Exemple #1
0
MacroAssemblerCodeRef osrExitGenerationThunkGenerator(VM* vm)
{
    MacroAssembler jit;

    // This needs to happen before we use the scratch buffer because this function also uses the scratch buffer.
    adjustFrameAndStackInOSRExitCompilerThunk<DFG::JITCode>(jit, vm, JITCode::DFGJIT);

    size_t scratchSize = sizeof(EncodedJSValue) * (GPRInfo::numberOfRegisters + FPRInfo::numberOfRegisters);
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(scratchSize);
    EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer());

    for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
#if USE(JSVALUE64)
        jit.store64(GPRInfo::toRegister(i), buffer + i);
#else
        jit.store32(GPRInfo::toRegister(i), buffer + i);
#endif
    }
    for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
        jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0);
        jit.storeDouble(FPRInfo::toRegister(i), MacroAssembler::Address(GPRInfo::regT0));
    }

    // Tell GC mark phase how much of the scratch buffer is active during call.
    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->addressOfActiveLength()), GPRInfo::regT0);
    jit.storePtr(MacroAssembler::TrustedImmPtr(scratchSize), MacroAssembler::Address(GPRInfo::regT0));

    // Set up one argument.
#if CPU(X86)
    jit.poke(GPRInfo::callFrameRegister, 0);
#else
    jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
#endif

    MacroAssembler::Call functionCall = jit.call();

    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->addressOfActiveLength()), GPRInfo::regT0);
    jit.storePtr(MacroAssembler::TrustedImmPtr(0), MacroAssembler::Address(GPRInfo::regT0));

    for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
        jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0);
        jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::toRegister(i));
    }
    for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
#if USE(JSVALUE64)
        jit.load64(buffer + i, GPRInfo::toRegister(i));
#else
        jit.load32(buffer + i, GPRInfo::toRegister(i));
#endif
    }

    jit.jump(MacroAssembler::AbsoluteAddress(&vm->osrExitJumpDestination));

    LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);

    patchBuffer.link(functionCall, OSRExit::compileOSRExit);

    return FINALIZE_CODE(patchBuffer, ("DFG OSR exit generation thunk"));
}
Exemple #2
0
MacroAssemblerCodeRef osrExitGenerationThunkGenerator(JSGlobalData* globalData)
{
    MacroAssembler jit;
    
    size_t scratchSize = sizeof(EncodedJSValue) * (GPRInfo::numberOfRegisters + FPRInfo::numberOfRegisters);
    ScratchBuffer* scratchBuffer = globalData->scratchBufferForSize(scratchSize);
    EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer());
    
    for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
#if USE(JSVALUE64)
        jit.store64(GPRInfo::toRegister(i), buffer + i);
#else
        jit.store32(GPRInfo::toRegister(i), buffer + i);
#endif
    }
    for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
        jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0);
        jit.storeDouble(FPRInfo::toRegister(i), GPRInfo::regT0);
    }
    
    // Tell GC mark phase how much of the scratch buffer is active during call.
    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT0);
    jit.storePtr(MacroAssembler::TrustedImmPtr(scratchSize), GPRInfo::regT0);

    // Set up one argument.
#if CPU(X86)
    jit.poke(GPRInfo::callFrameRegister, 0);
#else
    jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
#endif

    MacroAssembler::Call functionCall = jit.call();

    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT0);
    jit.storePtr(MacroAssembler::TrustedImmPtr(0), GPRInfo::regT0);

    for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
        jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0);
        jit.loadDouble(GPRInfo::regT0, FPRInfo::toRegister(i));
    }
    for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
#if USE(JSVALUE64)
        jit.load64(buffer + i, GPRInfo::toRegister(i));
#else
        jit.load32(buffer + i, GPRInfo::toRegister(i));
#endif
    }
    
    jit.jump(MacroAssembler::AbsoluteAddress(&globalData->osrExitJumpDestination));
    
    LinkBuffer patchBuffer(*globalData, &jit, GLOBAL_THUNK_ID);
    
    patchBuffer.link(functionCall, compileOSRExit);
    
    return FINALIZE_CODE(patchBuffer, ("DFG OSR exit generation thunk"));
}
Exemple #3
0
void VM::gatherConservativeRoots(ConservativeRoots& conservativeRoots)
{
    for (size_t i = 0; i < scratchBuffers.size(); i++) {
        ScratchBuffer* scratchBuffer = scratchBuffers[i];
        if (scratchBuffer->activeLength()) {
            void* bufferStart = scratchBuffer->dataBuffer();
            conservativeRoots.add(bufferStart, static_cast<void*>(static_cast<char*>(bufferStart) + scratchBuffer->activeLength()));
        }
    }
}
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
    // 1) Pro-forma stuff.
    if (Options::printEachOSRExit()) {
        SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
        debugInfo->codeBlock = m_jit.codeBlock();
        debugInfo->kind = exit.m_kind;
        debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex;
        
        m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
    }
    
    // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit.
    m_jit.addPtr(
        CCallHelpers::TrustedImm32(
            -m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
        CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
    
    // 2) Perform speculation recovery. This only comes into play when an operation
    //    starts mutating state before verifying the speculation it has already made.
    
    if (recovery) {
        switch (recovery->type()) {
        case SpeculativeAdd:
            m_jit.sub32(recovery->src(), recovery->dest());
            break;
            
        case BooleanSpeculationCheck:
            break;
            
        default:
            break;
        }
    }

    // 3) Refine some value profile, if appropriate.
    
    if (!!exit.m_jsValueSource) {
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            // If the instruction that this originated from has an array profile, then
            // refine it. If it doesn't, then do nothing. The latter could happen for
            // hoisted checks, or checks emitted for operations that didn't have array
            // profiling - either ops that aren't array accesses at all, or weren't
            // known to be array acceses in the bytecode. The latter case is a FIXME
            // while the former case is an outcome of a CheckStructure not knowing why
            // it was emitted (could be either due to an inline cache of a property
            // property access, or due to an array profile).
            
            // Note: We are free to assume that the jsValueSource is already known to
            // be a cell since both BadCache and BadIndexingType exits occur after
            // the cell check would have already happened.
            
