示例#1
0
void netcdf_mpas_read_xyzvertex ( string filename, int nvertices, 
  double xvertex[], double yvertex[], double zvertex[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_CELLS gets the cell center coordinates.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NVERTICES, the number of vertices.
//
//    Output, double XVERTEX[NVERTICES], YVERTEXL[NVERTICES], 
//    ZVERTEX[NVERTICES], the coordinates of the nodes.
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "xVertex" );
  (*var_id).get ( &xvertex[0], nvertices );
  var_id = ncid.get_var ( "yVertex" );
  (*var_id).get ( &yvertex[0], nvertices );
  var_id = ncid.get_var ( "zVertex" );
  (*var_id).get ( &zvertex[0], nvertices );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
示例#2
0
void netcdf_mpas_read_xyzcell ( string filename, int ncells, double xcell[],
  double ycell[], double zcell[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_XYZCELL reads xCell, yCell, zCell.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    29 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NCELLS, the number of nodes.
//
//    Output, double XCELL[NCELLS], YCELL[NCELLS], ZCELL[NCELLS], the
//    coordinates of the nodes.
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "xCell" );
  (*var_id).get ( &xcell[0], ncells );
  var_id = ncid.get_var ( "yCell" );
  (*var_id).get ( &ycell[0], ncells );
  var_id = ncid.get_var ( "zCell" );
  (*var_id).get ( &zcell[0], ncells );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
示例#3
0
void netcdf_mpas_read_verticesoncell ( string filename, int maxedges,
  int ncells, int verticesoncell[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_VERTICESONCELLS gets verticesOnCells.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int MAXEDGES, the maximum number of edges for a cell.
//
//    Input, int NCELLS, the number of cells.
//
//    Output, int VERTICESONCELLS[MAXEDGES*NCELLS];
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "verticesOnCell" );
  (*var_id).get ( &verticesoncell[0], ncells, maxedges );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
示例#4
0
int netcdf_mpas_read_maxedges ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_MAXEDGES gets MAXEDGES.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    01 January 2011
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Output, int NETCDF_MPAS_READ_MAXEDGES, the value of MAXEDGES.
//
{
  int maxedges;
  long int maxedges_size;
  NcDim *maxedges_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get MAXEDGES, which is a NETCDF dimension.
//
  maxedges_id = ncid.get_dim ( "maxEdges" );

  maxedges_size = (*maxedges_id).size ( );
//
//  Close the file.
//
  ncid.close ( );

  maxedges = ( int ) maxedges_size;

  return maxedges;
}
示例#5
0
int netcdf_mpas_read_nvertices ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_NVERTICES gets the number of vertices.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Output, int NETCDF_MPAS_READ_NVERTICES, the value of NVERTICES.
//
{
  int nvertices;
  long int nvertices_size;
  NcDim *nvertices_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get NCELLS, which is a NETCDF dimension.
//
  nvertices_id = ncid.get_dim ( "nVertices" );

  nvertices_size = (*nvertices_id).size ( );
//
//  Close the file.
//
  ncid.close ( );

  nvertices = ( int ) nvertices_size;

  return nvertices;
}
示例#6
0
文件: Arome.cpp 项目: WFRT/gridpp
bool FileArome::isValid(std::string iFilename) {
   bool status = false;
   NcFile file = NcFile(iFilename.c_str(), NcFile::ReadOnly);
   if(file.is_valid()) {
      status = hasDim(file, "time") && hasDim(file, "x") && hasDim(file, "y") &&
               !hasDim(file, "ensemble_member") &&
               hasVar(file, "latitude") && hasVar(file, "longitude");
   }
   file.close();
   return status;
}
示例#7
0
void netcdf_mpas_read_cellsonvertex ( string filename, int nvertices,
  int cellsonvertex[] )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_READ_CELLSONVERTEX gets the cellsOnVertex information.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string NC_FILENAME, the name of the NETCDF file to examine.
//
//    Input, int NEDGES, the number of edges.
//
//    Output, int CELLSONVERTEX[3*NVERTICES];
//
{
  NcVar *var_id;
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Get the variable values.
//
  var_id = ncid.get_var ( "cellsOnVertex" );
  (*var_id).get ( &cellsonvertex[0], nvertices, 3 );
//
//  Close the file.
//
  ncid.close ( );

  return;
}
示例#8
0
void CCohortdriver::createSoilClimate(BgcData *bd, EnvData *ed, Vegetation_Env *ve,
                                    string& datadir){
	
	string file = datadir+ "calirestart.nc";
	NcFile* resFile = new NcFile(file.c_str(), NcFile::Replace);

	NcDim * chtD = resFile->add_dim("CHTID", 1);
	NcDim * monD = resFile->add_dim("MON", 12);
	NcDim * layD = resFile->add_dim("LAYER", MAX_SOI_LAY);

