualization software, // Technical Report RT-0253, // Institut National de Recherche en Informatique et en Automatique, // 03 December 2001. // // Parameters: // // Input, string FILENAME, the name of the file to be created. // Ordinarily, the name should include the extension ".nc". // // Input, int DIM, the spatial dimension, which should be 3. // // Input, int VERTICES, the number of vertices. // // Input, int EDGES, the number of edges (may be 0). // // Input, int TRIANGLES, the number of triangles (may be 0). // // Input, int QUADRILATERALS, the number of quadrilaterals (may be 0). // // Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0). // // Input, int HEXAHEDRONS, the number of hexahedrons (may be 0). // // Input, double VERTEX_COORDINATE[3*VERTICES], the XYZ coordinates // of each vertex. // // Input, int VERTEX_LABEL[VERTICES], a label for each vertex. // // Input, int EDGE_VERTEX[2*EDGES], the vertices that form each edge. // // Input, int EDGE_LABEL[EDGES], a label for each edge. // // Input, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form // each triangle. // // Input, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle. // // Input, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that // form each quadrilateral. // // Input, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for // each quadrilateral. // // Input, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that // form each tetrahedron. // // Input, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for // each tetrahedron. // // Input, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form // each hexahedron. // // Input, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron. // { NcDim *dim_dimension; NcDim *dim_edges; NcDim *dim_eight; NcDim *dim_four; NcDim *dim_hexahedrons; NcDim *dim_quadrilaterals; NcDim *dim_tetrahedrons; NcDim *dim_three; NcDim *dim_triangles; NcDim *dim_two; NcDim *dim_vertices; NcVar *var_edge_vertex; NcVar *var_edge_label; NcVar *var_hexahedron_vertex; NcVar *var_hexahedron_label; NcVar *var_quadrilateral_vertex; NcVar *var_quadrilateral_label; NcVar *var_tetrahedron_vertex; NcVar *var_tetrahedron_label; NcVar *var_triangle_vertex; NcVar *var_triangle_label; NcVar *var_vertex_coordinate; NcVar *var_vertex_label; // // Create the file. // NcFile dataFile ( filename.c_str ( ), NcFile::Replace ); if ( !dataFile.is_valid ( ) ) { cout << "\n"; cout << "ICE_WRITE - Fatal error!\n"; cout << " Could not open the file.\n"; exit ( 1 ); } // // Dimension information. // dim_dimension = dataFile.add_dim ( "Dimension", dim ); dim_vertices = dataFile.add_dim ( "Vertices", vertices ); if ( 0 < edges ) { dim_edges = dataFile.add_dim ( "Edges", edges ); } if ( 0 < triangles ) { dim_triangles = dataFile.add_dim ( "Triangles", triangles ); } if ( 0 < quadrilaterals ) { dim_quadrilaterals = dataFile.add_dim ( "Quadrilaterals", quadrilaterals ); } if ( 0 < tetrahedrons ) { dim_tetrahedrons = dataFile.add_dim ( "Tetrahedrons", tetrahedrons ); } if ( 0 < hexahedrons ) { dim_hexahedrons = dataFile.add_dim ( "Hexahedrons", hexahedrons ); } dim_two = dataFile.add_dim ( "Two", 2 ); dim_three = dataFile.add_dim ( "Three", 3 ); dim_four = dataFile.add_dim ( "Four", 4 ); dim_eight = dataFile.add_dim ( "Eight", 8 ); // // Define variables. // var_vertex_coordinate = dataFile.add_var ( "Vertex_Coordinate", ncDouble, dim_three, dim_vertices ); var_vertex_label = dataFile.add_var ( "Vertex_Label", ncInt, dim_vertices ); if ( 0 < edges ) { var_edge_vertex = dataFile.add_var ( "Edge_Vertex", ncInt, dim_two, dim_edges ); var_edge_label = dataFile.add_var ( "Edge_Label", ncInt, dim_edges ); } if ( 0 < triangles ) { var_triangle_vertex = dataFile.add_var ( "Triangle_Vertex", ncInt, dim_three, dim_triangles ); var_triangle_label = dataFile.add_var ( "Triangle_Label", ncInt, dim_triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex = dataFile.add_var ( "Quadrilateral_Vertex", ncInt, dim_four, dim_quadrilaterals ); var_quadrilateral_label = dataFile.add_var ( "Quadrilateral_Label", ncInt, dim_quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex = dataFile.add_var ( "Tetrahedron_Vertex", ncInt, dim_four, dim_tetrahedrons ); var_tetrahedron_label = dataFile.add_var ( "Tetrahedron_Label", ncInt, dim_tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex = dataFile.add_var ( "Hexahedron_Vertex", ncInt, dim_eight, dim_hexahedrons ); var_hexahedron_label = dataFile.add_var ( "Hexahedron_Label", ncInt, dim_hexahedrons ); } // // Write the data. // var_vertex_coordinate->put ( &vertex_coordinate[0], 3, vertices ); var_vertex_label->put ( &vertex_label[0], vertices ); if ( 0 < edges ) { var_edge_vertex->put ( &edge_vertex[0], 2, edges ); var_edge_label->put ( &edge_label[0], edges ); } if ( 0 < triangles ) { var_triangle_vertex->put ( &triangle_vertex[0], 3, triangles ); var_triangle_label->put ( &triangle_label[0], triangles ); } if ( 0 < quadrilaterals ) { var_quadrilateral_vertex->put ( &quadrilateral_vertex[0], 4, quadrilaterals ); var_quadrilateral_label->put ( &quadrilateral_label[0], quadrilaterals ); } if ( 0 < tetrahedrons ) { var_tetrahedron_vertex->put ( &tetrahedron_vertex[0], 4, tetrahedrons ); var_tetrahedron_label->put ( &tetrahedron_label[0], tetrahedrons ); } if ( 0 < hexahedrons ) { var_hexahedron_vertex->put ( &hexahedron_vertex[0], 8, hexahedrons ); var_hexahedron_label->put ( &hexahedron_label[0], hexahedrons ); } // // Close the file. // dataFile.close ( ); return; }