void testPeriodic() {
    System system;
    system.addParticle(1.0);
    system.addParticle(1.0);
    system.addParticle(1.0);
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->addParticle(1.0, 1, 0);
    nonbonded->addParticle(1.0, 1, 0);
    nonbonded->addParticle(1.0, 1, 0);
    nonbonded->addException(0, 1, 0.0, 1.0, 0.0);
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    const double cutoff = 2.0;
    nonbonded->setCutoffDistance(cutoff);
    system.setDefaultPeriodicBoxVectors(Vec3(4, 0, 0), Vec3(0, 4, 0), Vec3(0, 0, 4));
    system.addForce(nonbonded);
    Context context(system, integrator, platform);
    vector<Vec3> positions(3);
    positions[0] = Vec3(0, 0, 0);
    positions[1] = Vec3(2, 0, 0);
    positions[2] = Vec3(3, 0, 0);
    context.setPositions(positions);
    State state = context.getState(State::Forces | State::Energy);
    const vector<Vec3>& forces = state.getForces();
    const double eps = 78.3;
    const double krf = (1.0/(cutoff*cutoff*cutoff))*(eps-1.0)/(2.0*eps+1.0);
    const double crf = (1.0/cutoff)*(3.0*eps)/(2.0*eps+1.0);
    const double force = ONE_4PI_EPS0*(1.0)*(1.0-2.0*krf*1.0);
    ASSERT_EQUAL_VEC(Vec3(force, 0, 0), forces[0], TOL);
    ASSERT_EQUAL_VEC(Vec3(-force, 0, 0), forces[1], TOL);
    ASSERT_EQUAL_VEC(Vec3(0, 0, 0), forces[2], TOL);
    ASSERT_EQUAL_TOL(2*ONE_4PI_EPS0*(1.0)*(1.0+krf*1.0-crf), state.getPotentialEnergy(), TOL);
}
Exemple #2
0
void testEwald2Ions() {
    System system;
    system.addParticle(1.0);
    system.addParticle(1.0);
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->addParticle(1.0, 1, 0);
    nonbonded->addParticle(-1.0, 1, 0);
    nonbonded->setNonbondedMethod(NonbondedForce::Ewald);
    const double cutoff = 2.0;
    nonbonded->setCutoffDistance(cutoff);
    nonbonded->setEwaldErrorTolerance(TOL);
    system.setDefaultPeriodicBoxVectors(Vec3(6, 0, 0), Vec3(0, 6, 0), Vec3(0, 0, 6));
    system.addForce(nonbonded);
    Context context(system, integrator, platform);
    vector<Vec3> positions(2);
    positions[0] = Vec3(3.048000,2.764000,3.156000);
    positions[1] = Vec3(2.809000,2.888000,2.571000);
    context.setPositions(positions);
    State state = context.getState(State::Forces | State::Energy);
    const vector<Vec3>& forces = state.getForces();

    ASSERT_EQUAL_VEC(Vec3(-123.711,  64.1877, -302.716), forces[0], 10*TOL);
    ASSERT_EQUAL_VEC(Vec3( 123.711, -64.1877,  302.716), forces[1], 10*TOL);
    ASSERT_EQUAL_TOL(-217.276, state.getPotentialEnergy(), 0.01/*10*TOL*/);
}
void testCutoff() {
    System system;
    system.addParticle(1.0);
    system.addParticle(1.0);
    system.addParticle(1.0);
    VerletIntegrator integrator(0.01);
    NonbondedForce* forceField = new NonbondedForce();
    forceField->addParticle(1.0, 1, 0);
    forceField->addParticle(1.0, 1, 0);
    forceField->addParticle(1.0, 1, 0);
    forceField->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic);
    const double cutoff = 2.9;
    forceField->setCutoffDistance(cutoff);
    const double eps = 50.0;
    forceField->setReactionFieldDielectric(eps);
    system.addForce(forceField);
    Context context(system, integrator, platform);
    vector<Vec3> positions(3);
    positions[0] = Vec3(0, 0, 0);
    positions[1] = Vec3(0, 2, 0);
    positions[2] = Vec3(0, 3, 0);
    context.setPositions(positions);
    State state = context.getState(State::Forces | State::Energy);
    const vector<Vec3>& forces = state.getForces();
    const double krf = (1.0/(cutoff*cutoff*cutoff))*(eps-1.0)/(2.0*eps+1.0);
    const double crf = (1.0/cutoff)*(3.0*eps)/(2.0*eps+1.0);
    const double force1 = ONE_4PI_EPS0*(1.0)*(0.25-2.0*krf*2.0);
    const double force2 = ONE_4PI_EPS0*(1.0)*(1.0-2.0*krf*1.0);
    ASSERT_EQUAL_VEC(Vec3(0, -force1, 0), forces[0], TOL);
    ASSERT_EQUAL_VEC(Vec3(0, force1-force2, 0), forces[1], TOL);
    ASSERT_EQUAL_VEC(Vec3(0, force2, 0), forces[2], TOL);
    const double energy1 = ONE_4PI_EPS0*(1.0)*(0.5+krf*4.0-crf);
    const double energy2 = ONE_4PI_EPS0*(1.0)*(1.0+krf*1.0-crf);
    ASSERT_EQUAL_TOL(energy1+energy2, state.getPotentialEnergy(), TOL);
}
void testForceEnergyConsistency() {
    // Create a box of polarizable particles.
    
    const int gridSize = 3;
    const int numAtoms = gridSize*gridSize*gridSize;
    const double spacing = 0.6;
    const double boxSize = spacing*(gridSize+1);
    const double temperature = 300.0;
    const double temperatureDrude = 10.0;
    System system;
    vector<Vec3> positions;
    NonbondedForce* nonbonded = new NonbondedForce();
    DrudeForce* drude = new DrudeForce();
    system.addForce(nonbonded);
    system.addForce(drude);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    nonbonded->setNonbondedMethod(NonbondedForce::PME);
    nonbonded->setCutoffDistance(1.0);
    nonbonded->setUseSwitchingFunction(true);
    nonbonded->setSwitchingDistance(0.9);
    nonbonded->setEwaldErrorTolerance(5e-5);
    for (int i = 0; i < numAtoms; i++) {
        int startIndex = system.getNumParticles();
        system.addParticle(1.0);
        system.addParticle(1.0);
        nonbonded->addParticle(1.0, 0.3, 1.0);
        nonbonded->addParticle(-1.0, 0.3, 1.0);
        nonbonded->addException(startIndex, startIndex+1, 0, 1, 0);
        drude->addParticle(startIndex+1, startIndex, -1, -1, -1, -1.0, 0.001, 1, 1);
    }
    for (int i = 0; i < gridSize; i++)
        for (int j = 0; j < gridSize; j++)
            for (int k = 0; k < gridSize; k++) {
                Vec3 pos(i*spacing, j*spacing, k*spacing);
                positions.push_back(pos);
                positions.push_back(pos);
            }
    
    // Simulate it and check that force and energy remain consistent.
    
    DrudeLangevinIntegrator integ(temperature, 50.0, temperatureDrude, 50.0, 0.001);
    Platform& platform = Platform::getPlatformByName("Reference");
    Context context(system, integ, platform);
    context.setPositions(positions);
    State prevState;
    for (int i = 0; i < 100; i++) {
        State state = context.getState(State::Energy | State::Forces | State::Positions);
        if (i > 0) {
            double expectedEnergyChange = 0;
            for (int j = 0; j < system.getNumParticles(); j++) {
                Vec3 delta = state.getPositions()[j]-prevState.getPositions()[j];
                expectedEnergyChange -= 0.5*(state.getForces()[j]+prevState.getForces()[j]).dot(delta);
            }
            ASSERT_EQUAL_TOL(expectedEnergyChange, state.getPotentialEnergy()-prevState.getPotentialEnergy(), 0.05);
        }
        prevState = state;
        integ.step(1);
    }
}
void testWaterSystem() {
    ReferencePlatform platform;
    System system;
    static int numParticles = 648;
    const double boxSize = 1.86206;

    for (int i = 0 ; i < numParticles ; i++)
    {
       system.addParticle(1.0);
    }
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    for (int i = 0 ; i < numParticles/3 ; i++)
    {
      nonbonded->addParticle(-0.82, 1, 0);
      nonbonded->addParticle(0.41, 1, 0);
      nonbonded->addParticle(0.41, 1, 0);
    }
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    const double cutoff = 0.8;
    nonbonded->setCutoffDistance(cutoff);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    nonbonded->setEwaldErrorTolerance(EWALD_TOL);
    system.addForce(nonbonded);
    Context context(system, integrator, platform);
    vector<Vec3> positions(numParticles);
    #include "water.dat"
    context.setPositions(positions);
    State state1 = context.getState(State::Forces | State::Energy);
    const vector<Vec3>& forces = state1.getForces();

// Take a small step in the direction of the energy gradient.
    
    double norm = 0.0;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 f = state1.getForces()[i];
        norm += f[0]*f[0] + f[1]*f[1] + f[2]*f[2];
    }


    norm = std::sqrt(norm);
    const double delta = 1e-3;
    double step = delta/norm;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 p = positions[i];
        Vec3 f = state1.getForces()[i];
        positions[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step);
    }
    context.setPositions(positions);
    
    // See whether the potential energy changed by the expected amount.
    
    nonbonded->setNonbondedMethod(NonbondedForce::Ewald);
    State state2 = context.getState(State::Energy);
    ASSERT_EQUAL_TOL(norm, (state2.getPotentialEnergy()-state1.getPotentialEnergy())/delta, 0.01)


}
void testLargeSystem() {
    const int numMolecules = 50;
    const int numParticles = numMolecules*2;
    const double cutoff = 2.0;
    const double boxSize = 5.0;
    const double tolerance = 5;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->setCutoffDistance(cutoff);
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    system.addForce(nonbonded);

    // Create a cloud of molecules.

    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numMolecules; i++) {
        system.addParticle(1.0);
        system.addParticle(1.0);
        nonbonded->addParticle(-1.0, 0.2, 0.2);
        nonbonded->addParticle(1.0, 0.2, 0.2);
        positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]);
        system.addConstraint(2*i, 2*i+1, 1.0);
    }

    // Minimize it and verify that the energy has decreased.
    
