void RefMap::set_active_element(Element* e) { if (e != element) free(); ref_map_pss.set_active_element(e); quad_2d->set_mode(e->get_mode()); num_tables = quad_2d->get_num_tables(); assert(num_tables <= H2D_MAX_TABLES); if (e == element) return; element = e; reset_transform(); update_cur_node(); is_const = !element->is_curved() && (element->is_triangle() || is_parallelogram()); // prepare the shapes and coefficients of the reference map int j, k = 0; for (unsigned int i = 0; i < e->nvert; i++) indices[k++] = ref_map_shapeset.get_vertex_index(i); // straight-edged element if (e->cm == NULL) { for (unsigned int i = 0; i < e->nvert; i++) { lin_coeffs[i][0] = e->vn[i]->x; lin_coeffs[i][1] = e->vn[i]->y; } coeffs = lin_coeffs; nc = e->nvert; } else // curvilinear element - edge and bubble shapes { int o = e->cm->order; for (unsigned int i = 0; i < e->nvert; i++) for (j = 2; j <= o; j++) indices[k++] = ref_map_shapeset.get_edge_index(i, 0, j); if (e->is_quad()) o = H2D_MAKE_QUAD_ORDER(o, o); memcpy(indices + k, ref_map_shapeset.get_bubble_indices(o), ref_map_shapeset.get_num_bubbles(o) * sizeof(int)); coeffs = e->cm->coeffs; nc = e->cm->nc; } // calculate the order of the inverse reference map if (element->iro_cache == -1 && quad_2d->get_max_order() > 1) { element->iro_cache = is_const ? 0 : calc_inv_ref_order(); } inv_ref_order = element->iro_cache; // constant inverse reference map if (is_const) calc_const_inv_ref_map(); else const_jacobian = 0.0; }
static void calc_edge_projection(Element* e, int edge, Nurbs** nurbs, int order, double2* proj) { ref_map_pss.set_active_element(e); int i, j, k; int mo1 = quad1d.get_max_order(); int np = quad1d.get_num_points(mo1); int ne = order - 1; int mode = e->get_mode(); assert(np <= 15 && ne <= 10); double2 fn[15]; double rhside[2][10]; memset(fn, 0, sizeof(double2) * np); memset(rhside[0], 0, sizeof(double) * ne); memset(rhside[1], 0, sizeof(double) * ne); double a_1, a_2, b_1, b_2; a_1 = ctm.m[0] * ref_vert[mode][edge][0] + ctm.t[0]; a_2 = ctm.m[1] * ref_vert[mode][edge][1] + ctm.t[1]; b_1 = ctm.m[0] * ref_vert[mode][e->next_vert(edge)][0] + ctm.t[0]; b_2 = ctm.m[1] * ref_vert[mode][e->next_vert(edge)][1] + ctm.t[1]; // values of nonpolynomial function in two vertices double2 fa, fb; calc_ref_map(e, nurbs, a_1, a_2, fa); calc_ref_map(e, nurbs, b_1, b_2, fb); double2* pt = quad1d.get_points(mo1); for (j = 0; j < np; j++) // over all integration points { double2 x, v; double t = pt[j][0]; edge_coord(e, edge, t, x, v); calc_ref_map(e, nurbs, x[0], x[1], fn[j]); for (k = 0; k < 2; k++) fn[j][k] = fn[j][k] - (fa[k] + (t+1)/2.0 * (fb[k] - fa[k])); } double2* result = proj + e->nvert + edge * (order - 1); for (k = 0; k < 2; k++) { for (i = 0; i < ne; i++) { for (j = 0; j < np; j++) { double t = pt[j][0]; double fi = lob[i+2](t); rhside[k][i] += pt[j][1] * (fi * fn[j][k]); } } // solve cholsl(edge_proj_matrix, ne, edge_p, rhside[k], rhside[k]); for (i = 0; i < ne; i++) result[i][k] = rhside[k][i]; } }