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                GPRReg usedRegister1;
                GPRReg usedRegister2;
                if (exit.m_jsValueSource.isAddress()) {
                    usedRegister1 = exit.m_jsValueSource.base();
                    usedRegister2 = InvalidGPRReg;
                } else {
                    usedRegister1 = exit.m_jsValueSource.payloadGPR();
                    if (exit.m_jsValueSource.hasKnownTag())
                        usedRegister2 = InvalidGPRReg;
                    else
                        usedRegister2 = exit.m_jsValueSource.tagGPR();
                }
                
                GPRReg scratch1;
                GPRReg scratch2;
                scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2);
                scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1);
                
#if CPU(ARM64)
                m_jit.pushToSave(scratch1);
                m_jit.pushToSave(scratch2);
#else
                m_jit.push(scratch1);
                m_jit.push(scratch2);
#endif
                
                GPRReg value;
                if (exit.m_jsValueSource.isAddress()) {
                    value = scratch1;
                    m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
                } else
                    value = exit.m_jsValueSource.payloadGPR();
                
                m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
                m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructureID());
                m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1);
                m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
                m_jit.lshift32(scratch1, scratch2);
                m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
                
#if CPU(ARM64)
                m_jit.popToRestore(scratch2);
                m_jit.popToRestore(scratch1);
#else
                m_jit.pop(scratch2);
                m_jit.pop(scratch1);
#endif
            }
        }
        
        if (!!exit.m_valueProfile) {
            EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
        
            if (exit.m_jsValueSource.isAddress()) {
                // Save a register so we can use it.
                GPRReg scratch = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base());
                
#if CPU(ARM64)
                m_jit.pushToSave(scratch);
#else
                m_jit.push(scratch);
#endif

                m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)), scratch);
                m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
                m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)), scratch);
                m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
                
#if CPU(ARM64)
                m_jit.popToRestore(scratch);
#else
                m_jit.pop(scratch);
#endif
            } else if (exit.m_jsValueSource.hasKnownTag()) {
                m_jit.store32(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
                m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
            } else {
                m_jit.store32(exit.m_jsValueSource.tagGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag);
                m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload);
            }
        }
    }
    
    // Do a simplified OSR exit. See DFGOSRExitCompiler64.cpp's comment regarding how and wny we
    // do this simple approach.

    // 4) Save all state from GPRs into the scratch buffer.
    
    ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case UnboxedInt32InGPR:
        case UnboxedBooleanInGPR:
        case UnboxedCellInGPR:
            m_jit.store32(
                recovery.gpr(),
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
            break;
            
        case InPair:
            m_jit.store32(
                recovery.tagGPR(),
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
            m_jit.store32(
                recovery.payloadGPR(),
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
            break;
            
        default:
            break;
        }
    }
    
    // Now all GPRs are free to reuse.
    
    // 5) Save all state from FPRs into the scratch buffer.
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case InFPR:
            m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
            m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
            break;
            
        default:
            break;
        }
    }
    
    // Now all FPRs are free to reuse.
    
    // 6) Save all state from the stack into the scratch buffer. For simplicity we
    //    do this even for state that's already in the right place on the stack.
    //    It makes things simpler later.
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case DisplacedInJSStack:
        case Int32DisplacedInJSStack:
        case DoubleDisplacedInJSStack:
        case CellDisplacedInJSStack:
        case BooleanDisplacedInJSStack:
            m_jit.load32(
                AssemblyHelpers::tagFor(recovery.virtualRegister()),
                GPRInfo::regT0);
            m_jit.load32(
                AssemblyHelpers::payloadFor(recovery.virtualRegister()),
                GPRInfo::regT1);
            m_jit.store32(
                GPRInfo::regT0,
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
            m_jit.store32(
                GPRInfo::regT1,
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
            break;
            
        default:
            break;
        }
    }
    
    // 7) Do all data format conversions and store the results into the stack.
    
    bool haveArguments = false;
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        int operand = operands.operandForIndex(index);
        
        switch (recovery.technique()) {
        case InPair:
        case DisplacedInJSStack:
            m_jit.load32(
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag,
                GPRInfo::regT0);
            m_jit.load32(
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
                GPRInfo::regT1);
            m_jit.store32(
                GPRInfo::regT0,
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                GPRInfo::regT1,
                AssemblyHelpers::payloadFor(operand));
            break;
            
        case InFPR:
        case DoubleDisplacedInJSStack:
            m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
            m_jit.loadDouble(GPRInfo::regT0, FPRInfo::fpRegT0);
            m_jit.purifyNaN(FPRInfo::fpRegT0);
            m_jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand));
            break;

        case UnboxedInt32InGPR:
        case Int32DisplacedInJSStack:
            m_jit.load32(
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
                GPRInfo::regT0);
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(JSValue::Int32Tag),
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                GPRInfo::regT0,
                AssemblyHelpers::payloadFor(operand));
            break;
            
        case UnboxedCellInGPR:
        case CellDisplacedInJSStack:
            m_jit.load32(
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
                GPRInfo::regT0);
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(JSValue::CellTag),
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                GPRInfo::regT0,
                AssemblyHelpers::payloadFor(operand));
            break;
            
        case UnboxedBooleanInGPR:
        case BooleanDisplacedInJSStack:
            m_jit.load32(
                &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
                GPRInfo::regT0);
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(JSValue::BooleanTag),
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                GPRInfo::regT0,
                AssemblyHelpers::payloadFor(operand));
            break;
            
        case Constant:
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(recovery.constant().tag()),
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(recovery.constant().payload()),
                AssemblyHelpers::payloadFor(operand));
            break;
            
        case ArgumentsThatWereNotCreated:
            haveArguments = true;
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(JSValue().tag()),
                AssemblyHelpers::tagFor(operand));
            m_jit.store32(
                AssemblyHelpers::TrustedImm32(JSValue().payload()),
                AssemblyHelpers::payloadFor(operand));
            break;
            