    ReferencePlatform platform;
    VerletIntegrator integrator(0.01);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    State initialState = context.getState(State::Forces | State::Energy);
    LocalEnergyMinimizer::minimize(context, tolerance);
    State finalState = context.getState(State::Forces | State::Energy | State::Positions);
    ASSERT(finalState.getPotentialEnergy() < initialState.getPotentialEnergy());

    // Compute the force magnitude, subtracting off any component parallel to a constraint, and
    // check that it satisfies the requested tolerance.

    double forceNorm = 0.0;
    for (int i = 0; i < numParticles; i += 2) {
        Vec3 dir = finalState.getPositions()[i+1]-finalState.getPositions()[i];
        double distance = sqrt(dir.dot(dir));
        dir *= 1.0/distance;
        Vec3 f = finalState.getForces()[i];
        f -= dir*dir.dot(f);
        forceNorm += f.dot(f);
        f = finalState.getForces()[i+1];
        f -= dir*dir.dot(f);
        forceNorm += f.dot(f);
    }
    forceNorm = sqrt(forceNorm/(4*numMolecules));
    ASSERT(forceNorm < 3*tolerance);
}
void testCutoffAndPeriodic() {
    ReferencePlatform platform;
    System system;
    system.addParticle(1.0);
    system.addParticle(1.0);
    LangevinIntegrator integrator(0, 0.1, 0.01);
    GBSAOBCForce* gbsa = new GBSAOBCForce();
    NonbondedForce* nonbonded = new NonbondedForce();
    gbsa->addParticle(-1, 0.15, 1);
    nonbonded->addParticle(-1, 1, 0);
    gbsa->addParticle(1, 0.15, 1);
    nonbonded->addParticle(1, 1, 0);
    const double cutoffDistance = 3.0;
    const double boxSize = 10.0;
    nonbonded->setCutoffDistance(cutoffDistance);
    gbsa->setCutoffDistance(cutoffDistance);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    system.addForce(gbsa);
    system.addForce(nonbonded);
    vector<Vec3> positions(2);
    positions[0] = Vec3(0, 0, 0);
    positions[1] = Vec3(2, 0, 0);

    // Calculate the forces for both cutoff and periodic with two different atom positions.

    nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic);
    gbsa->setNonbondedMethod(GBSAOBCForce::CutoffNonPeriodic);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    State state1 = context.getState(State::Forces);
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    gbsa->setNonbondedMethod(GBSAOBCForce::CutoffPeriodic);
    context.reinitialize();
    context.setPositions(positions);
    State state2 = context.getState(State::Forces);
    positions[1][0]+= boxSize;
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic);
    gbsa->setNonbondedMethod(GBSAOBCForce::CutoffNonPeriodic);
    context.reinitialize();
    context.setPositions(positions);
    State state3 = context.getState(State::Forces);
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    gbsa->setNonbondedMethod(GBSAOBCForce::CutoffPeriodic);
    context.reinitialize();
    context.setPositions(positions);
    State state4 = context.getState(State::Forces);

    // All forces should be identical, exception state3 which should be zero.

    ASSERT_EQUAL_VEC(state1.getForces()[0], state2.getForces()[0], 0.01);
    ASSERT_EQUAL_VEC(state1.getForces()[1], state2.getForces()[1], 0.01);
    ASSERT_EQUAL_VEC(state1.getForces()[0], state4.getForces()[0], 0.01);
    ASSERT_EQUAL_VEC(state1.getForces()[1], state4.getForces()[1], 0.01);
    ASSERT_EQUAL_VEC(state3.getForces()[0], Vec3(0, 0, 0), 0.01);
    ASSERT_EQUAL_VEC(state3.getForces()[1], Vec3(0, 0, 0), 0.01);
}
void testArgonBox() {
    const int gridSize = 8;
    const double mass = 40.0;            // Ar atomic mass
    const double temp = 120.0;           // K
    const double epsilon = BOLTZ * temp; // L-J well depth for Ar
    const double sigma = 0.34;           // L-J size for Ar in nm
    const double density = 0.8;          // atoms / sigma^3
    double cellSize = sigma / pow(density, 0.333);
    double boxSize = gridSize * cellSize;
    double cutoff = 2.0 * sigma;

    // Create a box of argon atoms.
    
    System system;
    NonbondedForce* nonbonded = new NonbondedForce();
    vector<Vec3> positions;
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    const Vec3 half(0.5, 0.5, 0.5);
    for (int i = 0; i < gridSize; i++) {
        for (int j = 0; j < gridSize; j++) {
            for (int k = 0; k < gridSize; k++) {
                system.addParticle(mass);
                nonbonded->addParticle(0, sigma, epsilon);
                positions.push_back((Vec3(i, j, k) + half + Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt))*0.1) * cellSize);
            }
        }
    }

    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    nonbonded->setCutoffDistance(cutoff);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    system.addForce(nonbonded);

    VariableVerletIntegrator integrator(1e-5);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    context.setVelocitiesToTemperature(temp);

    // Equilibrate.
    
    integrator.stepTo(1.0);

    // Simulate it and see whether energy remains constant.
    
    State state0 = context.getState(State::Energy);
    double initialEnergy = state0.getKineticEnergy() + state0.getPotentialEnergy();
    for (int i = 0; i < 20; i++) {
        double t = 1.0 + 0.05*(i+1);
        integrator.stepTo(t);
        State state = context.getState(State::Energy);
        double energy = state.getKineticEnergy() + state.getPotentialEnergy();
        ASSERT_EQUAL_TOL(initialEnergy, energy, 0.01);
    }
}
void testSwitchingFunction(NonbondedForce::NonbondedMethod method) {
    ReferencePlatform platform;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(6, 0, 0), Vec3(0, 6, 0), Vec3(0, 0, 6));
    system.addParticle(1.0);
    system.addParticle(1.0);
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->addParticle(0, 1.2, 1);
    nonbonded->addParticle(0, 1.4, 2);
    nonbonded->setNonbondedMethod(method);
    nonbonded->setCutoffDistance(2.0);
    nonbonded->setUseSwitchingFunction(true);
    nonbonded->setSwitchingDistance(1.5);
    nonbonded->setUseDispersionCorrection(false);
    system.addForce(nonbonded);
    Context context(system, integrator, platform);
    vector<Vec3> positions(2);
    positions[0] = Vec3(0, 0, 0);
    double eps = SQRT_TWO;
    
    // Compute the interaction at various distances.
    
    for (double r = 1.0; r < 2.5; r += 0.1) {
        positions[1] = Vec3(r, 0, 0);
        context.setPositions(positions);
        State state = context.getState(State::Forces | State::Energy);
        
        // See if the energy is correct.
        
        double x = 1.3/r;
        double expectedEnergy = 4.0*eps*(std::pow(x, 12.0)-std::pow(x, 6.0));
        double switchValue;
        if (r <= 1.5)
            switchValue = 1;
        else if (r >= 2.0)
            switchValue = 0;
        else {
            double t = (r-1.5)/0.5;
            switchValue = 1+t*t*t*(-10+t*(15-t*6));
        }
        ASSERT_EQUAL_TOL(switchValue*expectedEnergy, state.getPotentialEnergy(), TOL);
        
        // See if the force is the gradient of the energy.
        
        double delta = 1e-3;
        positions[1] = Vec3(r-delta, 0, 0);
        context.setPositions(positions);
        double e1 = context.getState(State::Energy).getPotentialEnergy();
        positions[1] = Vec3(r+delta, 0, 0);
        context.setPositions(positions);
        double e2 = context.getState(State::Energy).getPotentialEnergy();
        ASSERT_EQUAL_TOL((e2-e1)/(2*delta), state.getForces()[0][0], 1e-3);
    }
}
void testSerialization() {
    // Create a Force.

    NonbondedForce force;
    force.setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    force.setCutoffDistance(2.0);
    force.setEwaldErrorTolerance(1e-3);
    force.setReactionFieldDielectric(50.0);
    force.setUseDispersionCorrection(false);
    force.addParticle(1, 0.1, 0.01);
    force.addParticle(0.5, 0.2, 0.02);
    force.addParticle(-0.5, 0.3, 0.03);
    force.addException(0, 1, 2, 0.5, 0.1);
    force.addException(1, 2, 0.2, 0.4, 0.2);

    // Serialize and then deserialize it.

    stringstream buffer;
    XmlSerializer::serialize<NonbondedForce>(&force, "Force", buffer);
    NonbondedForce* copy = XmlSerializer::deserialize<NonbondedForce>(buffer);

    // Compare the two forces to see if they are identical.

    NonbondedForce& force2 = *copy;
    ASSERT_EQUAL(force.getNonbondedMethod(), force2.getNonbondedMethod());
    ASSERT_EQUAL(force.getCutoffDistance(), force2.getCutoffDistance());
    ASSERT_EQUAL(force.getEwaldErrorTolerance(), force2.getEwaldErrorTolerance());
    ASSERT_EQUAL(force.getReactionFieldDielectric(), force2.getReactionFieldDielectric());
    ASSERT_EQUAL(force.getUseDispersionCorrection(), force2.getUseDispersionCorrection());
    ASSERT_EQUAL(force.getNumParticles(), force2.getNumParticles());
    for (int i = 0; i < force.getNumParticles(); i++) {
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getParticleParameters(i, charge1, sigma1, epsilon1);
        force2.getParticleParameters(i, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
    ASSERT_EQUAL(force.getNumExceptions(), force2.getNumExceptions());
    for (int i = 0; i < force.getNumExceptions(); i++) {
        int a1, a2, b1, b2;
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getExceptionParameters(i, a1, b1, charge1, sigma1, epsilon1);
        force2.getExceptionParameters(i, a2, b2, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(a1, a2);
        ASSERT_EQUAL(b1, b2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
}
/**
 * Test a multiple time step r-RESPA integrator.
 */
void testRespa() {
    const int numParticles = 8;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(4, 0, 0), Vec3(0, 4, 0), Vec3(0, 0, 4));
    CustomIntegrator integrator(0.002);
    integrator.addComputePerDof("v", "v+0.5*dt*f1/m");
    for (int i = 0; i < 2; i++) {
        integrator.addComputePerDof("v", "v+0.5*(dt/2)*f0/m");
        integrator.addComputePerDof("x", "x+(dt/2)*v");
        integrator.addComputePerDof("v", "v+0.5*(dt/2)*f0/m");
    }
    integrator.addComputePerDof("v", "v+0.5*dt*f1/m");
    HarmonicBondForce* bonds = new HarmonicBondForce();
    for (int i = 0; i < numParticles-2; i++)
        bonds->addBond(i, i+1, 1.0, 0.5);
    system.addForce(bonds);
    NonbondedForce* nb = new NonbondedForce();
    nb->setCutoffDistance(2.0);
    nb->setNonbondedMethod(NonbondedForce::Ewald);
    for (int i = 0; i < numParticles; ++i) {
        system.addParticle(i%2 == 0 ? 5.0 : 10.0);
        nb->addParticle((i%2 == 0 ? 0.2 : -0.2), 0.5, 5.0);
    }
    nb->setForceGroup(1);
    nb->setReciprocalSpaceForceGroup(0);
    system.addForce(nb);
    Context context(system, integrator, platform);
    vector<Vec3> positions(numParticles);
    vector<Vec3> velocities(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    for (int i = 0; i < numParticles; ++i) {
        positions[i] = Vec3(i/2, (i+1)/2, 0);
        velocities[i] = Vec3(genrand_real2(sfmt)-0.5, genrand_real2(sfmt)-0.5, genrand_real2(sfmt)-0.5);
    }
    context.setPositions(positions);
    context.setVelocities(velocities);
    