	NcVar* drgV = resFile->add_var("DRG",ncInt, chtD);
	NcVar* vegV = resFile->add_var("VEG",ncInt, chtD);
	NcVar* numslV = resFile->add_var("NUMSL",ncInt, chtD);

	NcVar* rsoilcV = resFile->add_var("RSOILC", ncDouble, layD);
	NcVar* nsoilcV = resFile->add_var("NSOILC", ncDouble, layD);
	NcVar* dzV = resFile->add_var("DZ", ncDouble, layD);
	NcVar* typeV = resFile->add_var("TYPE", ncDouble, layD);
	NcVar* poroV = resFile->add_var("PORO", ncDouble, layD);
	NcVar* rootfracV = resFile->add_var("ROOTFRAC", ncDouble, layD);

	NcVar* taV = resFile->add_var("TA",ncDouble, monD);
	NcVar* growV = resFile->add_var("GROW",ncDouble, monD);
	NcVar* co2V = resFile->add_var("CO2",ncDouble, monD);
	NcVar* petV = resFile->add_var("PET",ncDouble, monD);
	NcVar* eetV = resFile->add_var("EET",ncDouble, monD);
	NcVar* parV = resFile->add_var("PAR",ncDouble, monD);
	NcVar* envlaiV = resFile->add_var("ENVLAI",ncFloat, monD);

	NcVar* tsV = resFile->add_var("TS", ncDouble, monD, layD);
	NcVar* ch4V = resFile->add_var("CH4",ncDouble, monD, layD);
	NcVar* liqV = resFile->add_var("LIQ",ncDouble, monD, layD);
	NcVar* vwcV = resFile->add_var("VSM",ncDouble, monD, layD);
	NcVar* swsV = resFile->add_var("SWS",ncDouble, monD, layD);
	NcVar* iceV = resFile->add_var("ICE",ncDouble, monD, layD);

	NcVar* yreetV = resFile->add_var("YREET",ncDouble, chtD);
	NcVar* yrpetV = resFile->add_var("YRPET",ncDouble, chtD);
	NcVar* yrco2V = resFile->add_var("YRCO2",ncDouble, chtD);
	NcVar* prveetmxV = resFile->add_var("PRVEETMX",ncDouble, chtD);
	NcVar* prvpetmxV = resFile->add_var("PRVPETMX",ncDouble, chtD);
	
	numslV->put(&ed->m_soid.actual_num_soil, 1);
	drgV->put(&ed->cd->drgtype, 1);
	vegV->put(&ed->cd->vegtype, 1);

	poroV->put(&ed->m_sois.por[0], MAX_SOI_LAY);
	typeV->put(&ed->m_sois.type[0], MAX_SOI_LAY);
	dzV->put(&ed->m_sois.dz[0], MAX_SOI_LAY);
	rsoilcV->put(&bd->m_sois.reac[0], MAX_SOI_LAY);
	nsoilcV->put(&bd->m_sois.nonc[0], MAX_SOI_LAY);
	rootfracV->put(&ed->m_sois.rootfrac[0], MAX_SOI_LAY);

	tsV->put(&ed->eq_ts[0][0], 12, MAX_SOI_LAY);
	ch4V->put(&ed->eq_ch4[0][0], 12, MAX_SOI_LAY);
	liqV->put(&ed->eq_liq[0][0], 12, MAX_SOI_LAY);
	iceV->put(&ed->eq_ice[0][0], 12, MAX_SOI_LAY);
	vwcV->put(&ed->eq_vwc[0][0], 12, MAX_SOI_LAY);
	swsV->put(&ed->eq_sws[0][0], 12, MAX_SOI_LAY);
	
	taV->put(&ed->eq_ta[0], 12);
	petV->put(&ed->eq_pet[0], 12);
    eetV->put(&ed->eq_eet[0], 12);
	co2V->put(&ed->eq_co2[0], 12);
	parV->put(&ed->eq_par[0], 12);
	growV->put(&ed->eq_grow[0], 12);
	envlaiV->put(&ve->envlaiall[0], 12);

	yreetV->put(&ed->eq_y_eet, 1);
	yrpetV->put(&ed->eq_y_pet, 1);
	yrco2V->put(&ed->eq_y_co2, 1);

	prveetmxV->put(&ed->eq_prveetmx);
	prvpetmxV->put(&ed->eq_prvpetmx);
	
	resFile->close();
	delete resFile;   //Yuan: if not, memory leaking may occur

//	exit(0);
};
示例#9
0
void netcdf_mpas_report ( string filename )