        default:
            break;
        }
    }
    
    // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
    //    that all new calls into this code will go to the new JIT, so the execute
    //    counter only affects call frames that performed OSR exit and call frames
    //    that were still executing the old JIT at the time of another call frame's
    //    OSR exit. We want to ensure that the following is true:
    //
    //    (a) Code the performs an OSR exit gets a chance to reenter optimized
    //        code eventually, since optimized code is faster. But we don't
    //        want to do such reentery too aggressively (see (c) below).
    //
    //    (b) If there is code on the call stack that is still running the old
    //        JIT's code and has never OSR'd, then it should get a chance to
    //        perform OSR entry despite the fact that we've exited.
    //
    //    (c) Code the performs an OSR exit should not immediately retry OSR
    //        entry, since both forms of OSR are expensive. OSR entry is
    //        particularly expensive.
    //
    //    (d) Frequent OSR failures, even those that do not result in the code
    //        running in a hot loop, result in recompilation getting triggered.
    //
    //    To ensure (c), we'd like to set the execute counter to
    //    counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
    //    (a) and (b), since then every OSR exit would delay the opportunity for
    //    every call frame to perform OSR entry. Essentially, if OSR exit happens
    //    frequently and the function has few loops, then the counter will never
    //    become non-negative and OSR entry will never be triggered. OSR entry
    //    will only happen if a loop gets hot in the old JIT, which does a pretty
    //    good job of ensuring (a) and (b). But that doesn't take care of (d),
    //    since each speculation failure would reset the execute counter.
    //    So we check here if the number of speculation failures is significantly
    //    larger than the number of successes (we want 90% success rate), and if
    //    there have been a large enough number of failures. If so, we set the
    //    counter to 0; otherwise we set the counter to
    //    counterValueForOptimizeAfterWarmUp().
    
    handleExitCounts(m_jit, exit);
    
    // 9) Reify inlined call frames.
    
    reifyInlinedCallFrames(m_jit, exit);
    
    // 10) Create arguments if necessary and place them into the appropriate aliased
    //     registers.
    
    if (haveArguments) {
        ArgumentsRecoveryGenerator argumentsRecovery;

        for (size_t index = 0; index < operands.size(); ++index) {
            const ValueRecovery& recovery = operands[index];
            if (recovery.technique() != ArgumentsThatWereNotCreated)
                continue;
            argumentsRecovery.generateFor(
                operands.operandForIndex(index), exit.m_codeOrigin, m_jit);
        }
    }

    // 12) And finish.
    adjustAndJumpToTarget(m_jit, exit);
}
Exemple #5
0
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
    // 1) Pro-forma stuff.
#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLogF("OSR exit for (");
    for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) {
        dataLogF("bc#%u", codeOrigin.bytecodeIndex);
        if (!codeOrigin.inlineCallFrame)
            break;
        dataLogF(" -> %p ", codeOrigin.inlineCallFrame->executable.get());
    }
    dataLogF(")  ");
    dataLog(operands);
#endif

    if (Options::printEachOSRExit()) {
        SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
        debugInfo->codeBlock = m_jit.codeBlock();
        
        m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo);
    }
    
#if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE)
    m_jit.breakpoint();
#endif
    
#if DFG_ENABLE(SUCCESS_STATS)
    static SamplingCounter counter("SpeculationFailure");
    m_jit.emitCount(counter);
#endif
    
    // 2) Perform speculation recovery. This only comes into play when an operation
    //    starts mutating state before verifying the speculation it has already made.
    
    if (recovery) {
        switch (recovery->type()) {
        case SpeculativeAdd:
            m_jit.sub32(recovery->src(), recovery->dest());
            m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest());
            break;
            
        case BooleanSpeculationCheck:
            m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest());
            break;
            
        default:
            break;
        }
    }

    // 3) Refine some array and/or value profile, if appropriate.
    
    if (!!exit.m_jsValueSource) {
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            // If the instruction that this originated from has an array profile, then
            // refine it. If it doesn't, then do nothing. The latter could happen for
            // hoisted checks, or checks emitted for operations that didn't have array
            // profiling - either ops that aren't array accesses at all, or weren't
            // known to be array acceses in the bytecode. The latter case is a FIXME
            // while the former case is an outcome of a CheckStructure not knowing why
            // it was emitted (could be either due to an inline cache of a property
            // property access, or due to an array profile).
            
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                GPRReg usedRegister;
                if (exit.m_jsValueSource.isAddress())
                    usedRegister = exit.m_jsValueSource.base();
                else
                    usedRegister = exit.m_jsValueSource.gpr();
                
                GPRReg scratch1;
                GPRReg scratch2;
                scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister);
                scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1);
                
#if CPU(ARM64)
                m_jit.pushToSave(scratch1);
                m_jit.pushToSave(scratch2);
#else
                m_jit.push(scratch1);
                m_jit.push(scratch2);
#endif
                
                GPRReg value;
                if (exit.m_jsValueSource.isAddress()) {
                    value = scratch1;
                    m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
                } else
                    value = exit.m_jsValueSource.gpr();
                
                m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureOffset()), scratch1);
                m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructure());
                m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1);
                m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
                m_jit.lshift32(scratch1, scratch2);
                m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
                
#if CPU(ARM64)
                m_jit.popToRestore(scratch2);
                m_jit.popToRestore(scratch1);
#else
                m_jit.pop(scratch2);
                m_jit.pop(scratch1);
#endif
            }
        }
        
        if (!!exit.m_valueProfile) {
            EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0);
            
            if (exit.m_jsValueSource.isAddress()) {
                // We can't be sure that we have a spare register. So use the tagTypeNumberRegister,
                // since we know how to restore it.
                m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister);
                m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket);
                m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
            } else
                m_jit.store64(exit.m_jsValueSource.gpr(), bucket);
        }
    }
    