    // Simulate it and monitor energy conservations.
    
    double initialEnergy = 0.0;
    for (int i = 0; i < 1000; ++i) {
        State state = context.getState(State::Energy);
        double energy = state.getKineticEnergy()+state.getPotentialEnergy();
        if (i == 1)
            initialEnergy = energy;
        else if (i > 1)
            ASSERT_EQUAL_TOL(initialEnergy, energy, 0.05);
        integrator.step(2);
    }
}
void testErrorTolerance(NonbondedForce::NonbondedMethod method) {
    // Create a cloud of random point charges.

    const int numParticles = 51;
    const double boxWidth = 5.0;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(boxWidth, 0, 0), Vec3(0, boxWidth, 0), Vec3(0, 0, boxWidth));
    NonbondedForce* force = new NonbondedForce();
    system.addForce(force);
    vector<Vec3> positions(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);

    for (int i = 0; i < numParticles; i++) {
        system.addParticle(1.0);
        force->addParticle(-1.0+i*2.0/(numParticles-1), 1.0, 0.0);
        positions[i] = Vec3(boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt));
    }
    force->setNonbondedMethod(method);
    ReferencePlatform platform;

    // For various values of the cutoff and error tolerance, see if the actual error is reasonable.

    for (double cutoff = 1.0; cutoff < boxWidth/2; cutoff *= 1.2) {
        force->setCutoffDistance(cutoff);
        vector<Vec3> refForces;
        double norm = 0.0;
        for (double tol = 5e-5; tol < 1e-3; tol *= 2.0) {
            force->setEwaldErrorTolerance(tol);
            VerletIntegrator integrator(0.01);
            Context context(system, integrator, platform);
            context.setPositions(positions);
            State state = context.getState(State::Forces);
            if (refForces.size() == 0) {
                refForces = state.getForces();
                for (int i = 0; i < numParticles; i++)
                    norm += refForces[i].dot(refForces[i]);
                norm = sqrt(norm);
            }
            else {
                double diff = 0.0;
                for (int i = 0; i < numParticles; i++) {
                    Vec3 delta = refForces[i]-state.getForces()[i];
                    diff += delta.dot(delta);
                }
                diff = sqrt(diff)/norm;
                ASSERT(diff < 2*tol);
            }
        }
    }
}
void testTruncatedOctahedron() {
    const int numMolecules = 50;
    const int numParticles = numMolecules*2;
    const float cutoff = 2.0;
    Vec3 a(6.7929, 0, 0);
    Vec3 b(-2.264163559406279, 6.404455775962287, 0);
    Vec3 c(-2.264163559406279, -3.2019384603140684, 5.54658849047036);

    System system;
    system.setDefaultPeriodicBoxVectors(a, b, c);
    NonbondedForce* force = new NonbondedForce();
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);

    force->setCutoffDistance(cutoff);
    force->setNonbondedMethod(NonbondedForce::CutoffPeriodic);

    for (int i = 0; i < numMolecules; i++) {
        system.addParticle(1.0);
        system.addParticle(1.0);
        force->addParticle(-1, 0.2, 0.2);
        force->addParticle(1, 0.2, 0.2);
        positions[2*i] = a*(5*genrand_real2(sfmt)-2) + b*(5*genrand_real2(sfmt)-2) + c*(5*genrand_real2(sfmt)-2);
        positions[2*i+1] = positions[2*i] + Vec3(1.0, 0.0, 0.0);
        system.addConstraint(2*i, 2*i+1, 1.0);
    }
    system.addForce(force);

    VerletIntegrator integrator(0.01);
    Context context(system, integrator, Platform::getPlatformByName("Reference"));
    context.setPositions(positions);
    State initialState = context.getState(State::Positions | State::Energy, true);
    for (int i = 0; i < numMolecules; i++) {
        Vec3 center = (initialState.getPositions()[2*i]+initialState.getPositions()[2*i+1])*0.5;
        ASSERT(center[0] >= 0.0);
        ASSERT(center[1] >= 0.0);
        ASSERT(center[2] >= 0.0);
        ASSERT(center[0] <= a[0]);
        ASSERT(center[1] <= b[1]);
        ASSERT(center[2] <= c[2]);
    }
    double initialEnergy = initialState.getPotentialEnergy();

    context.setState(initialState);
    State finalState = context.getState(State::Positions | State::Energy, true);
    double finalEnergy = finalState.getPotentialEnergy();

    ASSERT_EQUAL_TOL(initialEnergy, finalEnergy, 1e-4);
}
void testEwaldExact() {

//    Use a NaCl crystal to compare the calculated and Madelung energies

    const int numParticles = 1000;
    const double cutoff = 1.0;
    const double boxSize = 2.82;

    ReferencePlatform platform;
    System system;

    for (int i = 0; i < numParticles/2; i++)
        system.addParticle(22.99);
    for (int i = 0; i < numParticles/2; i++)
        system.addParticle(35.45);
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    for (int i = 0; i < numParticles/2; i++)
        nonbonded->addParticle(1.0, 1.0,0.0);
    for (int i = 0; i < numParticles/2; i++)
        nonbonded->addParticle(-1.0, 1.0,0.0);
    nonbonded->setNonbondedMethod(NonbondedForce::Ewald);
    nonbonded->setCutoffDistance(cutoff);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    nonbonded->setEwaldErrorTolerance(EWALD_TOL);
    system.addForce(nonbonded);
    Context context(system, integrator, platform);
    vector<Vec3> positions(numParticles);
    #include "nacl_crystal.dat"
    context.setPositions(positions);

    State state = context.getState(State::Forces | State::Energy);
    const vector<Vec3>& forces = state.getForces();

//   The potential energy of an ion in a crystal is 
//   E = - (M*e^2/ 4*pi*epsilon0*a0),
//   where 
//   M            :    Madelung constant (dimensionless, for FCC cells such as NaCl it is 1.7476)
//   e            :    1.6022 × 10−19 C
//   4*pi*epsilon0:     1.112 × 10−10 C²/(J m)
//   a0           :    0.282 x 10-9 m (perfect cell)
// 
//   E is then the energy per pair of ions, so for our case
//   E has to be divided by 2 (per ion), multiplied by N(avogadro), multiplied by number of particles, and divided by 1000 for kJ
    double exactEnergy        = - (1.7476 * 1.6022e-19 * 1.6022e-19  * 6.02214e+23 * numParticles) / (1.112e-10 * 0.282e-9 * 2 * 1000);
    //cout << "exact\t\t: " << exactEnergy << endl;
    //cout << "calc\t\t: " << state.getPotentialEnergy() << endl;
    ASSERT_EQUAL_TOL(exactEnergy, state.getPotentialEnergy(), 100*EWALD_TOL);

}
Exemple #15
0
void testTriclinic() {
    // Create a triclinic box containing eight particles.

    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(2.5, 0, 0), Vec3(0.5, 3.0, 0), Vec3(0.7, 0.9, 3.5));
    for (int i = 0; i < 8; i++)
        system.addParticle(1.0);
    NonbondedForce* force = new NonbondedForce();
    system.addForce(force);
    force->setNonbondedMethod(NonbondedForce::PME);
    force->setCutoffDistance(1.0);
    force->setPMEParameters(3.45891, 32, 40, 48);
    for (int i = 0; i < 4; i++)
        force->addParticle(-1, 0.440104, 0.4184); // Cl parameters
    for (int i = 0; i < 4; i++)
        force->addParticle(1, 0.332840, 0.0115897); // Na parameters
    vector<Vec3> positions(8);
    positions[0] = Vec3(1.744, 2.788, 3.162);
    positions[1] = Vec3(1.048, 0.762, 2.340);
    positions[2] = Vec3(2.489, 1.570, 2.817);
    positions[3] = Vec3(1.027, 1.893, 3.271);
    positions[4] = Vec3(0.937, 0.825, 0.009);
    positions[5] = Vec3(2.290, 1.887, 3.352);
    positions[6] = Vec3(1.266, 1.111, 2.894);
    positions[7] = Vec3(0.933, 1.862, 3.490);

    // Compute the forces and energy.

    VerletIntegrator integ(0.001);
    Context context(system, integ, platform);
    context.setPositions(positions);
    State state = context.getState(State::Forces | State::Energy);

    // Compare them to values computed by Gromacs.

    double expectedEnergy = -963.370;
    vector<Vec3> expectedForce(8);
    expectedForce[0] = Vec3(4.25253e+01, -1.23503e+02, 1.22139e+02);
    expectedForce[1] = Vec3(9.74752e+01, 1.68213e+02, 1.93169e+02);
    expectedForce[2] = Vec3(-1.50348e+02, 1.29165e+02, 3.70435e+02);
    expectedForce[3] = Vec3(9.18644e+02, -3.52571e+00, -1.34772e+03);
    expectedForce[4] = Vec3(-1.61193e+02, 9.01528e+01, -7.12904e+01);
    expectedForce[5] = Vec3(2.82630e+02, 2.78029e+01, -3.72864e+02);
    expectedForce[6] = Vec3(-1.47454e+02, -2.14448e+02, -3.55789e+02);
    expectedForce[7] = Vec3(-8.82195e+02, -7.39132e+01, 1.46202e+03);
    for (int i = 0; i < 8; i++) {
        ASSERT_EQUAL_VEC(expectedForce[i], state.getForces()[i], 1e-4);
    }
    ASSERT_EQUAL_TOL(expectedEnergy, state.getPotentialEnergy(), 1e-4);
}
Exemple #16
0
void testChangingBoxSize() {
    ReferencePlatform platform;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(4, 0, 0), Vec3(0, 5, 0), Vec3(0, 0, 6));
    system.addParticle(1.0);
    NonbondedForce* nb = new NonbondedForce();
    nb->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    nb->setCutoffDistance(2.0);
    nb->addParticle(1, 0.5, 0.5);
    system.addForce(nb);
    LangevinIntegrator integrator(300.0, 1.0, 0.01);
    Context context(system, integrator, platform);
    vector<Vec3> positions;
    positions.push_back(Vec3());
    context.setPositions(positions);
    Vec3 x, y, z;
    context.getState(State::Forces).getPeriodicBoxVectors(x, y, z);
    ASSERT_EQUAL_VEC(Vec3(4, 0, 0), x, 0);
    ASSERT_EQUAL_VEC(Vec3(0, 5, 0), y, 0);
    ASSERT_EQUAL_VEC(Vec3(0, 0, 6), z, 0);
    context.setPeriodicBoxVectors(Vec3(7, 0, 0), Vec3(0, 8, 0), Vec3(0, 0, 9));
    context.getState(State::Forces).getPeriodicBoxVectors(x, y, z);
    ASSERT_EQUAL_VEC(Vec3(7, 0, 0), x, 0);
    ASSERT_EQUAL_VEC(Vec3(0, 8, 0), y, 0);
    ASSERT_EQUAL_VEC(Vec3(0, 0, 9), z, 0);
    