//****************************************************************************80
//
//  Purpose:
//
//    NETCDF_MPAS_REPORT reads an MPAS NETCDF grid file and reports.
//
//  Discussion:
//
//    In this example, we want to extract all the information from a file
//    of unknown type.
//
//    Here, we are pretending we have no idea what's in the file, so we
//    have to go step by step, making inquiries to NETCDF.
//
//    As we go, we print out what we have discovered.  We don't attempt
//    to return any of the data.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    29 December 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Russ Rew, Glenn Davis, Steve Emmerson, Harvey Davies, Ed Hartne,
//    The NETCDF User's Guide,
//    Unidata Program Center, March 2009.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the NETCDF file to examine.
//
{
  NcAtt *att;
  NcDim *dim;
  int i;
  int j;
  long int len;

  NcToken name;
  int num_atts;
  int num_dims;
  int num_vars;
  NcType type;
  NcDim *unlimdimid;
  NcVar *var;

  cout << "\n";
  cout << "NETCDF_MPAS_REPORT:\n";
  cout << "  Report the information stored in a NETCDF\n";
  cout << "  file.  Although we wish to examine a file containing\n";
  cout << "  grid data generated by MPAS, we will assume we do not\n";
  cout << "  have any idea of what is in the file.  So we just read,\n";
  cout << "  inquire, and print out.\n";

  cout << "\n";
  cout << "  The name of the file is \"" << filename << "\"\n";
//
//  Open the file.
//
  NcFile ncid ( filename.c_str ( ), NcFile::ReadOnly );
//
//  Return information about the NETCDF file.
//
  num_dims = ncid.num_dims ( );
  num_vars = ncid.num_vars ( );
  num_atts = ncid.num_atts ( );
  unlimdimid = ncid.rec_dim ( );

  cout << "\n";
  cout << "PRIMARY PARAMETERS:\n";
  cout << "\n";
  cout << "  The number of dimensions         NUM_DIMS   = " << num_dims << "\n";
  cout << "  The number of variables          NUM_VARS   = " << num_vars << "\n";
  cout << "  The number of global attributes  NUM_ATTS   = " << num_atts << "\n";
  cout << "  The unlimited dimension (if any) UNLIMDIMID = \"" << (*unlimdimid).name ( ) << "\"\n";
//
//  Retrieve global attributes.
//  First, we must evaluate the constant "NC_GLOBAL".
//
//  nc_global = netcdf.getConstant ( 'NC_GLOBAL' );

  cout << "\n";
  cout << "GLOBAL ATTRIBUTES:\n";
  cout << " Att  --------Name--------  Type   Len\n";
  cout << "\n";
  for ( i = 0; i < num_atts; i++ )
  {
    att = ncid.get_att ( i );
    name = (*att).name ( );
    type = (*att).type ( );
    len = (*att).num_vals ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(4) << type
         << "  " << setw(4) << len << "\n";
  }
//
//  Determine names and extents of dimensions.
//  Since each NAME is a char array, we make a cell array to hold them.
//
  cout << "\n";
  cout << "DIMENSIONS:\n";
  cout << " Dim  --------Name--------  Extent\n";
  cout << "\n";

  for ( i = 0; i < num_dims; i++ )
  {
    dim = ncid.get_dim ( i );
    name = (*dim).name ( );
    len = (*dim).size ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(6) << len << "\n";
  }
//
//  Get variable names, types, dimensions, number of attributes.
//
  cout << "\n";
  cout << "VARIABLES:\n";
  cout << " Var  --------Name--------  Type Natts Ndims  Dims\n";
  cout << "\n";

  for ( i = 0; i < num_vars; i++ )
  {
    var = ncid.get_var ( i );
    name = (*var).name ( );
    type = (*var).type ( );
    num_dims = (*var).num_dims ( );
    num_atts = (*var).num_atts ( );
    cout << "  " << setw(2) << i
         << "  \"" << setw(18) << name << "\""
         << "  " << setw(4) << type
         << "  " << setw(4) << num_atts
         << "  " << setw(4) << num_dims
         << "  ";
    for ( j = 0; j < num_dims; j++ )
    {
      dim = (*var).get_dim ( j );
      if ( j == 0 )
      {
        cout << "[";
      }
      cout << (*dim).name ( );
      if ( j < num_dims - 1 )
      {
        cout <<",";
      }
      else
      {
        cout << "]";
      }
    }
    cout << "\n";
  }
//
//  Close the file.
//
  ncid.close ( );

  return;
}
示例#10
0
//
// Creates NetCDF product
//
bool NetCDFProduct(MSG_header *PRO_head, MSG_data* PRO_data,
                   int totalsegs, int *segsindexes,
		   MSG_header *header, MSG_data *msgdat)
{
  struct tm *tmtime;
  char NcName[1024];
  char reftime[64];
  char projname[16];
  int wd, hg;
  int bpp;
  int ncal;
  float *cal;
  NcVar *ivar;
  NcVar *tvar;
  NcDim *tdim;
  NcDim *ldim;
  NcDim *cdim;
  NcDim *caldim;

  int npix = header[0].image_structure->number_of_columns;
  int nlin = header[0].image_structure->number_of_lines;
  size_t npixperseg = npix*nlin;

  size_t total_size = totalsegs*npixperseg;
  MSG_SAMPLE *pixels = new MSG_SAMPLE[total_size];
  memset(pixels, 0, total_size*sizeof(MSG_SAMPLE));
  size_t pos = 0;
  for (int i = 0; i < totalsegs; i ++)
  {
    if (segsindexes[i] >= 0)
      memcpy(pixels+pos, msgdat[segsindexes[i]].image->data,
             npixperseg*sizeof(MSG_SAMPLE));
    pos += npixperseg;
  }

  nlin = nlin*totalsegs;