    // What follows is an intentionally simple OSR exit implementation that generates
    // fairly poor code but is very easy to hack. In particular, it dumps all state that
    // needs conversion into a scratch buffer so that in step 6, where we actually do the
    // conversions, we know that all temp registers are free to use and the variable is
    // definitely in a well-known spot in the scratch buffer regardless of whether it had
    // originally been in a register or spilled. This allows us to decouple "where was
    // the variable" from "how was it represented". Consider that the
    // Int32DisplacedInJSStack recovery: it tells us that the value is in a
    // particular place and that that place holds an unboxed int32. We have two different
    // places that a value could be (displaced, register) and a bunch of different
    // ways of representing a value. The number of recoveries is two * a bunch. The code
    // below means that we have to have two + a bunch cases rather than two * a bunch.
    // Once we have loaded the value from wherever it was, the reboxing is the same
    // regardless of its location. Likewise, before we do the reboxing, the way we get to
    // the value (i.e. where we load it from) is the same regardless of its type. Because
    // the code below always dumps everything into a scratch buffer first, the two
    // questions become orthogonal, which simplifies adding new types and adding new
    // locations.
    //
    // This raises the question: does using such a suboptimal implementation of OSR exit,
    // where we always emit code to dump all state into a scratch buffer only to then
    // dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits
    // are rare. Our tiering strategy ensures this. This is because if an OSR exit is
    // taken more than ~100 times, we jettison the DFG code block along with all of its
    // exits. It is impossible for an OSR exit - i.e. the code we compile below - to
    // execute frequently enough for the codegen to matter that much. It probably matters
    // enough that we don't want to turn this into some super-slow function call, but so
    // long as we're generating straight-line code, that code can be pretty bad. Also
    // because we tend to exit only along one OSR exit from any DFG code block - that's an
    // empirical result that we're extremely confident about - the code size of this
    // doesn't matter much. Hence any attempt to optimize the codegen here is just purely
    // harmful to the system: it probably won't reduce either net memory usage or net
    // execution time. It will only prevent us from cleanly decoupling "where was the
    // variable" from "how was it represented", which will make it more difficult to add
    // features in the future and it will make it harder to reason about bugs.

    // 4) Save all state from GPRs into the scratch buffer.
    
    ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case InGPR:
        case UnboxedInt32InGPR:
        case UInt32InGPR:
        case UnboxedInt52InGPR:
        case UnboxedStrictInt52InGPR:
        case UnboxedCellInGPR:
            m_jit.store64(recovery.gpr(), scratch + index);
            break;
            
        default:
            break;
        }
    }
    
    // And voila, all GPRs are free to reuse.
    
    // 5) Save all state from FPRs into the scratch buffer.
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case InFPR:
            m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
            m_jit.storeDouble(recovery.fpr(), GPRInfo::regT0);
            break;
            
        default:
            break;
        }
    }
    
    // Now, all FPRs are also free.
    
    // 6) Save all state from the stack into the scratch buffer. For simplicity we
    //    do this even for state that's already in the right place on the stack.
    //    It makes things simpler later.

    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        
        switch (recovery.technique()) {
        case DisplacedInJSStack:
        case CellDisplacedInJSStack:
        case BooleanDisplacedInJSStack:
        case Int32DisplacedInJSStack:
        case DoubleDisplacedInJSStack:
        case Int52DisplacedInJSStack:
        case StrictInt52DisplacedInJSStack:
            m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
            m_jit.store64(GPRInfo::regT0, scratch + index);
            break;
            
        default:
            break;
        }
    }
    
    // 7) Do all data format conversions and store the results into the stack.
    
    bool haveArguments = false;
    
    for (size_t index = 0; index < operands.size(); ++index) {
        const ValueRecovery& recovery = operands[index];
        int operand = operands.operandForIndex(index);
        
        switch (recovery.technique()) {
        case InGPR:
        case UnboxedCellInGPR:
        case DisplacedInJSStack:
        case CellDisplacedInJSStack:
        case BooleanDisplacedInJSStack:
            m_jit.load64(scratch + index, GPRInfo::regT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case UnboxedInt32InGPR:
        case Int32DisplacedInJSStack:
            m_jit.load64(scratch + index, GPRInfo::regT0);
            m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0);
            m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case UnboxedInt52InGPR:
        case Int52DisplacedInJSStack:
            m_jit.load64(scratch + index, GPRInfo::regT0);
            m_jit.rshift64(
                AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0);
            m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case UnboxedStrictInt52InGPR:
        case StrictInt52DisplacedInJSStack:
            m_jit.load64(scratch + index, GPRInfo::regT0);
            m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case UInt32InGPR:
            m_jit.load64(scratch + index, GPRInfo::regT0);
            m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0);
            m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case InFPR:
        case DoubleDisplacedInJSStack:
            m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
            m_jit.loadDouble(GPRInfo::regT0, FPRInfo::fpRegT0);
            m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
            break;
            
        case Constant:
            m_jit.store64(
                AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())),
                AssemblyHelpers::addressFor(operand));
            break;
            
        case ArgumentsThatWereNotCreated:
            haveArguments = true;
            // We can't restore this yet but we can make sure that the stack appears
            // sane.
            m_jit.store64(
                AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue())),
                AssemblyHelpers::addressFor(operand));
            break;
            
        default:
            break;
        }
    }
    
    // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know
    //    that all new calls into this code will go to the new JIT, so the execute
    //    counter only affects call frames that performed OSR exit and call frames
    //    that were still executing the old JIT at the time of another call frame's
    //    OSR exit. We want to ensure that the following is true:
    //
    //    (a) Code the performs an OSR exit gets a chance to reenter optimized
    //        code eventually, since optimized code is faster. But we don't
    //        want to do such reentery too aggressively (see (c) below).
    //
    //    (b) If there is code on the call stack that is still running the old
    //        JIT's code and has never OSR'd, then it should get a chance to
    //        perform OSR entry despite the fact that we've exited.
    //
    //    (c) Code the performs an OSR exit should not immediately retry OSR
    //        entry, since both forms of OSR are expensive. OSR entry is
    //        particularly expensive.
    //
    //    (d) Frequent OSR failures, even those that do not result in the code
    //        running in a hot loop, result in recompilation getting triggered.
    //
    //    To ensure (c), we'd like to set the execute counter to
    //    counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
    //    (a) and (b), since then every OSR exit would delay the opportunity for
    //    every call frame to perform OSR entry. Essentially, if OSR exit happens
    //    frequently and the function has few loops, then the counter will never
    //    become non-negative and OSR entry will never be triggered. OSR entry
    //    will only happen if a loop gets hot in the old JIT, which does a pretty
    //    good job of ensuring (a) and (b). But that doesn't take care of (d),
    //    since each speculation failure would reset the execute counter.
    //    So we check here if the number of speculation failures is significantly
    //    larger than the number of successes (we want 90% success rate), and if
    //    there have been a large enough number of failures. If so, we set the
    //    counter to 0; otherwise we set the counter to
    //    counterValueForOptimizeAfterWarmUp().
    