    // Shrinking the box too small should produce an exception.
    
    context.setPeriodicBoxVectors(Vec3(7, 0, 0), Vec3(0, 3.9, 0), Vec3(0, 0, 9));
    bool ok = true;
    try {
        context.getState(State::Forces).getPeriodicBoxVectors(x, y, z);
        ok = false;
    }
    catch (exception& ex) {
    }
    ASSERT(ok);
}
Exemple #17
0
void testLJPME(bool triclinic) {
    // Create a cloud of random LJ particles.

    const int numParticles = 51;
    const double boxWidth = 5.0;
    const double cutoff = 1.0;
    const double alpha = 2.91842;
    Vec3 boxVectors[3];
    if (triclinic) {
        boxVectors[0] = Vec3(boxWidth, 0, 0);
        boxVectors[1] = Vec3(0.2*boxWidth, boxWidth, 0);
        boxVectors[2] = Vec3(-0.3*boxWidth, -0.1*boxWidth, boxWidth);
    }
    else {
        boxVectors[0] = Vec3(boxWidth, 0, 0);
        boxVectors[1] = Vec3(0, boxWidth, 0);
        boxVectors[2] = Vec3(0, 0, boxWidth);
    }
    System system;
    system.setDefaultPeriodicBoxVectors(boxVectors[0], boxVectors[1], boxVectors[2]);
    NonbondedForce* force = new NonbondedForce();
    system.addForce(force);
    vector<Vec3> positions(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);

    for (int i = 0; i < numParticles; i++) {
        system.addParticle(1.0);
        force->addParticle(0, 0.5, 1.0);
        positions[i] = Vec3(boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt));
    }
    force->setNonbondedMethod(NonbondedForce::LJPME);
    force->setCutoffDistance(cutoff);
    force->setReciprocalSpaceForceGroup(1);
    force->setLJPMEParameters(alpha, 64, 64, 64);
    
    // Compute the reciprocal space forces with the reference platform.
    
    Platform& platform = Platform::getPlatformByName("Reference");
    VerletIntegrator integrator(0.01);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    State refState = context.getState(State::Forces | State::Energy, false, 1<<1);
    
    // Now compute them with the optimized kernel.
    
    CpuCalcDispersionPmeReciprocalForceKernel pme(CalcDispersionPmeReciprocalForceKernel::Name(), platform);
    IO io;
    double ewaldSelfEnergy = 0;
    for (int i = 0; i < numParticles; i++) {
        io.posq.push_back(positions[i][0]);
        io.posq.push_back(positions[i][1]);
        io.posq.push_back(positions[i][2]);
        double charge, sigma, epsilon;
        force->getParticleParameters(i, charge, sigma, epsilon);
        io.posq.push_back(pow(sigma, 3.0) * 2.0*sqrt(epsilon));
        ewaldSelfEnergy += pow(alpha*sigma, 6.0) * epsilon / 3.0;
    }
    pme.initialize(64, 64, 64, numParticles, alpha, true);
    pme.beginComputation(io, boxVectors, true);
    double energy = pme.finishComputation(io);

    // See if they match.
    
    ASSERT_EQUAL_TOL(refState.getPotentialEnergy(), energy+ewaldSelfEnergy, 1e-3);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(refState.getForces()[i], Vec3(io.force[4*i], io.force[4*i+1], io.force[4*i+2]), 1e-3);
}
/**
 * Make sure that atom reordering respects virtual sites.
 */
void testReordering() {
    const double cutoff = 2.0;
    const double boxSize = 20.0;
    System system;
    NonbondedForce* nonbonded = new NonbondedForce();
    system.addForce(nonbonded);
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic);
    nonbonded->setCutoffDistance(cutoff);
    vector<Vec3> positions;
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    
    // Create linear molecules with TwoParticleAverage virtual sites.
    
    for (int i = 0; i < 50; i++) {
        int start = system.getNumParticles();
        system.addParticle(1.0);
        system.addParticle(1.0);
        system.addParticle(0.0);
        system.setVirtualSite(start+2, new TwoParticleAverageSite(start, start+1, 0.4, 0.6));
        system.addConstraint(start, start+1, 2.0);
        for (int i = 0; i < 3; i++) {
            nonbonded->addParticle(0, 0.2, 1);
            for (int j = 0; j < i; j++)
                nonbonded->addException(start+i, start+j, 0, 1, 0);
        }
        Vec3 pos(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions.push_back(pos);
        positions.push_back(pos+Vec3(2, 0, 0));
        positions.push_back(Vec3());
    }
    
    // Create planar molecules with ThreeParticleAverage virtual sites.
    
    for (int i = 0; i < 50; i++) {
        int start = system.getNumParticles();
        system.addParticle(1.0);
        system.addParticle(1.0);
        system.addParticle(1.0);
        system.addParticle(0.0);
        system.setVirtualSite(start+3, new ThreeParticleAverageSite(start, start+1, start+2, 0.3, 0.5, 0.2));
        system.addConstraint(start, start+1, 1.0);
        system.addConstraint(start, start+2, 1.0);
        system.addConstraint(start+1, start+2, sqrt(2.0));
        for (int i = 0; i < 4; i++) {
            nonbonded->addParticle(0, 0.2, 1);
            for (int j = 0; j < i; j++)
                nonbonded->addException(start+i, start+j, 0, 1, 0);
        }
        Vec3 pos(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions.push_back(pos);
        positions.push_back(pos+Vec3(1, 0, 0));
        positions.push_back(pos+Vec3(0, 1, 0));
        positions.push_back(Vec3());
    }
    
    // Create tetrahedral molecules with OutOfPlane virtual sites.
    
    for (int i = 0; i < 50; i++) {
        int start = system.getNumParticles();
        system.addParticle(1.0);
        system.addParticle(1.0);
        system.addParticle(1.0);
        system.addParticle(0.0);
        system.setVirtualSite(start+3, new OutOfPlaneSite(start, start+1, start+2, 0.3, 0.5, 0.2));
        system.addConstraint(start, start+1, 1.0);
        system.addConstraint(start, start+2, 1.0);
        system.addConstraint(start+1, start+2, sqrt(2.0));
        for (int i = 0; i < 4; i++) {
            nonbonded->addParticle(0, 0.2, 1);
            for (int j = 0; j < i; j++)
                nonbonded->addException(start+i, start+j, 0, 1, 0);
        }
        Vec3 pos(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions.push_back(pos);
        positions.push_back(pos+Vec3(1, 0, 0));
        positions.push_back(pos+Vec3(0, 1, 0));
        positions.push_back(Vec3());
    }

    // Simulate it and check conservation laws.
    
    LangevinIntegrator integrator(300.0, 0.1, 0.002);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    context.applyConstraints(0.0001);
    for (int i = 0; i < 1000; i++) {
        State state = context.getState(State::Positions);
        const vector<Vec3>& pos = state.getPositions();
        for (int j = 0; j < 150; j += 3)
            ASSERT_EQUAL_VEC(pos[j]*0.4+pos[j+1]*0.6, pos[j+2], 1e-5);
        for (int j = 150; j < 350; j += 4)
            ASSERT_EQUAL_VEC(pos[j]*0.3+pos[j+1]*0.5+pos[j+2]*0.2, pos[j+3], 1e-5);
        for (int j = 350; j < 550; j += 4) {
            Vec3 v12 = pos[j+1]-pos[j];
            Vec3 v13 = pos[j+2]-pos[j];
            Vec3 cross = v12.cross(v13);
            ASSERT_EQUAL_VEC(pos[j]+v12*0.3+v13*0.5+cross*0.2, pos[j+3], 1e-5);
        }
        integrator.step(1);
    }
}
void testLargeSystem() {
    const int numMolecules = 600;
    const int numParticles = numMolecules*2;
    const double cutoff = 2.0;
    const double boxSize = 20.0;
    const double tol = 2e-3;
    ReferencePlatform reference;
    System system;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    NonbondedForce* nonbonded = new NonbondedForce();
    HarmonicBondForce* bonds = new HarmonicBondForce();
    vector<Vec3> positions(numParticles);
    vector<Vec3> velocities(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);

    for (int i = 0; i < numMolecules; i++) {
        if (i < numMolecules/2) {
            nonbonded->addParticle(-1.0, 0.2, 0.1);
            nonbonded->addParticle(1.0, 0.1, 0.1);
        }
        else {
            nonbonded->addParticle(-1.0, 0.2, 0.2);
            nonbonded->addParticle(1.0, 0.1, 0.2);
        }
        positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]);
        velocities[2*i] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt));
        velocities[2*i+1] = Vec3(genrand_real2(sfmt), genrand_real2(sfmt), genrand_real2(sfmt));
        bonds->addBond(2*i, 2*i+1, 1.0, 0.1);
        nonbonded->addException(2*i, 2*i+1, 0.0, 0.15, 0.0);
    }

    // Try with cutoffs but not periodic boundary conditions, and make sure the cl and Reference
    // platforms agree.

    nonbonded->setNonbondedMethod(NonbondedForce::CutoffNonPeriodic);
    nonbonded->setCutoffDistance(cutoff);
    system.addForce(nonbonded);
    system.addForce(bonds);
    VerletIntegrator integrator1(0.01);
    VerletIntegrator integrator2(0.01);
    Context cuContext(system, integrator1, platform);
    Context referenceContext(system, integrator2, reference);
    cuContext.setPositions(positions);
    cuContext.setVelocities(velocities);
    referenceContext.setPositions(positions);
    referenceContext.setVelocities(velocities);
    State cuState = cuContext.getState(State::Positions | State::Velocities | State::Forces | State::Energy);
    State referenceState = referenceContext.getState(State::Positions | State::Velocities | State::Forces | State::Energy);
    for (int i = 0; i < numParticles; i++) {
        ASSERT_EQUAL_VEC(cuState.getPositions()[i], referenceState.getPositions()[i], tol);
        ASSERT_EQUAL_VEC(cuState.getVelocities()[i], referenceState.getVelocities()[i], tol);
        ASSERT_EQUAL_VEC(cuState.getForces()[i], referenceState.getForces()[i], tol);
    }
    ASSERT_EQUAL_TOL(cuState.getPotentialEnergy(), referenceState.getPotentialEnergy(), tol);

    // Now do the same thing with periodic boundary conditions.