  // Manage subarea
  if (is_subarea)
  {
    if (AreaLinStart < 0                             ||
        AreaLinStart > nlin - AreaNlin ||
        AreaNlin > nlin - AreaLinStart)
    {
      std::cerr << "Wrong Subarea in lines...." << std::endl;
      throw;
    }
    if (AreaPixStart < 0               ||
        AreaPixStart > npix - AreaNpix ||
        AreaNpix > npix - AreaPixStart)
    {
      std::cerr << "Wrong Subarea in Pixels...." << std::endl;
      throw;
    }
    size_t newsize = AreaNpix * AreaNlin;
    MSG_SAMPLE *newpix = new MSG_SAMPLE[newsize];
    memset(newpix, 0, newsize*sizeof(MSG_SAMPLE));
    for (int i = 0; i < AreaNlin; i ++)
      memcpy(newpix + i * AreaNpix,
             pixels + (AreaLinStart + i) * npix + AreaPixStart,
             AreaNpix * sizeof(MSG_SAMPLE));
    delete [ ] pixels;
    pixels = newpix;
    total_size = newsize;
  }
  else
  {
    AreaNpix = npix;
    AreaNlin = nlin;
  }

  tmtime = PRO_data->prologue->image_acquisition.PlannedAquisitionTime.TrueRepeatCycleStart.get_timestruct( );
  t_enum_MSG_spacecraft spc = header[0].segment_id->spacecraft_id;
  uint_1 chn = header[0].segment_id->spectral_channel_id;
  float sublon = header[0].image_navigation->subsatellite_longitude;
  int cfac = header[0].image_navigation->column_scaling_factor;
  int lfac = header[0].image_navigation->line_scaling_factor;
  int coff = header[0].image_navigation->column_offset;
  int loff = header[0].image_navigation->line_offset;
  float sh = header[0].image_navigation->satellite_h;

  char *channelstring = strdup(MSG_channel_name(spc, chn).c_str( ));
  char *channel = chname(channelstring, strlen(channelstring) + 1);

  // Build up output NetCDF file name and open it
  sprintf( NcName, "%s_%4d%02d%02d_%02d%02d.nc", channel,
           tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
	   tmtime->tm_hour, tmtime->tm_min );
  NcFile ncf ( NcName , NcFile::Replace );
  if (! ncf.is_valid()) return false;

  // Fill arrays on creation
  ncf.set_fill(NcFile::Fill);

  // Add Global Attributes
  if (! ncf.add_att("Satellite", MSG_spacecraft_name(spc).c_str()))
	            return false;
  sprintf(reftime, "%04d-%02d-%02d %02d:%02d:00 UTC",
      tmtime->tm_year + 1900, tmtime->tm_mon + 1, tmtime->tm_mday,
      tmtime->tm_hour, tmtime->tm_min);
  if (! ncf.add_att("Antenna", "Fixed") ) return false;
  if (! ncf.add_att("Receiver", "HIMET") ) return false;
  if (! ncf.add_att("Time", reftime) ) return false;
  if (! ncf.add_att("Area_Name", "SpaceView" ) ) return false;
  sprintf(projname, "GEOS(%3.1f)", sublon);
  if (! ncf.add_att("Projection", projname) ) return false;
  if (! ncf.add_att("Columns", AreaNpix ) ) return false;
  if (! ncf.add_att("Lines", AreaNlin ) ) return false;
  if (! ncf.add_att("SampleX", 1.0 ) ) return false;
  if (! ncf.add_att("SampleY", 1.0 ) ) return false;
  if (! ncf.add_att("AreaStartPix", AreaPixStart ) ) return false;
  if (! ncf.add_att("AreaStartLin", AreaLinStart ) ) return false;
  if (! ncf.add_att("Column_Scale_Factor", cfac) ) return false;
  if (! ncf.add_att("Line_Scale_Factor", lfac) ) return false;
  if (! ncf.add_att("Column_Offset", coff) ) return false;
  if (! ncf.add_att("Line_Offset", loff) ) return false;
  if (! ncf.add_att("Orbit_Radius", sh) ) return false;
  if (! ncf.add_att("Longitude", sublon) ) return false;
  if (! ncf.add_att("NortPolar", 1) ) return false;
  if (! ncf.add_att("NorthSouth", 1) ) return false;
  if (! ncf.add_att("title", TITLE) ) return false;
  if (! ncf.add_att("Institution", INSTITUTION) ) return false;
  if (! ncf.add_att("Type", TYPE) ) return false;
  if (! ncf.add_att("Version", HIMET_VERSION) ) return false;
  if (! ncf.add_att("Conventions", "COARDS") ) return false;
  if (! ncf.add_att("history", "Created from raw data") ) return false;