    handleExitCounts(m_jit, exit);
    
    // 9) Reify inlined call frames.
    
    reifyInlinedCallFrames(m_jit, exit);
    
    // 10) Create arguments if necessary and place them into the appropriate aliased
    //     registers.
    
    if (haveArguments) {
        HashSet<InlineCallFrame*, DefaultHash<InlineCallFrame*>::Hash,
            NullableHashTraits<InlineCallFrame*> > didCreateArgumentsObject;

        for (size_t index = 0; index < operands.size(); ++index) {
            const ValueRecovery& recovery = operands[index];
            if (recovery.technique() != ArgumentsThatWereNotCreated)
                continue;
            int operand = operands.operandForIndex(index);
            // Find the right inline call frame.
            InlineCallFrame* inlineCallFrame = 0;
            for (InlineCallFrame* current = exit.m_codeOrigin.inlineCallFrame;
                 current;
                 current = current->caller.inlineCallFrame) {
                if (current->stackOffset >= operand) {
                    inlineCallFrame = current;
                    break;
                }
            }

            if (!m_jit.baselineCodeBlockFor(inlineCallFrame)->usesArguments())
                continue;
            VirtualRegister argumentsRegister = m_jit.baselineArgumentsRegisterFor(inlineCallFrame);
            if (didCreateArgumentsObject.add(inlineCallFrame).isNewEntry) {
                // We know this call frame optimized out an arguments object that
                // the baseline JIT would have created. Do that creation now.
                if (inlineCallFrame) {
                    m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT0);
                    m_jit.setupArguments(GPRInfo::regT0);
                } else
                    m_jit.setupArgumentsExecState();
                m_jit.move(
                    AssemblyHelpers::TrustedImmPtr(
                        bitwise_cast<void*>(operationCreateArguments)),
                    GPRInfo::nonArgGPR0);
                m_jit.call(GPRInfo::nonArgGPR0);
                m_jit.store64(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(argumentsRegister));
                m_jit.store64(
                    GPRInfo::returnValueGPR,
                    AssemblyHelpers::addressFor(unmodifiedArgumentsRegister(argumentsRegister)));
                m_jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); // no-op move on almost all platforms.
            }

            m_jit.load64(AssemblyHelpers::addressFor(argumentsRegister), GPRInfo::regT0);
            m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
        }
    }
    
    // 11) Load the result of the last bytecode operation into regT0.
    
    if (exit.m_lastSetOperand.isValid())
        m_jit.load64(AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
    
    // 12) And finish.
    
    adjustAndJumpToTarget(m_jit, exit);
}
static void compileStubWithOSRExitStackmap(
    unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
    StackMaps::Record* record;
    
    for (unsigned i = jitCode->stackmaps.records.size(); i--;) {
        record = &jitCode->stackmaps.records[i];
        if (record->patchpointID == exit.m_stackmapID)
            break;
    }
    
    RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID);
    
    CCallHelpers jit(vm, codeBlock);
    
    // We need scratch space to save all registers and to build up the JSStack.
    // Use a scratch buffer to transfer all values.
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(sizeof(EncodedJSValue) * exit.m_values.size() + requiredScratchMemorySizeInBytes());
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    char* registerScratch = bitwise_cast<char*>(scratch + exit.m_values.size());
    
    // Make sure that saveAllRegisters() has a place on top of the stack to spill things. That
    // function expects to be able to use top of stack for scratch memory.
    jit.push(GPRInfo::regT0);
    saveAllRegisters(jit, registerScratch);
    
    // Bring the stack back into a sane form.
    jit.pop(GPRInfo::regT0);
    jit.pop(GPRInfo::regT0);
    
    // The remaining code assumes that SP/FP are in the same state that they were in the FTL's
    // call frame.
    
    // Get the call frame and tag thingies.
    record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::callFrameRegister);
    jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
    
    // Do some value profiling.
    if (exit.m_profileValueFormat != InvalidValueFormat) {
        record->locations[1].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
        reboxAccordingToFormat(
            exit.m_profileValueFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureOffset()), GPRInfo::regT1);
                jit.storePtr(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructure());
                jit.load8(MacroAssembler::Address(GPRInfo::regT1, Structure::indexingTypeOffset()), GPRInfo::regT1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
                jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
                jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
            }
        }
        
        if (!!exit.m_valueProfile)
            jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0));
    }

    // Save all state from wherever the exit data tells us it was, into the appropriate place in
    // the scratch buffer. This doesn't rebox any values yet.
    
    for (unsigned index = exit.m_values.size(); index--;) {
        ExitValue value = exit.m_values[index];
        
        switch (value.kind()) {
        case ExitValueDead:
            jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0);
            break;
            
        case ExitValueConstant:
            jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0);
            break;
            
        case ExitValueArgument:
            record->locations[value.exitArgument().argument()].restoreInto(
                jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
            break;
            
        case ExitValueInJSStack:
        case ExitValueInJSStackAsInt32:
        case ExitValueInJSStackAsInt52:
        case ExitValueInJSStackAsDouble:
            jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0);
            break;
            
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        
        jit.store64(GPRInfo::regT0, scratch + index);
    }
    
    // Now get state out of the scratch buffer and place it back into the stack. This part does
    // all reboxing.
    for (unsigned index = exit.m_values.size(); index--;) {
        int operand = exit.m_values.operandForIndex(index);
        ExitValue value = exit.m_values[index];
        
        jit.load64(scratch + index, GPRInfo::regT0);
        reboxAccordingToFormat(
            value.valueFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
    }
    
    handleExitCounts(jit, exit);
    reifyInlinedCallFrames(jit, exit);
    
    jit.move(MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.pop(MacroAssembler::framePointerRegister);
    jit.pop(GPRInfo::nonArgGPR0); // ignore the result.
    
    if (exit.m_lastSetOperand.isValid()) {
        jit.load64(
            AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
    }
    
    adjustAndJumpToTarget(jit, exit);
    