    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    cuContext.reinitialize();
    referenceContext.reinitialize();
    cuContext.setPositions(positions);
    cuContext.setVelocities(velocities);
    referenceContext.setPositions(positions);
    referenceContext.setVelocities(velocities);
    cuState = cuContext.getState(State::Positions | State::Velocities | State::Forces | State::Energy);
    referenceState = referenceContext.getState(State::Positions | State::Velocities | State::Forces | State::Energy);
    for (int i = 0; i < numParticles; i++) {
        double dx = cuState.getPositions()[i][0]-referenceState.getPositions()[i][0];
        double dy = cuState.getPositions()[i][1]-referenceState.getPositions()[i][1];
        double dz = cuState.getPositions()[i][2]-referenceState.getPositions()[i][2];
        ASSERT_EQUAL_TOL(fmod(cuState.getPositions()[i][0]-referenceState.getPositions()[i][0], boxSize), 0, tol);
        ASSERT_EQUAL_TOL(fmod(cuState.getPositions()[i][1]-referenceState.getPositions()[i][1], boxSize), 0, tol);
        ASSERT_EQUAL_TOL(fmod(cuState.getPositions()[i][2]-referenceState.getPositions()[i][2], boxSize), 0, tol);
        ASSERT_EQUAL_VEC(cuState.getVelocities()[i], referenceState.getVelocities()[i], tol);
        ASSERT_EQUAL_VEC(cuState.getForces()[i], referenceState.getForces()[i], tol);
    }
    ASSERT_EQUAL_TOL(cuState.getPotentialEnergy(), referenceState.getPotentialEnergy(), tol);
}
void testLongRangeCorrection() {
    // Create a box of particles.

    int gridSize = 5;
    int numParticles = gridSize*gridSize*gridSize;
    double boxSize = gridSize*0.7;
    double cutoff = boxSize/3;
    System standardSystem;
    System customSystem;
    VerletIntegrator integrator1(0.01);
    VerletIntegrator integrator2(0.01);
    NonbondedForce* standardNonbonded = new NonbondedForce();
    CustomNonbondedForce* customNonbonded = new CustomNonbondedForce("4*eps*((sigma/r)^12-(sigma/r)^6); sigma=0.5*(sigma1+sigma2); eps=sqrt(eps1*eps2)");
    customNonbonded->addPerParticleParameter("sigma");
    customNonbonded->addPerParticleParameter("eps");
    vector<Vec3> positions(numParticles);
    int index = 0;
    vector<double> params1(2);
    params1[0] = 1.1;
    params1[1] = 0.5;
    vector<double> params2(2);
    params2[0] = 1;
    params2[1] = 1;
    for (int i = 0; i < gridSize; i++)
        for (int j = 0; j < gridSize; j++)
            for (int k = 0; k < gridSize; k++) {
                standardSystem.addParticle(1.0);
                customSystem.addParticle(1.0);
                if (index%2 == 0) {
                    standardNonbonded->addParticle(0, params1[0], params1[1]);
                    customNonbonded->addParticle(params1);
                }
                else {
                    standardNonbonded->addParticle(0, params2[0], params2[1]);
                    customNonbonded->addParticle(params2);
                }
                positions[index] = Vec3(i*boxSize/gridSize, j*boxSize/gridSize, k*boxSize/gridSize);
                index++;
            }
    standardNonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    customNonbonded->setNonbondedMethod(CustomNonbondedForce::CutoffPeriodic);
    standardNonbonded->setCutoffDistance(cutoff);
    customNonbonded->setCutoffDistance(cutoff);
    standardSystem.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    customSystem.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    standardNonbonded->setUseDispersionCorrection(true);
    customNonbonded->setUseLongRangeCorrection(true);
    standardNonbonded->setUseSwitchingFunction(true);
    customNonbonded->setUseSwitchingFunction(true);
    standardNonbonded->setSwitchingDistance(0.8*cutoff);
    customNonbonded->setSwitchingDistance(0.8*cutoff);
    standardSystem.addForce(standardNonbonded);
    customSystem.addForce(customNonbonded);

    // Compute the correction for the standard force.

    Context context1(standardSystem, integrator1, platform);
    context1.setPositions(positions);
    double standardEnergy1 = context1.getState(State::Energy).getPotentialEnergy();
    standardNonbonded->setUseDispersionCorrection(false);
    context1.reinitialize();
    context1.setPositions(positions);
    double standardEnergy2 = context1.getState(State::Energy).getPotentialEnergy();

    // Compute the correction for the custom force.

    Context context2(customSystem, integrator2, platform);
    context2.setPositions(positions);
    double customEnergy1 = context2.getState(State::Energy).getPotentialEnergy();
    customNonbonded->setUseLongRangeCorrection(false);
    context2.reinitialize();
    context2.setPositions(positions);
    double customEnergy2 = context2.getState(State::Energy).getPotentialEnergy();

    // See if they agree.

    ASSERT_EQUAL_TOL(standardEnergy1-standardEnergy2, customEnergy1-customEnergy2, 1e-4);
}
void testWithBarostat() {
    const int gridSize = 3;
    const int numMolecules = gridSize*gridSize*gridSize;
    const int numParticles = numMolecules*2;
    const int numCopies = 5;
    const double spacing = 2.0;
    const double cutoff = 3.0;
    const double boxSize = spacing*(gridSize+1);
    const double temperature = 300.0;
    System system;
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    HarmonicBondForce* bonds = new HarmonicBondForce();
    system.addForce(bonds);
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->setCutoffDistance(cutoff);
    nonbonded->setNonbondedMethod(NonbondedForce::PME);
    nonbonded->setForceGroup(1);
    nonbonded->setReciprocalSpaceForceGroup(2);
    system.addForce(nonbonded);
    system.addForce(new MonteCarloBarostat(0.5, temperature));

    // Create a cloud of molecules.

    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);
    vector<Vec3> positions(numParticles);
    for (int i = 0; i < numMolecules; i++) {
        system.addParticle(1.0);
        system.addParticle(1.0);
        nonbonded->addParticle(-0.2, 0.2, 0.2);
        nonbonded->addParticle(0.2, 0.2, 0.2);
        nonbonded->addException(2*i, 2*i+1, 0, 1, 0);
        bonds->addBond(2*i, 2*i+1, 1.0, 10000.0);
    }
    RPMDIntegrator integ(numCopies, temperature, 50.0, 0.001);
    Platform& platform = Platform::getPlatformByName("Reference");
    Context context(system, integ, platform);
    for (int copy = 0; copy < numCopies; copy++) {
        for (int i = 0; i < gridSize; i++)
            for (int j = 0; j < gridSize; j++)
                for (int k = 0; k < gridSize; k++) {
                    Vec3 pos = Vec3(spacing*(i+0.02*genrand_real2(sfmt)), spacing*(j+0.02*genrand_real2(sfmt)), spacing*(k+0.02*genrand_real2(sfmt)));
                    int index = k+gridSize*(j+gridSize*i);
                    positions[2*index] = pos;
                    positions[2*index+1] = Vec3(pos[0]+1.0, pos[1], pos[2]);
                }
        integ.setPositions(copy, positions);
    }

    // Check the temperature.
    
    const int numSteps = 500;
    integ.step(100);
    vector<double> ke(numCopies, 0.0);
    for (int i = 0; i < numSteps; i++) {
        integ.step(1);
        vector<State> state(numCopies);
        for (int j = 0; j < numCopies; j++)
            state[j] = integ.getState(j, State::Velocities, true);
        for (int j = 0; j < numParticles; j++) {
            for (int k = 0; k < numCopies; k++) {
                Vec3 v = state[k].getVelocities()[j];
                ke[k] += 0.5*system.getParticleMass(j)*v.dot(v);
            }
        }
    }
    double meanKE = 0.0;
    for (int i = 0; i < numCopies; i++)
        meanKE += ke[i];
    meanKE /= numSteps*numCopies;
    double expectedKE = 0.5*numCopies*numParticles*3*BOLTZ*temperature;
    ASSERT_USUALLY_EQUAL_TOL(expectedKE, meanKE, 1e-2);
}
void testWater() {
    // Create a box of SWM4-NDP water molecules.  This involves constraints, virtual sites,
    // and Drude particles.
    
    const int gridSize = 3;
    const int numMolecules = gridSize*gridSize*gridSize;
    const double spacing = 0.6;
    const double boxSize = spacing*(gridSize+1);
    System system;
    NonbondedForce* nonbonded = new NonbondedForce();
    DrudeForce* drude = new DrudeForce();
    system.addForce(nonbonded);
    system.addForce(drude);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    nonbonded->setCutoffDistance(1.0);
    for (int i = 0; i < numMolecules; i++) {
        int startIndex = system.getNumParticles();
        system.addParticle(15.6); // O
        system.addParticle(0.4);  // D
        system.addParticle(1.0);  // H1
        system.addParticle(1.0);  // H2
        system.addParticle(0.0);  // M
        nonbonded->addParticle(1.71636, 0.318395, 0.21094*4.184);
        nonbonded->addParticle(-1.71636, 1, 0);
        nonbonded->addParticle(0.55733, 1, 0);
        nonbonded->addParticle(0.55733, 1, 0);
        nonbonded->addParticle(-1.11466, 1, 0);
        for (int j = 0; j < 5; j++)
            for (int k = 0; k < j; k++)
                nonbonded->addException(startIndex+j, startIndex+k, 0, 1, 0);
        system.addConstraint(startIndex, startIndex+2, 0.09572);
        system.addConstraint(startIndex, startIndex+3, 0.09572);
        system.addConstraint(startIndex+2, startIndex+3, 0.15139);
        system.setVirtualSite(startIndex+4, new ThreeParticleAverageSite(startIndex, startIndex+2, startIndex+3, 0.786646558, 0.106676721, 0.106676721));
        drude->addParticle(startIndex+1, startIndex, -1, -1, -1, -1.71636, ONE_4PI_EPS0*1.71636*1.71636/(100000*4.184), 1, 1);
    }
    vector<Vec3> positions;
    for (int i = 0; i < gridSize; i++)
        for (int j = 0; j < gridSize; j++)
            for (int k = 0; k < gridSize; k++) {
                Vec3 pos(i*spacing, j*spacing, k*spacing);
                positions.push_back(pos);
                positions.push_back(pos);
                positions.push_back(pos+Vec3(0.09572, 0, 0));
                positions.push_back(pos+Vec3(-0.023999, 0.092663, 0));
                positions.push_back(pos);
            }
    
    // Simulate it and check energy conservation and the total force on the Drude particles.
    