  // Dimensions
  wd = AreaNpix;
  hg = AreaNlin;
  bpp = header[0].image_structure->number_of_bits_per_pixel;
  ncal = (int) pow(2.0, bpp);

  tdim = ncf.add_dim("time");
  if (!tdim->is_valid()) return false;
  ldim = ncf.add_dim("line", hg);
  if (!ldim->is_valid()) return false;
  cdim = ncf.add_dim("column", wd);
  if (!cdim->is_valid()) return false;
  caldim = ncf.add_dim("calibration", ncal);
  if (!caldim->is_valid()) return false;

  // Get calibration values
  cal = PRO_data->prologue->radiometric_proc.get_calibration((int) chn, bpp);

  // Add Calibration values
  NcVar *cvar = ncf.add_var("calibration", ncFloat, caldim);
  if (!cvar->is_valid()) return false;
  cvar->add_att("long_name", "Calibration coefficients");
  cvar->add_att("variable", channel);
  if (chn > 3 && chn < 12)
    cvar->add_att("units", "K");
  else
    cvar->add_att("units", "mW m^-2 sr^-1 (cm^-1)^-1");
  if (!cvar->put(cal, ncal)) return false;

  tvar = ncf.add_var("time", ncDouble, tdim);
  if (!tvar->is_valid()) return false;
  tvar->add_att("long_name", "Time");
  tvar->add_att("units", "seconds since 2000-01-01 00:00:00 UTC");
  double atime;
  time_t ttime;
  extern long timezone;
  ttime = mktime(tmtime);
  atime = ttime - 946684800 - timezone;
  if (!tvar->put(&atime, 1)) return false;

  ivar = ncf.add_var(channel, ncShort, tdim, ldim, cdim);
  if (!ivar->is_valid()) return false;
  if (!ivar->add_att("add_offset", 0.0)) return false;
  if (!ivar->add_att("scale_factor", 1.0)) return false;
  if (!ivar->add_att("chnum", chn)) return false;

  // Write output values
  if (!ivar->put((const short int *) pixels, 1, hg, wd)) return false;

  // Close NetCDF output
  (void) ncf.close( );

  delete [ ] pixels;
  delete [ ] cal;

  return( true );
}
示例#11
0
void size_read ( string filename, int *dim, int *vertices, int *edges,
  int *triangles, int *quadrilaterals, int *tetrahedrons, int *hexahedrons )

//*****************************************************************************80
//
//  Purpose:
//
//    SIZE_READ reads ICE sizes from a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be read.
//    Ordinarily, the name should include the extension ".nc".
//
//    Output, int *DIM, the spatial dimension, which should be 2 or 3.
//
//    Output, int *VERTICES, the number of vertices.
//
//    Output, int *EDGES, the number of edges (may be 0).
//
//    Output, int *TRIANGLES, the number of triangles (may be 0).
//
//    Output, int *QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Output, int *TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Output, int *HEXAHEDRONS, the number of hexahedrons (may be 0).
//
{
  NcDim *dim_dimension;
  NcDim *dim_edges;
  NcDim *dim_eight;
  NcDim *dim_four;
  NcDim *dim_hexahedrons;
  NcToken dim_name;
  int dim_num;
  NcDim *dim_quadrilaterals;
  NcDim *dim_tetrahedrons;
  NcDim *dim_three;
  NcDim *dim_triangles;
  NcDim *dim_two;
  NcDim *dim_vertices;
  NcDim *dim_pointer;
  int i;
//
//  Initialize everything to nothing.
//
  *dim = 0;
  *vertices = 0;
  *edges = 0;
  *triangles = 0;
  *quadrilaterals = 0;
  *tetrahedrons = 0;
  *hexahedrons = 0;
//
//  Open the file in "read only" mode.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "SIZE_READ: Fatal error!\n";
    cout << "  Could not open file.\n";
    exit ( 1 );
  }
//
//  Get the dimension information.
//
//  I would much prefer to write "0" as the size of certain dimensions, but I am not
//  allowed to, so I simply omit them from the file.
//
//  Therefore, when I open the file and try to determine dimensions, some dimensions
//  are "missing", which I would have presumed I could discover painlessly by asking
//  for pointers to them, and getting NULLs back.  But that doesn't seem to work either.
//
//  So my bonehead backup is simply to read all the dimensions by index, retrieve
//  their names, and see what I find.
//
  dim_num = dataFile.num_dims ( );