    LinkBuffer patchBuffer(*vm, &jit, codeBlock);
    exit.m_code = FINALIZE_CODE_IF(
        shouldShowDisassembly(),
        patchBuffer,
        ("FTL OSR exit #%u (bc#%u, %s) from %s, with operands = %s, and record = %s",
            exitID, exit.m_codeOrigin.bytecodeIndex,
            exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_values)).data(),
            toCString(*record).data()));
}
static void compileStubWithoutOSRExitStackmap(
    unsigned exitID, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
    CCallHelpers jit(vm, codeBlock);
    
    // Make ourselves look like a real C function.
    jit.push(MacroAssembler::framePointerRegister);
    jit.move(MacroAssembler::stackPointerRegister, MacroAssembler::framePointerRegister);
    
    // This is actually fairly easy, even though it is horribly gross. We know that
    // LLVM would have passes us all of the state via arguments. We know how to get
    // the arguments. And, we know how to pop stack back to the JIT stack frame, sort
    // of: we know that it's two frames beneath us. This is terrible and I feel
    // ashamed of it, but it will work for now.
    
    CArgumentGetter arguments(jit, 2);
    
    // First recover our call frame and tag thingies.
    arguments.loadNextPtr(GPRInfo::callFrameRegister);
    jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
    
    // Do some value profiling.
    if (exit.m_profileValueFormat != InvalidValueFormat) {
        arguments.loadNextAndBox(exit.m_profileValueFormat, GPRInfo::nonArgGPR0);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                jit.loadPtr(MacroAssembler::Address(GPRInfo::nonArgGPR0, JSCell::structureOffset()), GPRInfo::nonArgGPR1);
                jit.storePtr(GPRInfo::nonArgGPR1, arrayProfile->addressOfLastSeenStructure());
                jit.load8(MacroAssembler::Address(GPRInfo::nonArgGPR1, Structure::indexingTypeOffset()), GPRInfo::nonArgGPR1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::nonArgGPR2);
                jit.lshift32(GPRInfo::nonArgGPR1, GPRInfo::nonArgGPR2);
                jit.or32(GPRInfo::nonArgGPR2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
            }
        }
        
        if (!!exit.m_valueProfile)
            jit.store64(GPRInfo::nonArgGPR0, exit.m_valueProfile.getSpecFailBucket(0));
    }
    
    // Use a scratch buffer to transfer all values.
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(sizeof(EncodedJSValue) * exit.m_values.size());
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    
    // Start by dumping all argument exit values to the stack.
    
    Vector<ExitArgumentForOperand, 16> sortedArguments;
    for (unsigned i = exit.m_values.size(); i--;) {
        ExitValue value = exit.m_values[i];
        int operand = exit.m_values.operandForIndex(i);
        
        if (!value.isArgument())
            continue;
        
        sortedArguments.append(ExitArgumentForOperand(value.exitArgument(), VirtualRegister(operand)));
    }
    std::sort(sortedArguments.begin(), sortedArguments.end(), lesserArgumentIndex);
    
    for (unsigned i = 0; i < sortedArguments.size(); ++i) {
        ExitArgumentForOperand argument = sortedArguments[i];
        
        arguments.loadNextAndBox(argument.exitArgument().format(), GPRInfo::nonArgGPR0);
        jit.store64(
            GPRInfo::nonArgGPR0, scratch + exit.m_values.indexForOperand(argument.operand()));
    }
    
    // All temp registers are free at this point.
    
    // Move anything on the stack into the appropriate place in the scratch buffer.
    
    for (unsigned i = exit.m_values.size(); i--;) {
        ExitValue value = exit.m_values[i];
        
        switch (value.kind()) {
        case ExitValueInJSStack:
            jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0);
            break;
        case ExitValueInJSStackAsInt32:
            jit.load32(
                AssemblyHelpers::addressFor(value.virtualRegister()).withOffset(
                    OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)),
                GPRInfo::regT0);
            jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0);
            break;
        case ExitValueInJSStackAsInt52:
            jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0);
            jit.rshift64(
                AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0);
            jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
            break;
        case ExitValueInJSStackAsDouble:
            jit.loadDouble(AssemblyHelpers::addressFor(value.virtualRegister()), FPRInfo::fpRegT0);
            jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
            break;
        case ExitValueDead:
        case ExitValueConstant:
        case ExitValueArgument:
            // Don't do anything for these.
            continue;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        
        jit.store64(GPRInfo::regT0, scratch + i);
    }
    
    // Move everything from the scratch buffer to the stack; this also reifies constants.
    
    for (unsigned i = exit.m_values.size(); i--;) {
        ExitValue value = exit.m_values[i];
        int operand = exit.m_values.operandForIndex(i);
        
        MacroAssembler::Address address = AssemblyHelpers::addressFor(operand);
        
        switch (value.kind()) {
        case ExitValueDead:
            jit.store64(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), address);
            break;
        case ExitValueConstant:
            jit.store64(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), address);
            break;
        case ExitValueInJSStack:
        case ExitValueInJSStackAsInt32:
        case ExitValueInJSStackAsInt52:
        case ExitValueInJSStackAsDouble:
        case ExitValueArgument:
            jit.load64(scratch + i, GPRInfo::regT0);
            jit.store64(GPRInfo::regT0, address);
            break;
        default:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
    }
    
    handleExitCounts(jit, exit);
    reifyInlinedCallFrames(jit, exit);
    
    jit.pop(MacroAssembler::framePointerRegister);
    jit.move(MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.pop(MacroAssembler::framePointerRegister);
    jit.pop(GPRInfo::nonArgGPR0); // ignore the result.
    
    if (exit.m_lastSetOperand.isValid()) {
        jit.load64(
            AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister);
    }
    
    adjustAndJumpToTarget(jit, exit);
    
    LinkBuffer patchBuffer(*vm, &jit, codeBlock);
    exit.m_code = FINALIZE_CODE_IF(
        shouldShowDisassembly(),
        patchBuffer,
        ("FTL OSR exit #%u (bc#%u, %s) from %s, with operands = %s",
            exitID, exit.m_codeOrigin.bytecodeIndex,
            exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_values)).data()));
}
MacroAssemblerCodeRef osrExitGenerationThunkGenerator(VM* vm)
{
    AssemblyHelpers jit(vm, 0);
    