void CurvMap::update_refmap_coefs(Element* e) { ref_map_pss.set_quad_2d(&quad2d); //ref_map_pss.set_active_element(e); // calculation of projection matrices if (edge_proj_matrix == NULL) precalculate_cholesky_projection_matrix_edge(); if (bubble_proj_matrix_tri == NULL) precalculate_cholesky_projection_matrices_bubble(); ref_map_pss.set_mode(e->get_mode()); ref_map_shapeset.set_mode(e->get_mode()); // allocate projection coefficients int nv = e->nvert; int ne = order - 1; int qo = e->is_quad() ? make_quad_order(order, order) : order; int nb = ref_map_shapeset.get_num_bubbles(qo); nc = nv + nv*ne + nb; if (coefs != NULL) delete [] coefs; coefs = new double2[nc]; // WARNING: do not change the format of the array 'coefs'. If it changes, // RefMap::set_active_element() has to be changed too. Nurbs** nurbs; if (toplevel == false) { ref_map_pss.set_active_element(e); ref_map_pss.set_transform(part); nurbs = parent->cm->nurbs; } else { ref_map_pss.reset_transform(); nurbs = e->cm->nurbs; } ctm = *(ref_map_pss.get_ctm()); ref_map_pss.reset_transform(); // fixme - do we need this? // calculation of new projection coefficients ref_map_projection(e, nurbs, order, coefs); }
void DiscreteProblem::precalc_equi_coefs() { int i, m; memset(equi, 0, sizeof(double) * ndofs); verbose("Precalculating equilibration coefficients..."); RefMap refmap; AsmList al; Element* e; for (m = 0; m < neq; m++) { PrecalcShapeset* fu = pss[m]; BiForm* bf = biform[m] + m; Mesh* mesh = spaces[m]->get_mesh(); for_all_active_elements(e, mesh) { update_limit_table(e->get_mode()); fu->set_active_element(e); refmap.set_active_element(e); spaces[m]->get_element_assembly_list(e, &al); for (i = 0; i < al.cnt; i++) { if (al.dof[i] < 0) continue; fu->set_active_shape(al.idx[i]); scalar sy = 0.0, un = 0.0; if (bf->unsym) un = bf->unsym(fu, fu, &refmap, &refmap); if (bf->sym) sy = bf->sym (fu, fu, &refmap, &refmap); #ifndef COMPLEX equi[al.dof[i]] += (sy + un) * sqr(al.coef[i]); #else equi[al.dof[i]] += 0;//std::norm(sy + un) * sqr(al.coef[i]); #endif } } }
static void calc_bubble_projection(Element* e, Nurbs** nurbs, int order, double2* proj) { ref_map_pss.set_active_element(e); int i, j, k; int mo2 = quad2d.get_max_order(); int np = quad2d.get_num_points(mo2); int qo = e->is_quad() ? make_quad_order(order, order) : order; int nb = ref_map_shapeset.get_num_bubbles(qo); AUTOLA_OR(double2, fn, np); memset(fn, 0, sizeof(double2) * np); double* rhside[2]; double* old[2]; for (i = 0; i < 2; i++) { rhside[i] = new double[nb]; old[i] = new double[np]; memset(rhside[i], 0, sizeof(double) * nb); memset(old[i], 0, sizeof(double) * np); } // compute known part of projection (vertex and edge part) old_projection(e, order, proj, old); // fn values of both components of nonpolynomial function double3* pt = quad2d.get_points(mo2); for (j = 0; j < np; j++) // over all integration points { double2 a; a[0] = ctm.m[0] * pt[j][0] + ctm.t[0]; a[1] = ctm.m[1] * pt[j][1] + ctm.t[1]; calc_ref_map(e, nurbs, a[0], a[1], fn[j]); } double2* result = proj + e->nvert + e->nvert * (order - 1); for (k = 0; k < 2; k++) { for (i = 0; i < nb; i++) // loop over bubble basis functions { // bubble basis functions in all integration points double *bfn; int index_i = ref_map_shapeset.get_bubble_indices(qo)[i]; ref_map_pss.set_active_shape(index_i); ref_map_pss.set_quad_order(mo2); bfn = ref_map_pss.get_fn_values(); for (j = 0; j < np; j++) // over all integration points rhside[k][i] += pt[j][2] * (bfn[j] * (fn[j][k] - old[k][j])); } // solve if (e->nvert == 3) cholsl(bubble_proj_matrix_tri, nb, bubble_tri_p, rhside[k], rhside[k]); else cholsl(bubble_proj_matrix_quad, nb, bubble_quad_p, rhside[k], rhside[k]); for (i = 0; i < nb; i++) result[i][k] = rhside[k][i]; } for (i = 0; i < 2; i++) { delete [] rhside[i]; delete [] old[i]; } }