Exemple #1
0
void RefMap::set_active_element(Element* e)
{
  if (e != element) free();

  ref_map_pss.set_active_element(e);
  quad_2d->set_mode(e->get_mode());
  num_tables = quad_2d->get_num_tables();
  assert(num_tables <= H2D_MAX_TABLES);

  if (e == element) return;
  element = e;

  reset_transform();
  update_cur_node();

  is_const = !element->is_curved() &&
             (element->is_triangle() || is_parallelogram());

  // prepare the shapes and coefficients of the reference map
  int j, k = 0;
  for (unsigned int i = 0; i < e->nvert; i++)
    indices[k++] = ref_map_shapeset.get_vertex_index(i);

  // straight-edged element
  if (e->cm == NULL)
  {
    for (unsigned int i = 0; i < e->nvert; i++)
    {
      lin_coeffs[i][0] = e->vn[i]->x;
      lin_coeffs[i][1] = e->vn[i]->y;
    }
    coeffs = lin_coeffs;
    nc = e->nvert;
  }
  else // curvilinear element - edge and bubble shapes
  {
    int o = e->cm->order;
    for (unsigned int i = 0; i < e->nvert; i++)
      for (j = 2; j <= o; j++)
        indices[k++] = ref_map_shapeset.get_edge_index(i, 0, j);

    if (e->is_quad()) o = H2D_MAKE_QUAD_ORDER(o, o);
    memcpy(indices + k, ref_map_shapeset.get_bubble_indices(o),
           ref_map_shapeset.get_num_bubbles(o) * sizeof(int));

    coeffs = e->cm->coeffs;
    nc = e->cm->nc;
  }

  // calculate the order of the inverse reference map
  if (element->iro_cache == -1 && quad_2d->get_max_order() > 1)
  {
    element->iro_cache = is_const ? 0 : calc_inv_ref_order();
  }
  inv_ref_order = element->iro_cache;

  // constant inverse reference map
  if (is_const) calc_const_inv_ref_map(); else const_jacobian = 0.0;
}
Exemple #2
0
static void calc_edge_projection(Element* e, int edge, Nurbs** nurbs, int order, double2* proj)
{
  ref_map_pss.set_active_element(e);

  int i, j, k;
  int mo1 = quad1d.get_max_order();
  int np = quad1d.get_num_points(mo1);
  int ne = order - 1;
  int mode = e->get_mode();

  assert(np <= 15 && ne <= 10);
  double2 fn[15];
  double rhside[2][10];
  memset(fn, 0, sizeof(double2) * np);
  memset(rhside[0], 0, sizeof(double) * ne);
  memset(rhside[1], 0, sizeof(double) * ne);

  double a_1, a_2, b_1, b_2;
  a_1 = ctm.m[0] * ref_vert[mode][edge][0] + ctm.t[0];
  a_2 = ctm.m[1] * ref_vert[mode][edge][1] + ctm.t[1];
  b_1 = ctm.m[0] * ref_vert[mode][e->next_vert(edge)][0] + ctm.t[0];
  b_2 = ctm.m[1] * ref_vert[mode][e->next_vert(edge)][1] + ctm.t[1];

  // values of nonpolynomial function in two vertices
  double2 fa, fb;
  calc_ref_map(e, nurbs, a_1, a_2, fa);
  calc_ref_map(e, nurbs, b_1, b_2, fb);

  double2* pt = quad1d.get_points(mo1);
  for (j = 0; j < np; j++) // over all integration points
  {
    double2 x, v;
    double t = pt[j][0];
    edge_coord(e, edge, t, x, v);
    calc_ref_map(e, nurbs, x[0], x[1], fn[j]);

    for (k = 0; k < 2; k++)
      fn[j][k] = fn[j][k] - (fa[k] + (t+1)/2.0 * (fb[k] - fa[k]));
  }

  double2* result = proj + e->nvert + edge * (order - 1);
  for (k = 0; k < 2; k++)
  {
    for (i = 0; i < ne; i++)
    {
      for (j = 0; j < np; j++)
      {
        double t = pt[j][0];
        double fi = lob[i+2](t);
        rhside[k][i] += pt[j][1] * (fi * fn[j][k]);
      }
    }
    // solve
    cholsl(edge_proj_matrix, ne, edge_p, rhside[k], rhside[k]);
    for (i = 0; i < ne; i++)
      result[i][k] = rhside[k][i];
  }
}
Exemple #3
0
void CurvMap::update_refmap_coefs(Element* e)
{
  ref_map_pss.set_quad_2d(&quad2d);
  //ref_map_pss.set_active_element(e);

  // calculation of projection matrices
  if (edge_proj_matrix == NULL) precalculate_cholesky_projection_matrix_edge();
  if (bubble_proj_matrix_tri == NULL) precalculate_cholesky_projection_matrices_bubble();

  ref_map_pss.set_mode(e->get_mode());
  ref_map_shapeset.set_mode(e->get_mode());

  // allocate projection coefficients
  int nv = e->nvert;
  int ne = order - 1;
  int qo = e->is_quad() ? make_quad_order(order, order) : order;
  int nb = ref_map_shapeset.get_num_bubbles(qo);
  nc = nv + nv*ne + nb;
  if (coefs != NULL) delete [] coefs;
  coefs = new double2[nc];

  // WARNING: do not change the format of the array 'coefs'. If it changes,
  // RefMap::set_active_element() has to be changed too.