    // Note that the "return address" will be the OSR exit ID.
    
    ptrdiff_t stackMisalignment = MacroAssembler::pushToSaveByteOffset();
    
    // Pretend that we're a C call frame.
    jit.pushToSave(MacroAssembler::framePointerRegister);
    jit.move(MacroAssembler::stackPointerRegister, MacroAssembler::framePointerRegister);
    stackMisalignment += MacroAssembler::pushToSaveByteOffset();
    
    // Now create ourselves enough stack space to give saveAllRegisters() a scratch slot.
    unsigned numberOfRequiredPops = 0;
    do {
        jit.pushToSave(GPRInfo::regT0);
        stackMisalignment += MacroAssembler::pushToSaveByteOffset();
        numberOfRequiredPops++;
    } while (stackMisalignment % stackAlignmentBytes());
    
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(requiredScratchMemorySizeInBytes());
    char* buffer = static_cast<char*>(scratchBuffer->dataBuffer());
    
    saveAllRegisters(jit, buffer);
    
    // Tell GC mark phase how much of the scratch buffer is active during call.
    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::nonArgGPR1);
    jit.storePtr(MacroAssembler::TrustedImmPtr(requiredScratchMemorySizeInBytes()), GPRInfo::nonArgGPR1);

    jit.loadPtr(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
    jit.peek(
        GPRInfo::argumentGPR1,
        (stackMisalignment - MacroAssembler::pushToSaveByteOffset()) / sizeof(void*));
    MacroAssembler::Call functionCall = jit.call();
    
    // At this point we want to make a tail call to what was returned to us in the
    // returnValueGPR. But at the same time as we do this, we must restore all registers.
    // The way we will accomplish this is by arranging to have the tail call target in the
    // return address "slot" (be it a register or the stack).
    
    jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0);
    
    // Make sure we tell the GC that we're not using the scratch buffer anymore.
    jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT1);
    jit.storePtr(MacroAssembler::TrustedImmPtr(0), GPRInfo::regT1);
    
    // Prepare for tail call.
    while (numberOfRequiredPops--)
        jit.popToRestore(GPRInfo::regT1);
    jit.popToRestore(MacroAssembler::framePointerRegister);
    
    // At this point we're sitting on the return address - so if we did a jump right now, the
    // tail-callee would be happy. Instead we'll stash the callee in the return address and then
    // restore all registers.
    
    jit.restoreReturnAddressBeforeReturn(GPRInfo::regT0);

    restoreAllRegisters(jit, buffer);

    jit.ret();
    
    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    patchBuffer.link(functionCall, compileFTLOSRExit);
    return FINALIZE_CODE(patchBuffer, ("FTL OSR exit generation thunk"));
}
static void compileStub(
    unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock)
{
    StackMaps::Record* record = nullptr;
    
    for (unsigned i = jitCode->stackmaps.records.size(); i--;) {
        record = &jitCode->stackmaps.records[i];
        if (record->patchpointID == exit.m_stackmapID)
            break;
    }
    
    RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID);
    
    // This code requires framePointerRegister is the same as callFrameRegister
    static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same");

    CCallHelpers jit(vm, codeBlock);
    
    // We need scratch space to save all registers, to build up the JS stack, to deal with unwind
    // fixup, pointers to all of the objects we materialize, and the elements inside those objects
    // that we materialize.
    
    // Figure out how much space we need for those object allocations.
    unsigned numMaterializations = 0;
    size_t maxMaterializationNumArguments = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        numMaterializations++;
        
        maxMaterializationNumArguments = std::max(
            maxMaterializationNumArguments,
            materialization->properties().size());
    }
    
    ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(
        sizeof(EncodedJSValue) * (
            exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) +
        requiredScratchMemorySizeInBytes() +
        codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t));
    EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
    EncodedJSValue* materializationPointers = scratch + exit.m_values.size();
    EncodedJSValue* materializationArguments = materializationPointers + numMaterializations;
    char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments);
    uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes());
    
    HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer;
    unsigned materializationCount = 0;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        materializationToPointer.add(
            materialization, materializationPointers + materializationCount++);
    }
    
    // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave().
    // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use
    // that slot for saveAllRegisters().

    saveAllRegisters(jit, registerScratch);
    
    // Bring the stack back into a sane form and assert that it's sane.
    jit.popToRestore(GPRInfo::regT0);
    jit.checkStackPointerAlignment();
    
    if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
        Profiler::Database& database = *vm->m_perBytecodeProfiler;
        Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
        
        Profiler::OSRExit* profilerExit = compilation->addOSRExit(
            exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
            exit.m_kind, exit.m_kind == UncountableInvalidation);
        jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
    }

    // The remaining code assumes that SP/FP are in the same state that they were in the FTL's
    // call frame.
    
    // Get the call frame and tag thingies.
    // Restore the exiting function's callFrame value into a regT4
    jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister);
    
    // Do some value profiling.
    if (exit.m_profileDataFormat != DataFormatNone) {
        record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0);
        reboxAccordingToFormat(
            exit.m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2);
        
        if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
            CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
            if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) {
                jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1);
                jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID());
                jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1);
                jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2);
                jit.lshift32(GPRInfo::regT1, GPRInfo::regT2);
                jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
            }
        }

        if (!!exit.m_valueProfile)
            jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0));
    }

    // Materialize all objects. Don't materialize an object until all
    // of the objects it needs have been materialized. We break cycles
    // by populating objects late - we only consider an object as
    // needing another object if the later is needed for the
    // allocation of the former.