    DrudeSCFIntegrator integ(0.0005);
    Platform& platform = Platform::getPlatformByName("Reference");
    Context context(system, integ, platform);
    context.setPositions(positions);
    context.applyConstraints(1e-5);
    context.setVelocitiesToTemperature(300.0);
    State state = context.getState(State::Energy);
    double initialEnergy;
    int numSteps = 1000;
    for (int i = 0; i < numSteps; i++) {
        integ.step(1);
        state = context.getState(State::Energy | State::Forces);
        if (i == 0)
            initialEnergy = state.getPotentialEnergy()+state.getKineticEnergy();
        else
            ASSERT_EQUAL_TOL(initialEnergy, state.getPotentialEnergy()+state.getKineticEnergy(), 0.01);
        const vector<Vec3>& force = state.getForces();
        double norm = 0.0;
        for (int j = 1; j < (int) force.size(); j += 5)
            norm += sqrt(force[j].dot(force[j]));
        norm = (norm/numMolecules);
        ASSERT(norm < 1.0);
    }
}
void testDispersionCorrection() {
    // Create a box full of identical particles.

    int gridSize = 5;
    int numParticles = gridSize*gridSize*gridSize;
    double boxSize = gridSize*0.7;
    double cutoff = boxSize/3;
    System system;
    VerletIntegrator integrator(0.01);
    NonbondedForce* nonbonded = new NonbondedForce();
    vector<Vec3> positions(numParticles);
    int index = 0;
    for (int i = 0; i < gridSize; i++)
        for (int j = 0; j < gridSize; j++)
            for (int k = 0; k < gridSize; k++) {
                system.addParticle(1.0);
                nonbonded->addParticle(0, 1.1, 0.5);
                positions[index] = Vec3(i*boxSize/gridSize, j*boxSize/gridSize, k*boxSize/gridSize);
                index++;
            }
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    nonbonded->setCutoffDistance(cutoff);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    system.addForce(nonbonded);

    // See if the correction has the correct value.

    Context context(system, integrator, platform);
    context.setPositions(positions);
    double energy1 = context.getState(State::Energy).getPotentialEnergy();
    nonbonded->setUseDispersionCorrection(false);
    context.reinitialize();
    context.setPositions(positions);
    double energy2 = context.getState(State::Energy).getPotentialEnergy();
    double term1 = (0.5*pow(1.1, 12)/pow(cutoff, 9))/9;
    double term2 = (0.5*pow(1.1, 6)/pow(cutoff, 3))/3;
    double expected = 8*M_PI*numParticles*numParticles*(term1-term2)/(boxSize*boxSize*boxSize);
    ASSERT_EQUAL_TOL(expected, energy1-energy2, 1e-4);

    // Now modify half the particles to be different, and see if it is still correct.

    int numType2 = 0;
    for (int i = 0; i < numParticles; i += 2) {
        nonbonded->setParticleParameters(i, 0, 1, 1);
        numType2++;
    }
    int numType1 = numParticles-numType2;
    nonbonded->updateParametersInContext(context);
    energy2 = context.getState(State::Energy).getPotentialEnergy();
    nonbonded->setUseDispersionCorrection(true);
    context.reinitialize();
    context.setPositions(positions);
    energy1 = context.getState(State::Energy).getPotentialEnergy();
    term1 = ((numType1*(numType1+1))/2)*(0.5*pow(1.1, 12)/pow(cutoff, 9))/9;
    term2 = ((numType1*(numType1+1))/2)*(0.5*pow(1.1, 6)/pow(cutoff, 3))/3;
    term1 += ((numType2*(numType2+1))/2)*(1*pow(1.0, 12)/pow(cutoff, 9))/9;
    term2 += ((numType2*(numType2+1))/2)*(1*pow(1.0, 6)/pow(cutoff, 3))/3;
    double combinedSigma = 0.5*(1+1.1);
    double combinedEpsilon = sqrt(1*0.5);
    term1 += (numType1*numType2)*(combinedEpsilon*pow(combinedSigma, 12)/pow(cutoff, 9))/9;
    term2 += (numType1*numType2)*(combinedEpsilon*pow(combinedSigma, 6)/pow(cutoff, 3))/3;
    term1 /= (numParticles*(numParticles+1))/2;
    term2 /= (numParticles*(numParticles+1))/2;
    expected = 8*M_PI*numParticles*numParticles*(term1-term2)/(boxSize*boxSize*boxSize);
    ASSERT_EQUAL_TOL(expected, energy1-energy2, 1e-4);
}
Exemple #24
0
void test_water2_dpme_energies_forces_no_exclusions() {
    const double cutoff = 7.0*OpenMM::NmPerAngstrom;
    const double dalpha = 4.0124063605;
    const int grid = 32;
    NonbondedForce* forceField = new NonbondedForce();

    vector<Vec3> positions;
    vector<double> epsvals;
    vector<double> sigvals;
    vector<pair<int, int> > bonds;
    System system;

    const int NATOMS = 6;
    double boxEdgeLength = 25*OpenMM::NmPerAngstrom;

    make_waterbox(NATOMS, boxEdgeLength, forceField,  positions, epsvals, sigvals, bonds, system, false);
    forceField->setNonbondedMethod(OpenMM::NonbondedForce::LJPME);
    forceField->setPMEParameters(0.0f, grid, grid, grid);
    forceField->setReciprocalSpaceForceGroup(1);
    forceField->setLJPMEParameters(dalpha, grid, grid, grid);
    forceField->setCutoffDistance(cutoff);
    forceField->setReactionFieldDielectric(1.0);
    system.addForce(forceField);

    // Reference calculation
    VerletIntegrator integrator(0.01);
    Platform& platform = Platform::getPlatformByName("Reference");
    Context context(system, integrator, platform);
    context.setPositions(positions);
    State state = context.getState(State::Forces | State::Energy, false, 1<<1);
    double refenergy = state.getPotentialEnergy();
    const vector<Vec3>& refforces = state.getForces();

    // Optimized CPU calculation
    CpuCalcDispersionPmeReciprocalForceKernel pme(CalcPmeReciprocalForceKernel::Name(), platform);
    IO io;
    double selfEwaldEnergy = 0;
    double dalpha6 = pow(dalpha, 6.0);
    for (int i = 0; i < NATOMS; i++) {
        io.posq.push_back((float)positions[i][0]);
        io.posq.push_back((float)positions[i][1]);
        io.posq.push_back((float)positions[i][2]);
        double c6 = 8.0f * pow(sigvals[i], 3) * epsvals[i];
        io.posq.push_back(c6);
        selfEwaldEnergy += dalpha6 * c6 * c6 / 12.0;
    }
    pme.initialize(grid, grid, grid, NATOMS, dalpha, false);
    Vec3 boxVectors[3];
    system.getDefaultPeriodicBoxVectors(boxVectors[0], boxVectors[1], boxVectors[2]);
    pme.beginComputation(io, boxVectors, true);
    double recenergy = pme.finishComputation(io);

    ASSERT_EQUAL_TOL(recenergy, -2.179629087, 5e-3);
    ASSERT_EQUAL_TOL(selfEwaldEnergy, 1.731404285, 1e-5);

    std::vector<Vec3> knownforces(6);
    knownforces[0] = Vec3(    -1.890360546,    -1.890723915,    -1.879662698);
    knownforces[1] = Vec3( -0.003161352455, -0.000922244929, -0.005391616425);
    knownforces[2] = Vec3( 0.0009199035545, -0.001453894176, -0.006188087146);
    knownforces[3] = Vec3(     1.887108856,     1.887241446,      1.89644647);
    knownforces[4] = Vec3( 0.0008242336483,  0.003778910089, -0.002116131106);
    knownforces[5] = Vec3(  0.004912763044,  0.002324059399, -0.002844482646);
    for (int i = 0; i < NATOMS; i++)
        ASSERT_EQUAL_VEC(refforces[i], knownforces[i], 5e-3);

    recenergy += selfEwaldEnergy;

    // See if they match.

    ASSERT_EQUAL_TOL(refenergy, recenergy, 1e-3);
    for (int i = 0; i < NATOMS; i++)
        ASSERT_EQUAL_VEC(refforces[i], Vec3(io.force[4*i], io.force[4*i+1], io.force[4*i+2]), 5e-3);

}
void testChangingParameters() {
    const int numMolecules = 600;
    const int numParticles = numMolecules*2;
    const double cutoff = 2.0;
    const double boxSize = 20.0;
    const double tol = 2e-3;
    ReferencePlatform reference;
    System system;
    for (int i = 0; i < numParticles; i++)
        system.addParticle(1.0);
    NonbondedForce* nonbonded = new NonbondedForce();
    vector<Vec3> positions(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);

    for (int i = 0; i < numMolecules; i++) {
        if (i < numMolecules/2) {
            nonbonded->addParticle(-1.0, 0.2, 0.1);
            nonbonded->addParticle(1.0, 0.1, 0.1);
        }
        else {
            nonbonded->addParticle(-1.0, 0.2, 0.2);
            nonbonded->addParticle(1.0, 0.1, 0.2);
        }
        positions[2*i] = Vec3(boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt), boxSize*genrand_real2(sfmt));
        positions[2*i+1] = Vec3(positions[2*i][0]+1.0, positions[2*i][1], positions[2*i][2]);
        system.addConstraint(2*i, 2*i+1, 1.0);
        nonbonded->addException(2*i, 2*i+1, 0.0, 0.15, 0.0);
    }
    nonbonded->setNonbondedMethod(NonbondedForce::PME);
    nonbonded->setCutoffDistance(cutoff);
    system.addForce(nonbonded);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    
    // See if Reference and Cuda give the same forces and energies.
    