  for ( i = 0; i < dim_num; i++ )
  {
    dim_pointer = dataFile.get_dim ( i );
    dim_name = dim_pointer->name ( );

    if ( !strcmp ( dim_name, "Dimension" ) )
    {
      *dim = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Vertices" ) )
    {
      *vertices = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Edges" ) )
    {
      *edges = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Triangles" ) )
    {
      *triangles = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Quadrilaterals" ) )
    {
      *quadrilaterals = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Tetrahedrons" ) )
    {
      *tetrahedrons = dim_pointer->size ( );
    }
    else if ( !strcmp ( dim_name, "Hexahedrons" ) )
    {
      *hexahedrons = dim_pointer->size ( );
    }
    else
    {
      cout << "  Ignoring information about dimension \"" << dim_name << "\".\n";
    }
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}
示例#12
0
void data_read ( string filename, int dim, int vertices, int edges,
  int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons,
  double vertex_coordinate[], int vertex_label[], int edge_vertex[],
  int edge_label[], int triangle_vertex[], int triangle_label[],
  int quadrilateral_vertex[], int quadrilateral_label[],
  int tetrahedron_vertex[], int tetrahedron_label[], int hexahedron_vertex[],
  int hexahedron_label[] )

//****************************************************************************80
//
//  Purpose:
//
//    DATA_READ reads ICE data from a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//    Russ Rew,
//    The NetCDF C++ Interface Guide,
//    Unidata Program Center, August 2008.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be read.
//    Ordinarily, the name should include the extension ".nc".
//
//    Input, int DIM, the spatial dimension, which should be 2 or 3.
//
//    Input, int VERTICES, the number of vertices.
//
//    Input, int EDGES, the number of edges (may be 0).
//
//    Input, int TRIANGLES, the number of triangles (may be 0).
//
//    Input, int QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Input, int HEXAHEDRONS, the number of hexahedrons (may be 0).
//
//    Output, double VERTEX_COORDINATE[DIM*VERTICES], the coordinates
//    of each vertex.
//
//    Output, int VERTEX_LABEL[VERTICES], a label for each vertex.
//
//    Output, int EDGE_VERTEX[2*EDGES], the vertices that form each edge.
//
//    Output, int EDGE_LABEL[EDGES], a label for each edge.
//
//    Output, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form
//    each triangle.
//
//    Output, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle.
//
//    Output, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that
//    form each quadrilateral.
//
//    Output, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for
//    each quadrilateral.
//
//    Output, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that
//    form each tetrahedron.
//
//    Output, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for
//    each tetrahedron.
//
//    Output, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form
//    each hexahedron.
//
//    Output, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron.
//
{
//
//  Open the file in "read only" mode.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::ReadOnly );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "DATA_READ: Fatal error!\n";
    cout << "  Could not open file.\n";
    exit ( 1 );
  }
//
//  Vertices.
//
  NcVar *var_vertex_coordinate = dataFile.get_var ( "Vertex_Coordinate" );
  var_vertex_coordinate->get ( &vertex_coordinate[0], dim, vertices );

  NcVar *var_vertex_label = dataFile.get_var ( "Vertex_Label" );
  var_vertex_label->get ( &vertex_label[0], vertices );
//
//  Edges.
//
  if ( 0 < edges )
  {
    NcVar *var_edge_vertex = dataFile.get_var ( "Edge_Vertex" );
    var_edge_vertex->get ( &edge_vertex[0], 2, edges );

    NcVar *var_edge_label = dataFile.get_var ( "Edge_Label" );
    var_edge_label->get ( &edge_label[0], edges );
  }
//
//  Triangles.
//
  if ( 0 < triangles )
  {
    NcVar *var_triangle_vertex = dataFile.get_var ( "Triangle_Vertex" );
    var_triangle_vertex->get ( &triangle_vertex[0], 3, triangles );

    NcVar *var_triangle_label = dataFile.get_var ( "Triangle_Label" );
    var_triangle_label->get ( &triangle_label[0], triangles );
  }
//
//  Quadrilaterals.
//
  if ( 0 < quadrilaterals )
  {
    NcVar *var_quadrilateral_vertex = dataFile.get_var ( "Quadrilateral_Vertex" );
    var_quadrilateral_vertex->get ( &quadrilateral_vertex[0], 4, quadrilaterals );

    NcVar *var_quadrilateral_label = dataFile.get_var ( "Quadrilateral_Label" );
    var_quadrilateral_label->get ( &quadrilateral_label[0], quadrilaterals );
  }
//
//  Tetrahedrons.
//
  if ( 0 < tetrahedrons )
  {
    NcVar *var_tetrahedron_vertex = dataFile.get_var ( "Tetrahedron_Vertex" );
    var_tetrahedron_vertex->get ( &tetrahedron_vertex[0], 4, tetrahedrons );