    HashSet<ExitTimeObjectMaterialization*> toMaterialize;
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations)
        toMaterialize.add(materialization);

    while (!toMaterialize.isEmpty()) {
        unsigned previousToMaterializeSize = toMaterialize.size();

        Vector<ExitTimeObjectMaterialization*> worklist;
        worklist.appendRange(toMaterialize.begin(), toMaterialize.end());
        for (ExitTimeObjectMaterialization* materialization : worklist) {
            // Check if we can do anything about this right now.
            bool allGood = true;
            for (ExitPropertyValue value : materialization->properties()) {
                if (!value.value().isObjectMaterialization())
                    continue;
                if (!value.location().neededForMaterialization())
                    continue;
                if (toMaterialize.contains(value.value().objectMaterialization())) {
                    // Gotta skip this one, since it needs a
                    // materialization that hasn't been materialized.
                    allGood = false;
                    break;
                }
            }
            if (!allGood)
                continue;

            // All systems go for materializing the object. First we
            // recover the values of all of its fields and then we
            // call a function to actually allocate the beast.
            // We only recover the fields that are needed for the allocation.
            for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
                const ExitPropertyValue& property = materialization->properties()[propertyIndex];
                const ExitValue& value = property.value();
                if (!property.location().neededForMaterialization())
                    continue;

                compileRecovery(
                    jit, value, record, jitCode->stackmaps, registerScratch,
                    materializationToPointer);
                jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
            }
            
            // This call assumes that we don't pass arguments on the stack.
            jit.setupArgumentsWithExecState(
                CCallHelpers::TrustedImmPtr(materialization),
                CCallHelpers::TrustedImmPtr(materializationArguments));
            jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0);
            jit.call(GPRInfo::nonArgGPR0);
            jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization));

            // Let everyone know that we're done.
            toMaterialize.remove(materialization);
        }
        
        // We expect progress! This ensures that we crash rather than looping infinitely if there
        // is something broken about this fixpoint. Or, this could happen if we ever violate the
        // "materializations form a DAG" rule.
        RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize);
    }

    // Now that all the objects have been allocated, we populate them
    // with the correct values. This time we can recover all the
    // fields, including those that are only needed for the allocation.
    for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) {
        for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) {
            const ExitValue& value = materialization->properties()[propertyIndex].value();
            compileRecovery(
                jit, value, record, jitCode->stackmaps, registerScratch,
                materializationToPointer);
            jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex);
        }

        // This call assumes that we don't pass arguments on the stack
        jit.setupArgumentsWithExecState(
            CCallHelpers::TrustedImmPtr(materialization),
            CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)),
            CCallHelpers::TrustedImmPtr(materializationArguments));
        jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0);
        jit.call(GPRInfo::nonArgGPR0);
    }

    // Save all state from wherever the exit data tells us it was, into the appropriate place in
    // the scratch buffer. This also does the reboxing.
    
    for (unsigned index = exit.m_values.size(); index--;) {
        compileRecovery(
            jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch,
            materializationToPointer);
        jit.store64(GPRInfo::regT0, scratch + index);
    }
    
    // Henceforth we make it look like the exiting function was called through a register
    // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then
    // we restore the various things according to either exit.m_values or by copying from the
    // old frame, and finally we save the various callee-save registers into where the
    // restoration thunk would restore them from.
    
    // Before we start messing with the frame, we need to set aside any registers that the
    // FTL code was preserving.
    for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) {
        RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i);
        jit.load64(
            MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()),
            GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, unwindScratch + i);
    }
    
    jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2);
    
    // Let's say that the FTL function had failed its arity check. In that case, the stack will
    // contain some extra stuff.
    //
    // We compute the padded stack space:
    //
    //     paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1)
    //
    // The stack will have regT2 + CallFrameHeaderSize stuff.
    // We want to make the stack look like this, from higher addresses down:
    //
    //     - argument padding
    //     - actual arguments
    //     - call frame header

    // This code assumes that we're dealing with FunctionCode.
    RELEASE_ASSERT(codeBlock->codeType() == FunctionCode);
    
    jit.add32(
        MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2,
        GPRInfo::regT3);
    MacroAssembler::Jump arityIntact = jit.branch32(
        MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0));
    jit.neg32(GPRInfo::regT3);
    jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3);
    jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3);
    jit.add32(GPRInfo::regT3, GPRInfo::regT2);
    arityIntact.link(&jit);

    CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin);

    // First set up SP so that our data doesn't get clobbered by signals.
    unsigned conservativeStackDelta =
        (exit.m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) +
        maxFrameExtentForSlowPathCall;
    conservativeStackDelta = WTF::roundUpToMultipleOf(
        stackAlignmentBytes(), conservativeStackDelta);
    jit.addPtr(
        MacroAssembler::TrustedImm32(-conservativeStackDelta),
        MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister);
    jit.checkStackPointerAlignment();

    RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters();
    RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters();

    for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) {
        if (!allFTLCalleeSaves.get(reg))
            continue;
        unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg);
        RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg);

        if (reg.isGPR()) {
            GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr();

            if (unwindIndex == UINT_MAX) {
                // The FTL compilation didn't preserve this register. This means that it also
                // didn't use the register. So its value at the beginning of OSR exit should be
                // preserved by the thunk. Luckily, we saved all registers into the register
                // scratch buffer, so we can restore them from there.
                jit.load64(registerScratch + offsetOfReg(reg), regToLoad);
            } else {
                // The FTL compilation preserved the register. Its new value is therefore
                // irrelevant, but we can get the value that was preserved by using the unwind
                // data. We've already copied all unwind-able preserved registers into the unwind
                // scratch buffer, so we can get it from there.
                jit.load64(unwindScratch + unwindIndex, regToLoad);
            }

            if (baselineRegisterOffset)
                jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        } else {
            FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr();

            if (unwindIndex == UINT_MAX)
                jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad);
            else
                jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad);

            if (baselineRegisterOffset)
                jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset()));
        }
    }

    size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters();

    // Now get state out of the scratch buffer and place it back into the stack. The values are
    // already reboxed so we just move them.
    for (unsigned index = exit.m_values.size(); index--;) {
        VirtualRegister reg = exit.m_values.virtualRegisterForIndex(index);

        if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves))
            continue;

        jit.load64(scratch + index, GPRInfo::regT0);
        jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg));
    }
    
    handleExitCounts(jit, exit);
    reifyInlinedCallFrames(jit, exit);
    adjustAndJumpToTarget(jit, exit, false);
    
    LinkBuffer patchBuffer(*vm, jit, codeBlock);
    exit.m_code = FINALIZE_CODE_IF(
        shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(),
        patchBuffer,
        ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s",
            exitID, toCString(exit.m_codeOrigin).data(),
            exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
            toCString(ignoringContext<DumpContext>(exit.m_values)).data(),
            toCString(*record).data()));
}