    VerletIntegrator integrator1(0.01);
    VerletIntegrator integrator2(0.01);
    Context cuContext(system, integrator1, platform);
    Context referenceContext(system, integrator2, reference);
    cuContext.setPositions(positions);
    referenceContext.setPositions(positions);
    State cuState = cuContext.getState(State::Forces | State::Energy);
    State referenceState = referenceContext.getState(State::Forces | State::Energy);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(cuState.getForces()[i], referenceState.getForces()[i], tol);
    ASSERT_EQUAL_TOL(cuState.getPotentialEnergy(), referenceState.getPotentialEnergy(), tol);
    
    // Now modify parameters and see if they still agree.

    for (int i = 0; i < numParticles; i += 5) {
        double charge, sigma, epsilon;
        nonbonded->getParticleParameters(i, charge, sigma, epsilon);
        nonbonded->setParticleParameters(i, 1.5*charge, 1.1*sigma, 1.7*epsilon);
    }
    nonbonded->updateParametersInContext(cuContext);
    nonbonded->updateParametersInContext(referenceContext);
    cuState = cuContext.getState(State::Forces | State::Energy);
    referenceState = referenceContext.getState(State::Forces | State::Energy);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(cuState.getForces()[i], referenceState.getForces()[i], tol);
    ASSERT_EQUAL_TOL(cuState.getPotentialEnergy(), referenceState.getPotentialEnergy(), tol);
}
void testWater() {
    // Create a box of SWM4-NDP water molecules.  This involves constraints, virtual sites,
    // and Drude particles.
    
    const int gridSize = 3;
    const int numMolecules = gridSize*gridSize*gridSize;
    const double spacing = 0.6;
    const double boxSize = spacing*(gridSize+1);
    const double temperature = 300.0;
    const double temperatureDrude = 10.0;
    System system;
    NonbondedForce* nonbonded = new NonbondedForce();
    DrudeForce* drude = new DrudeForce();
    system.addForce(nonbonded);
    system.addForce(drude);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    nonbonded->setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    nonbonded->setCutoffDistance(1.0);
    for (int i = 0; i < numMolecules; i++) {
        int startIndex = system.getNumParticles();
        system.addParticle(15.6); // O
        system.addParticle(0.4);  // D
        system.addParticle(1.0);  // H1
        system.addParticle(1.0);  // H2
        system.addParticle(0.0);  // M
        nonbonded->addParticle(1.71636, 0.318395, 0.21094*4.184);
        nonbonded->addParticle(-1.71636, 1, 0);
        nonbonded->addParticle(0.55733, 1, 0);
        nonbonded->addParticle(0.55733, 1, 0);
        nonbonded->addParticle(-1.11466, 1, 0);
        for (int j = 0; j < 5; j++)
            for (int k = 0; k < j; k++)
                nonbonded->addException(startIndex+j, startIndex+k, 0, 1, 0);
        system.addConstraint(startIndex, startIndex+2, 0.09572);
        system.addConstraint(startIndex, startIndex+3, 0.09572);
        system.addConstraint(startIndex+2, startIndex+3, 0.15139);
        system.setVirtualSite(startIndex+4, new ThreeParticleAverageSite(startIndex, startIndex+2, startIndex+3, 0.786646558, 0.106676721, 0.106676721));
        drude->addParticle(startIndex+1, startIndex, -1, -1, -1, -1.71636, ONE_4PI_EPS0*1.71636*1.71636/(100000*4.184), 1, 1);
    }
    vector<Vec3> positions;
    for (int i = 0; i < gridSize; i++)
        for (int j = 0; j < gridSize; j++)
            for (int k = 0; k < gridSize; k++) {
                Vec3 pos(i*spacing, j*spacing, k*spacing);
                positions.push_back(pos);
                positions.push_back(pos);
                positions.push_back(pos+Vec3(0.09572, 0, 0));
                positions.push_back(pos+Vec3(-0.023999, 0.092663, 0));
                positions.push_back(pos);
            }
    
    // Simulate it and check the temperature.
    
    DrudeLangevinIntegrator integ(temperature, 50.0, temperatureDrude, 50.0, 0.0005);
    Platform& platform = Platform::getPlatformByName("Reference");
    Context context(system, integ, platform);
    context.setPositions(positions);
    context.applyConstraints(1e-5);
    
    // Equilibrate.
    
    integ.step(500);
    
    // Compute the internal and center of mass temperatures.
    
    double ke = 0;
    int numSteps = 4000;
    for (int i = 0; i < numSteps; i++) {
        integ.step(1);
        ke += context.getState(State::Energy).getKineticEnergy();
    }
    ke /= numSteps;
    int numStandardDof = 3*3*numMolecules-system.getNumConstraints();
    int numDrudeDof = 3*numMolecules;
    int numDof = numStandardDof+numDrudeDof;
    double expectedTemp = (numStandardDof*temperature+numDrudeDof*temperatureDrude)/numDof;
    ASSERT_USUALLY_EQUAL_TOL(expectedTemp, ke/(0.5*numDof*BOLTZ), 0.03);
}
Exemple #27
0
void testEwaldPME(bool includeExceptions) {

//      Use amorphous NaCl system for the tests

    const int numParticles = 894;
    const double cutoff = 1.2;
    const double boxSize = 3.00646;
    double tol = 1e-5;

    ReferencePlatform reference;
    System system;
    NonbondedForce* nonbonded = new NonbondedForce();
    nonbonded->setNonbondedMethod(NonbondedForce::Ewald);
    nonbonded->setCutoffDistance(cutoff);
    nonbonded->setEwaldErrorTolerance(tol);

    for (int i = 0; i < numParticles/2; i++)
        system.addParticle(22.99);
    for (int i = 0; i < numParticles/2; i++)
        system.addParticle(35.45);
    for (int i = 0; i < numParticles/2; i++)
        nonbonded->addParticle(1.0, 1.0,0.0);
    for (int i = 0; i < numParticles/2; i++)
        nonbonded->addParticle(-1.0, 1.0,0.0);
    system.setDefaultPeriodicBoxVectors(Vec3(boxSize, 0, 0), Vec3(0, boxSize, 0), Vec3(0, 0, boxSize));
    system.addForce(nonbonded);

    vector<Vec3> positions(numParticles);
#include "nacl_amorph.dat"
    if (includeExceptions) {
        // Add some exclusions.

        for (int i = 0; i < numParticles-1; i++) {
            Vec3 delta = positions[i]-positions[i+1];
            if (sqrt(delta.dot(delta)) < 0.5*cutoff)
                nonbonded->addException(i, i+1, i%2 == 0 ? 0.0 : 0.5, 1.0, 0.0);
        }
    }

//    (1)  Check whether the Reference and CPU platforms agree when using Ewald Method

    VerletIntegrator integrator1(0.01);
    VerletIntegrator integrator2(0.01);
    Context cpuContext(system, integrator1, platform);
    Context referenceContext(system, integrator2, reference);
    cpuContext.setPositions(positions);
    referenceContext.setPositions(positions);
    State cpuState = cpuContext.getState(State::Forces | State::Energy);
    State referenceState = referenceContext.getState(State::Forces | State::Energy);
    tol = 1e-2;
    for (int i = 0; i < numParticles; i++) {
        ASSERT_EQUAL_VEC(referenceState.getForces()[i], cpuState.getForces()[i], tol);
    }
    tol = 1e-5;
    ASSERT_EQUAL_TOL(referenceState.getPotentialEnergy(), cpuState.getPotentialEnergy(), tol);

//    (2) Check whether Ewald method in CPU is self-consistent

    double norm = 0.0;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 f = cpuState.getForces()[i];
        norm += f[0]*f[0] + f[1]*f[1] + f[2]*f[2];
    }

    norm = std::sqrt(norm);
    const double delta = 5e-3;
    double step = delta/norm;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 p = positions[i];
        Vec3 f = cpuState.getForces()[i];
        positions[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step);
    }
    VerletIntegrator integrator3(0.01);
    Context cpuContext2(system, integrator3, platform);
    cpuContext2.setPositions(positions);

    tol = 1e-2;
    State cpuState2 = cpuContext2.getState(State::Energy);
    ASSERT_EQUAL_TOL(norm, (cpuState2.getPotentialEnergy()-cpuState.getPotentialEnergy())/delta, tol)

//    (3)  Check whether the Reference and CPU platforms agree when using PME

    nonbonded->setNonbondedMethod(NonbondedForce::PME);
    cpuContext.reinitialize();
    referenceContext.reinitialize();
    cpuContext.setPositions(positions);
    referenceContext.setPositions(positions);
    cpuState = cpuContext.getState(State::Forces | State::Energy);
    referenceState = referenceContext.getState(State::Forces | State::Energy);
    tol = 1e-2;
    for (int i = 0; i < numParticles; i++) {
        ASSERT_EQUAL_VEC(referenceState.getForces()[i], cpuState.getForces()[i], tol);
    }
    tol = 1e-5;
    ASSERT_EQUAL_TOL(referenceState.getPotentialEnergy(), cpuState.getPotentialEnergy(), tol);

//    (4) Check whether PME method in CPU is self-consistent

    norm = 0.0;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 f = cpuState.getForces()[i];
        norm += f[0]*f[0] + f[1]*f[1] + f[2]*f[2];
    }

    norm = std::sqrt(norm);
    step = delta/norm;
    for (int i = 0; i < numParticles; ++i) {
        Vec3 p = positions[i];
        Vec3 f = cpuState.getForces()[i];
        positions[i] = Vec3(p[0]-f[0]*step, p[1]-f[1]*step, p[2]-f[2]*step);
    }
    VerletIntegrator integrator4(0.01);
    Context cpuContext3(system, integrator4, platform);
    cpuContext3.setPositions(positions);

    tol = 1e-2;
    State cpuState3 = cpuContext3.getState(State::Energy);
    ASSERT_EQUAL_TOL(norm, (cpuState3.getPotentialEnergy()-cpuState.getPotentialEnergy())/delta, tol)
}
Exemple #28
0
void testPME(bool triclinic) {
    // Create a cloud of random point charges.

    const int numParticles = 51;
    const double boxWidth = 5.0;
    const double cutoff = 1.0;
    Vec3 boxVectors[3];
    if (triclinic) {
        boxVectors[0] = Vec3(boxWidth, 0, 0);
        boxVectors[1] = Vec3(0.2*boxWidth, boxWidth, 0);
        boxVectors[2] = Vec3(-0.3*boxWidth, -0.1*boxWidth, boxWidth);
    }
    else {
        boxVectors[0] = Vec3(boxWidth, 0, 0);
        boxVectors[1] = Vec3(0, boxWidth, 0);
        boxVectors[2] = Vec3(0, 0, boxWidth);
    }
    System system;
    system.setDefaultPeriodicBoxVectors(boxVectors[0], boxVectors[1], boxVectors[2]);
    NonbondedForce* force = new NonbondedForce();
    system.addForce(force);
    vector<Vec3> positions(numParticles);
    OpenMM_SFMT::SFMT sfmt;
    init_gen_rand(0, sfmt);

    for (int i = 0; i < numParticles; i++) {
        system.addParticle(1.0);
        force->addParticle(-1.0+i*2.0/(numParticles-1), 1.0, 0.0);
        positions[i] = Vec3(boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt), boxWidth*genrand_real2(sfmt));
    }
    force->setNonbondedMethod(NonbondedForce::PME);
    force->setCutoffDistance(cutoff);
    force->setReciprocalSpaceForceGroup(1);
    force->setEwaldErrorTolerance(1e-4);
    
    // Compute the reciprocal space forces with the reference platform.
    
    Platform& platform = Platform::getPlatformByName("Reference");
    VerletIntegrator integrator(0.01);
    Context context(system, integrator, platform);
    context.setPositions(positions);
    State refState = context.getState(State::Forces | State::Energy, false, 1<<1);
    
    // Now compute them with the optimized kernel.
    
    double alpha;
    int gridx, gridy, gridz;
    NonbondedForceImpl::calcPMEParameters(system, *force, alpha, gridx, gridy, gridz, false);
    CpuCalcPmeReciprocalForceKernel pme(CalcPmeReciprocalForceKernel::Name(), platform);
    IO io;
    double sumSquaredCharges = 0;
    for (int i = 0; i < numParticles; i++) {
        io.posq.push_back(positions[i][0]);
        io.posq.push_back(positions[i][1]);
        io.posq.push_back(positions[i][2]);
        double charge, sigma, epsilon;
        force->getParticleParameters(i, charge, sigma, epsilon);
        io.posq.push_back(charge);
        sumSquaredCharges += charge*charge;
    }
    double ewaldSelfEnergy = -ONE_4PI_EPS0*alpha*sumSquaredCharges/sqrt(M_PI);
    pme.initialize(gridx, gridy, gridz, numParticles, alpha, true);
    pme.beginComputation(io, boxVectors, true);
    double energy = pme.finishComputation(io);

    // See if they match.
    