    NcVar *var_tetrahedron_label = dataFile.get_var ( "Tetrahedron_Label" );
    var_tetrahedron_label->get ( &tetrahedron_label[0], tetrahedrons );
  }
//
//  Hexahedrons.
//
  if ( 0 < hexahedrons )
  {
    NcVar *var_hexahedron_vertex = dataFile.get_var ( "Hexahedron_Vertex" );
    var_hexahedron_vertex->get ( &hexahedron_vertex[0], 8, hexahedrons );

    NcVar *var_hexahedron_label = dataFile.get_var ( "Hexahedron_Label" );
    var_hexahedron_label->get ( &hexahedron_label[0], hexahedrons );
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}
示例#13
0
void ice_write ( std::string filename, int dim, int vertices, int edges,
  int triangles, int quadrilaterals, int tetrahedrons, int hexahedrons,
  double vertex_coordinate[], int vertex_label[], int edge_vertex[],
  int edge_label[], int triangle_vertex[], int triangle_label[],
  int quadrilateral_vertex[], int quadrilateral_label[],
  int tetrahedron_vertex[], int tetrahedron_label[],
  int hexahedron_vertex[], int hexahedron_label[] )

//****************************************************************************80
//
//  Purpose:
//
//    ICE_WRITE writes 3D ICE sizes and data to a NETCDF file.
//
//  Licensing:
//
//    This code is distributed under the GNU LGPL license.
//
//  Modified:
//
//    30 November 2010
//
//  Author:
//
//    John Burkardt
//
//  Reference:
//
//    Pascal Frey,
//    MEDIT: An interactive mesh visualization software,
//    Technical Report RT-0253,
//    Institut National de Recherche en Informatique et en Automatique,
//    03 December 2001.
//
//  Parameters:
//
//    Input, string FILENAME, the name of the file to be created.
//    Ordinarily, the name should include the extension ".nc".
//
//    Input, int DIM, the spatial dimension, which should be 3.
//
//    Input, int VERTICES, the number of vertices.
//
//    Input, int EDGES, the number of edges (may be 0).
//
//    Input, int TRIANGLES, the number of triangles (may be 0).
//
//    Input, int QUADRILATERALS, the number of quadrilaterals (may be 0).
//
//    Input, int TETRAHEDRONS, the number of tetrahedrons (may be 0).
//
//    Input, int HEXAHEDRONS, the number of hexahedrons (may be 0).
//
//    Input, double VERTEX_COORDINATE[3*VERTICES], the XYZ coordinates
//    of each vertex.
//
//    Input, int VERTEX_LABEL[VERTICES], a label for each vertex.
//
//    Input, int EDGE_VERTEX[2*EDGES], the vertices that form each edge.
//
//    Input, int EDGE_LABEL[EDGES], a label for each edge.
//
//    Input, int TRIANGLE_VERTEX[3*TRIANGLES], the vertices that form
//    each triangle.
//
//    Input, int TRIANGLE_LABEL[TRIANGLES], a label for each triangle.
//
//    Input, int QUADRILATERAL_VERTEX[4*QUADRILATERALS], the vertices that
//    form each quadrilateral.
//
//    Input, int QUADRILATERAL_LABEL[QUADRILATERALS], a label for
//    each quadrilateral.
//
//    Input, int TETRAHEDRON_VERTEX[4*TETRAHEDRONS], the vertices that
//    form each tetrahedron.
//
//    Input, int TETRAHEDRON_LABEL[TETRAHEDRONS], a label for
//    each tetrahedron.
//
//    Input, int HEXAHEDRON_VERTEX[8*HEXAHEDRONS], the vertices that form
//    each hexahedron.
//
//    Input, int HEXAHEDRON_LABEL[HEXAHEDRONS], a label for each hexahedron.
//
{
  NcDim *dim_dimension;
  NcDim *dim_edges;
  NcDim *dim_eight;
  NcDim *dim_four;
  NcDim *dim_hexahedrons;
  NcDim *dim_quadrilaterals;
  NcDim *dim_tetrahedrons;
  NcDim *dim_three;
  NcDim *dim_triangles;
  NcDim *dim_two;
  NcDim *dim_vertices;
  NcVar *var_edge_vertex;
  NcVar *var_edge_label;
  NcVar *var_hexahedron_vertex;
  NcVar *var_hexahedron_label;
  NcVar *var_quadrilateral_vertex;
  NcVar *var_quadrilateral_label;
  NcVar *var_tetrahedron_vertex;
  NcVar *var_tetrahedron_label;
  NcVar *var_triangle_vertex;
  NcVar *var_triangle_label;
  NcVar *var_vertex_coordinate;
  NcVar *var_vertex_label;
//
//  Create the file.
//
  NcFile dataFile ( filename.c_str ( ), NcFile::Replace );