  Nurbs** nurbs;
  if (toplevel == false)
  {
    ref_map_pss.set_active_element(e);
    ref_map_pss.set_transform(part);
    nurbs = parent->cm->nurbs;
  }
  else
  {
    ref_map_pss.reset_transform();
    nurbs = e->cm->nurbs;
  }
  ctm = *(ref_map_pss.get_ctm());
  ref_map_pss.reset_transform(); // fixme - do we need this?

  // calculation of new projection coefficients
  ref_map_projection(e, nurbs, order, coefs);
}
Exemple #4
0
void DiscreteProblem::precalc_equi_coefs()
{
  int i, m;
  memset(equi, 0, sizeof(double) * ndofs);
  verbose("Precalculating equilibration coefficients...");

  RefMap refmap;
  AsmList al;
  Element* e;

  for (m = 0; m < neq; m++)
  {
    PrecalcShapeset* fu = pss[m];
    BiForm* bf = biform[m] + m;
    Mesh* mesh = spaces[m]->get_mesh();

    for_all_active_elements(e, mesh)
    {
      update_limit_table(e->get_mode());
      fu->set_active_element(e);
      refmap.set_active_element(e);

      spaces[m]->get_element_assembly_list(e, &al);
      for (i = 0; i < al.cnt; i++)
      {
        if (al.dof[i] < 0) continue;
        fu->set_active_shape(al.idx[i]);
        scalar sy = 0.0, un = 0.0;
        if (bf->unsym) un = bf->unsym(fu, fu, &refmap, &refmap);
        if (bf->sym)   sy = bf->sym  (fu, fu, &refmap, &refmap);
        #ifndef COMPLEX
        equi[al.dof[i]] += (sy + un) * sqr(al.coef[i]);
        #else
        equi[al.dof[i]] += 0;//std::norm(sy + un) * sqr(al.coef[i]);
        #endif
      }
    }
  }
Exemple #5
0
static void calc_bubble_projection(Element* e, Nurbs** nurbs, int order, double2* proj)
{
  ref_map_pss.set_active_element(e);

  int i, j, k;
  int mo2 = quad2d.get_max_order();
  int np = quad2d.get_num_points(mo2);
  int qo = e->is_quad() ? make_quad_order(order, order) : order;
  int nb = ref_map_shapeset.get_num_bubbles(qo);

  AUTOLA_OR(double2, fn, np);
  memset(fn, 0, sizeof(double2) * np);

  double* rhside[2];
  double* old[2];
  for (i = 0; i < 2; i++) {
    rhside[i] = new double[nb];
    old[i] = new double[np];
    memset(rhside[i], 0, sizeof(double) * nb);
    memset(old[i], 0, sizeof(double) * np);
  }

  // compute known part of projection (vertex and edge part)
  old_projection(e, order, proj, old);

  // fn values of both components of nonpolynomial function
  double3* pt = quad2d.get_points(mo2);
  for (j = 0; j < np; j++)  // over all integration points
  {
    double2 a;
    a[0] = ctm.m[0] * pt[j][0] + ctm.t[0];
    a[1] = ctm.m[1] * pt[j][1] + ctm.t[1];
    calc_ref_map(e, nurbs, a[0], a[1], fn[j]);
  }

  double2* result = proj + e->nvert + e->nvert * (order - 1);
  for (k = 0; k < 2; k++)
  {
    for (i = 0; i < nb; i++) // loop over bubble basis functions
    {
      // bubble basis functions in all integration points
      double *bfn;
      int index_i = ref_map_shapeset.get_bubble_indices(qo)[i];
      ref_map_pss.set_active_shape(index_i);
      ref_map_pss.set_quad_order(mo2);
      bfn = ref_map_pss.get_fn_values();

      for (j = 0; j < np; j++) // over all integration points
        rhside[k][i] += pt[j][2] * (bfn[j] * (fn[j][k] - old[k][j]));
    }

    // solve
    if (e->nvert == 3)
      cholsl(bubble_proj_matrix_tri, nb, bubble_tri_p, rhside[k], rhside[k]);
    else
      cholsl(bubble_proj_matrix_quad, nb, bubble_quad_p, rhside[k], rhside[k]);

    for (i = 0; i < nb; i++)
      result[i][k] = rhside[k][i];
  }

  for (i = 0; i < 2; i++) {
    delete [] rhside[i];
    delete [] old[i];
  }
}