    ASSERT_EQUAL_TOL(refState.getPotentialEnergy(), energy+ewaldSelfEnergy, 1e-3);
    for (int i = 0; i < numParticles; i++)
        ASSERT_EQUAL_VEC(refState.getForces()[i], Vec3(io.force[4*i], io.force[4*i+1], io.force[4*i+2]), 1e-3);
}
void testSerialization() {
    // Create a Force.

    NonbondedForce force;
    force.setForceGroup(3);
    force.setNonbondedMethod(NonbondedForce::CutoffPeriodic);
    force.setSwitchingDistance(1.5);
    force.setUseSwitchingFunction(true);
    force.setCutoffDistance(2.0);
    force.setEwaldErrorTolerance(1e-3);
    force.setReactionFieldDielectric(50.0);
    force.setUseDispersionCorrection(false);
    double alpha = 0.5;
    int nx = 3, ny = 5, nz = 7;
    force.setPMEParameters(alpha, nx, ny, nz);
    double dalpha = 0.8;
    int dnx = 4, dny = 6, dnz = 7;
    force.setLJPMEParameters(dalpha, dnx, dny, dnz);
    force.addParticle(1, 0.1, 0.01);
    force.addParticle(0.5, 0.2, 0.02);
    force.addParticle(-0.5, 0.3, 0.03);
    force.addException(0, 1, 2, 0.5, 0.1);
    force.addException(1, 2, 0.2, 0.4, 0.2);
    force.addGlobalParameter("scale1", 1.0);
    force.addGlobalParameter("scale2", 2.0);
    force.addParticleParameterOffset("scale1", 2, 1.5, 2.0, 2.5);
    force.addExceptionParameterOffset("scale2", 1, -0.1, -0.2, -0.3);

    // Serialize and then deserialize it.

    stringstream buffer;
    XmlSerializer::serialize<NonbondedForce>(&force, "Force", buffer);
    NonbondedForce* copy = XmlSerializer::deserialize<NonbondedForce>(buffer);

    // Compare the two forces to see if they are identical.

    NonbondedForce& force2 = *copy;
    ASSERT_EQUAL(force.getForceGroup(), force2.getForceGroup());
    ASSERT_EQUAL(force.getNonbondedMethod(), force2.getNonbondedMethod());
    ASSERT_EQUAL(force.getSwitchingDistance(), force2.getSwitchingDistance());
    ASSERT_EQUAL(force.getUseSwitchingFunction(), force2.getUseSwitchingFunction());
    ASSERT_EQUAL(force.getCutoffDistance(), force2.getCutoffDistance());
    ASSERT_EQUAL(force.getEwaldErrorTolerance(), force2.getEwaldErrorTolerance());
    ASSERT_EQUAL(force.getReactionFieldDielectric(), force2.getReactionFieldDielectric());
    ASSERT_EQUAL(force.getUseDispersionCorrection(), force2.getUseDispersionCorrection());
    ASSERT_EQUAL(force.getNumParticles(), force2.getNumParticles());
    ASSERT_EQUAL(force.getNumExceptions(), force2.getNumExceptions());
    ASSERT_EQUAL(force.getNumGlobalParameters(), force2.getNumGlobalParameters());
    ASSERT_EQUAL(force.getNumParticleParameterOffsets(), force2.getNumParticleParameterOffsets());
    ASSERT_EQUAL(force.getNumExceptionParameterOffsets(), force2.getNumExceptionParameterOffsets());
    double alpha2;
    int nx2, ny2, nz2;
    force2.getPMEParameters(alpha2, nx2, ny2, nz2);
    ASSERT_EQUAL(alpha, alpha2);
    ASSERT_EQUAL(nx, nx2);
    ASSERT_EQUAL(ny, ny2);
    ASSERT_EQUAL(nz, nz2);    
    double dalpha2;
    int dnx2, dny2, dnz2;
    force2.getLJPMEParameters(dalpha2, dnx2, dny2, dnz2);
    ASSERT_EQUAL(dalpha, dalpha2);
    ASSERT_EQUAL(dnx, dnx2);
    ASSERT_EQUAL(dny, dny2);
    ASSERT_EQUAL(dnz, dnz2);
    for (int i = 0; i < force.getNumGlobalParameters(); i++) {
        ASSERT_EQUAL(force.getGlobalParameterName(i), force2.getGlobalParameterName(i));
        ASSERT_EQUAL(force.getGlobalParameterDefaultValue(i), force2.getGlobalParameterDefaultValue(i));
    }
    for (int i = 0; i < force.getNumParticleParameterOffsets(); i++) {
        int index1, index2;
        string param1, param2;
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getParticleParameterOffset(i, param1, index1, charge1, sigma1, epsilon1);
        force2.getParticleParameterOffset(i, param2, index2, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(index1, index1);
        ASSERT_EQUAL(param1, param2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
    for (int i = 0; i < force.getNumExceptionParameterOffsets(); i++) {
        int index1, index2;
        string param1, param2;
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getExceptionParameterOffset(i, param1, index1, charge1, sigma1, epsilon1);
        force2.getExceptionParameterOffset(i, param2, index2, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(index1, index1);
        ASSERT_EQUAL(param1, param2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
    for (int i = 0; i < force.getNumParticles(); i++) {
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getParticleParameters(i, charge1, sigma1, epsilon1);
        force2.getParticleParameters(i, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
    ASSERT_EQUAL(force.getNumExceptions(), force2.getNumExceptions());
    for (int i = 0; i < force.getNumExceptions(); i++) {
        int a1, a2, b1, b2;
        double charge1, sigma1, epsilon1;
        double charge2, sigma2, epsilon2;
        force.getExceptionParameters(i, a1, b1, charge1, sigma1, epsilon1);
        force2.getExceptionParameters(i, a2, b2, charge2, sigma2, epsilon2);
        ASSERT_EQUAL(a1, a2);
        ASSERT_EQUAL(b1, b2);
        ASSERT_EQUAL(charge1, charge2);
        ASSERT_EQUAL(sigma1, sigma2);
        ASSERT_EQUAL(epsilon1, epsilon2);
    }
}
void ReferenceCalcMBPolElectrostaticsForceKernel::initialize(const OpenMM::System& system, const MBPolElectrostaticsForce& force) {

    numElectrostatics   = force.getNumElectrostatics();

    charges.resize(numElectrostatics);
    tholes.resize(5*numElectrostatics);
    dampingFactors.resize(numElectrostatics);
    polarity.resize(numElectrostatics);
    axisTypes.resize(numElectrostatics);
    multipoleAtomZs.resize(numElectrostatics);
    multipoleAtomXs.resize(numElectrostatics);
    multipoleAtomYs.resize(numElectrostatics);
    multipoleAtomCovalentInfo.resize(numElectrostatics);

    int dipoleIndex      = 0;
    int quadrupoleIndex  = 0;
    int tholeIndex       = 0;
    int maxCovalentRange = 0;
    double totalCharge   = 0.0;
    for( int ii = 0; ii < numElectrostatics; ii++ ){

        // multipoles

        int axisType, multipoleAtomZ, multipoleAtomX, multipoleAtomY;
        double charge, dampingFactorD, polarityD;
        std::vector<double> dipolesD;
        std::vector<double> tholesD;
        force.getElectrostaticsParameters(ii, charge, axisType, multipoleAtomZ, multipoleAtomX, multipoleAtomY,
                                     tholesD, dampingFactorD, polarityD );

        totalCharge                       += charge;
        axisTypes[ii]                      = axisType;
        multipoleAtomZs[ii]                = multipoleAtomZ;
        multipoleAtomXs[ii]                = multipoleAtomX;
        multipoleAtomYs[ii]                = multipoleAtomY;

        charges[ii]                        = static_cast<RealOpenMM>(charge);

        dampingFactors[ii]                 = static_cast<RealOpenMM>(dampingFactorD);
        polarity[ii]                       = static_cast<RealOpenMM>(polarityD);

        tholes[tholeIndex++]             = static_cast<RealOpenMM>(tholesD[0]);
        tholes[tholeIndex++]             = static_cast<RealOpenMM>(tholesD[1]);
        tholes[tholeIndex++]             = static_cast<RealOpenMM>(tholesD[2]);
        tholes[tholeIndex++]             = static_cast<RealOpenMM>(tholesD[3]);
        tholes[tholeIndex++]             = static_cast<RealOpenMM>(tholesD[4]);

        // covalent info

        std::vector< std::vector<int> > covalentLists;
        force.getCovalentMaps(ii, covalentLists );
        multipoleAtomCovalentInfo[ii] = covalentLists;

    }

    polarizationType = force.getPolarizationType();
    if( polarizationType == MBPolElectrostaticsForce::Mutual ){
        mutualInducedMaxIterations = force.getMutualInducedMaxIterations();
        mutualInducedTargetEpsilon = force.getMutualInducedTargetEpsilon();
    }

    includeChargeRedistribution = force.getIncludeChargeRedistribution();

    // PME

    nonbondedMethod  = force.getNonbondedMethod();
    if( nonbondedMethod == MBPolElectrostaticsForce::PME ){
        usePme     = true;
        alphaEwald = force.getAEwald();
        cutoffDistance = force.getCutoffDistance();
        force.getPmeGridDimensions(pmeGridDimension);
        if (pmeGridDimension[0] == 0 || alphaEwald == 0.0) {
            NonbondedForce nb;
            nb.setEwaldErrorTolerance(force.getEwaldErrorTolerance());
            nb.setCutoffDistance(force.getCutoffDistance());
            int gridSizeX, gridSizeY, gridSizeZ;
            NonbondedForceImpl::calcPMEParameters(system, nb, alphaEwald, gridSizeX, gridSizeY, gridSizeZ);
            pmeGridDimension[0] = gridSizeX;
            pmeGridDimension[1] = gridSizeY;
            pmeGridDimension[2] = gridSizeZ;
            std::cout << "Computed PME parameters for MBPolElectrostaticsForce, alphaEwald:" <<
                    alphaEwald << " pmeGrid: " <<  gridSizeX << "," <<  gridSizeY << ","<<  gridSizeZ << std::endl;
        }    
    } else {
        usePme = false;
    }
    return;
}