  if ( !dataFile.is_valid ( ) )
  {
    cout << "\n";
    cout << "ICE_WRITE - Fatal error!\n";
    cout << "  Could not open the file.\n";
    exit ( 1 );
  }
//
//  Dimension information.
//
  dim_dimension = dataFile.add_dim ( "Dimension", dim );
  dim_vertices = dataFile.add_dim ( "Vertices", vertices );

  if ( 0 < edges )
  {
    dim_edges = dataFile.add_dim ( "Edges", edges );
  }

  if ( 0 < triangles )
  {
    dim_triangles = dataFile.add_dim ( "Triangles", triangles );
  }

  if ( 0 < quadrilaterals )
  {
    dim_quadrilaterals = dataFile.add_dim ( "Quadrilaterals", quadrilaterals );
  }

  if ( 0 < tetrahedrons )
  {
    dim_tetrahedrons = dataFile.add_dim ( "Tetrahedrons", tetrahedrons );
  }

  if ( 0 < hexahedrons )
  {
    dim_hexahedrons = dataFile.add_dim ( "Hexahedrons", hexahedrons );
  }

  dim_two = dataFile.add_dim ( "Two", 2 );
  dim_three = dataFile.add_dim ( "Three", 3 );
  dim_four = dataFile.add_dim ( "Four", 4 );
  dim_eight = dataFile.add_dim ( "Eight", 8 );
//
//  Define variables.
//
  var_vertex_coordinate      = dataFile.add_var ( "Vertex_Coordinate",    ncDouble, dim_three, dim_vertices );
  var_vertex_label           = dataFile.add_var ( "Vertex_Label",         ncInt,               dim_vertices );

  if ( 0 < edges )
  {
    var_edge_vertex          = dataFile.add_var ( "Edge_Vertex",          ncInt,    dim_two,   dim_edges );
    var_edge_label           = dataFile.add_var ( "Edge_Label",           ncInt,               dim_edges );
  }

  if ( 0 < triangles )
  {
    var_triangle_vertex      = dataFile.add_var ( "Triangle_Vertex",      ncInt, dim_three, dim_triangles );
    var_triangle_label       = dataFile.add_var ( "Triangle_Label",       ncInt,            dim_triangles );
  }

  if ( 0 < quadrilaterals )
  {
    var_quadrilateral_vertex = dataFile.add_var ( "Quadrilateral_Vertex", ncInt, dim_four, dim_quadrilaterals );
    var_quadrilateral_label  = dataFile.add_var ( "Quadrilateral_Label",  ncInt,           dim_quadrilaterals );
  }

  if ( 0 < tetrahedrons )
  {
    var_tetrahedron_vertex   = dataFile.add_var ( "Tetrahedron_Vertex",   ncInt, dim_four,  dim_tetrahedrons );
    var_tetrahedron_label    = dataFile.add_var ( "Tetrahedron_Label",    ncInt,            dim_tetrahedrons );
  }

  if ( 0 < hexahedrons )
  {
    var_hexahedron_vertex    = dataFile.add_var ( "Hexahedron_Vertex",    ncInt, dim_eight, dim_hexahedrons );
    var_hexahedron_label     = dataFile.add_var ( "Hexahedron_Label",     ncInt,            dim_hexahedrons );
  }
//
//  Write the data.
//
  var_vertex_coordinate->put      ( &vertex_coordinate[0],    3, vertices );
  var_vertex_label->put           ( &vertex_label[0],            vertices );
  if ( 0 < edges )
  {
    var_edge_vertex->put          ( &edge_vertex[0],          2, edges );
    var_edge_label->put           ( &edge_label[0],              edges );
  }
  if ( 0 < triangles )
  {
    var_triangle_vertex->put      ( &triangle_vertex[0],      3, triangles );
    var_triangle_label->put       ( &triangle_label[0],          triangles );
  }
  if ( 0 < quadrilaterals )
  {
    var_quadrilateral_vertex->put ( &quadrilateral_vertex[0], 4, quadrilaterals );
    var_quadrilateral_label->put  ( &quadrilateral_label[0],     quadrilaterals );
  }
  if ( 0 < tetrahedrons )
  {
    var_tetrahedron_vertex->put   ( &tetrahedron_vertex[0],   4, tetrahedrons );
    var_tetrahedron_label->put    ( &tetrahedron_label[0],       tetrahedrons );
  }
  if ( 0 < hexahedrons )
  {
    var_hexahedron_vertex->put    ( &hexahedron_vertex[0],      8, hexahedrons );
    var_hexahedron_label->put     ( &hexahedron_label[0],          hexahedrons );
  }
//
//  Close the file.
//
  dataFile.close ( );

  return;
}