MacroAssemblerCodeRef osrExitGenerationThunkGenerator(VM* vm) { MacroAssembler jit; // This needs to happen before we use the scratch buffer because this function also uses the scratch buffer. adjustFrameAndStackInOSRExitCompilerThunk<DFG::JITCode>(jit, vm, JITCode::DFGJIT); size_t scratchSize = sizeof(EncodedJSValue) * (GPRInfo::numberOfRegisters + FPRInfo::numberOfRegisters); ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(scratchSize); EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()); for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) { #if USE(JSVALUE64) jit.store64(GPRInfo::toRegister(i), buffer + i); #else jit.store32(GPRInfo::toRegister(i), buffer + i); #endif } for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) { jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0); jit.storeDouble(FPRInfo::toRegister(i), MacroAssembler::Address(GPRInfo::regT0)); } // Tell GC mark phase how much of the scratch buffer is active during call. jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->addressOfActiveLength()), GPRInfo::regT0); jit.storePtr(MacroAssembler::TrustedImmPtr(scratchSize), MacroAssembler::Address(GPRInfo::regT0)); // Set up one argument. #if CPU(X86) jit.poke(GPRInfo::callFrameRegister, 0); #else jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); #endif MacroAssembler::Call functionCall = jit.call(); jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->addressOfActiveLength()), GPRInfo::regT0); jit.storePtr(MacroAssembler::TrustedImmPtr(0), MacroAssembler::Address(GPRInfo::regT0)); for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) { jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0); jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::toRegister(i)); } for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) { #if USE(JSVALUE64) jit.load64(buffer + i, GPRInfo::toRegister(i)); #else jit.load32(buffer + i, GPRInfo::toRegister(i)); #endif } jit.jump(MacroAssembler::AbsoluteAddress(&vm->osrExitJumpDestination)); LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID); patchBuffer.link(functionCall, OSRExit::compileOSRExit); return FINALIZE_CODE(patchBuffer, ("DFG OSR exit generation thunk")); }
MacroAssemblerCodeRef osrExitGenerationThunkGenerator(JSGlobalData* globalData) { MacroAssembler jit; size_t scratchSize = sizeof(EncodedJSValue) * (GPRInfo::numberOfRegisters + FPRInfo::numberOfRegisters); ScratchBuffer* scratchBuffer = globalData->scratchBufferForSize(scratchSize); EncodedJSValue* buffer = static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()); for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) { #if USE(JSVALUE64) jit.store64(GPRInfo::toRegister(i), buffer + i); #else jit.store32(GPRInfo::toRegister(i), buffer + i); #endif } for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) { jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0); jit.storeDouble(FPRInfo::toRegister(i), GPRInfo::regT0); } // Tell GC mark phase how much of the scratch buffer is active during call. jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT0); jit.storePtr(MacroAssembler::TrustedImmPtr(scratchSize), GPRInfo::regT0); // Set up one argument. #if CPU(X86) jit.poke(GPRInfo::callFrameRegister, 0); #else jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); #endif MacroAssembler::Call functionCall = jit.call(); jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT0); jit.storePtr(MacroAssembler::TrustedImmPtr(0), GPRInfo::regT0); for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) { jit.move(MacroAssembler::TrustedImmPtr(buffer + GPRInfo::numberOfRegisters + i), GPRInfo::regT0); jit.loadDouble(GPRInfo::regT0, FPRInfo::toRegister(i)); } for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) { #if USE(JSVALUE64) jit.load64(buffer + i, GPRInfo::toRegister(i)); #else jit.load32(buffer + i, GPRInfo::toRegister(i)); #endif } jit.jump(MacroAssembler::AbsoluteAddress(&globalData->osrExitJumpDestination)); LinkBuffer patchBuffer(*globalData, &jit, GLOBAL_THUNK_ID); patchBuffer.link(functionCall, compileOSRExit); return FINALIZE_CODE(patchBuffer, ("DFG OSR exit generation thunk")); }
void VM::gatherConservativeRoots(ConservativeRoots& conservativeRoots) { for (size_t i = 0; i < scratchBuffers.size(); i++) { ScratchBuffer* scratchBuffer = scratchBuffers[i]; if (scratchBuffer->activeLength()) { void* bufferStart = scratchBuffer->dataBuffer(); conservativeRoots.add(bufferStart, static_cast<void*>(static_cast<char*>(bufferStart) + scratchBuffer->activeLength())); } } }
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery) { // 1) Pro-forma stuff. if (Options::printEachOSRExit()) { SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo; debugInfo->codeBlock = m_jit.codeBlock(); debugInfo->kind = exit.m_kind; debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex; m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo); } // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit. m_jit.addPtr( CCallHelpers::TrustedImm32( -m_jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)), CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister); // 2) Perform speculation recovery. This only comes into play when an operation // starts mutating state before verifying the speculation it has already made. if (recovery) { switch (recovery->type()) { case SpeculativeAdd: m_jit.sub32(recovery->src(), recovery->dest()); break; case BooleanSpeculationCheck: break; default: break; } } // 3) Refine some value profile, if appropriate. if (!!exit.m_jsValueSource) { if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { // If the instruction that this originated from has an array profile, then // refine it. If it doesn't, then do nothing. The latter could happen for // hoisted checks, or checks emitted for operations that didn't have array // profiling - either ops that aren't array accesses at all, or weren't // known to be array acceses in the bytecode. The latter case is a FIXME // while the former case is an outcome of a CheckStructure not knowing why // it was emitted (could be either due to an inline cache of a property // property access, or due to an array profile). // Note: We are free to assume that the jsValueSource is already known to // be a cell since both BadCache and BadIndexingType exits occur after // the cell check would have already happened. CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { GPRReg usedRegister1; GPRReg usedRegister2; if (exit.m_jsValueSource.isAddress()) { usedRegister1 = exit.m_jsValueSource.base(); usedRegister2 = InvalidGPRReg; } else { usedRegister1 = exit.m_jsValueSource.payloadGPR(); if (exit.m_jsValueSource.hasKnownTag()) usedRegister2 = InvalidGPRReg; else usedRegister2 = exit.m_jsValueSource.tagGPR(); } GPRReg scratch1; GPRReg scratch2; scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2); scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1); #if CPU(ARM64) m_jit.pushToSave(scratch1); m_jit.pushToSave(scratch2); #else m_jit.push(scratch1); m_jit.push(scratch2); #endif GPRReg value; if (exit.m_jsValueSource.isAddress()) { value = scratch1; m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value); } else value = exit.m_jsValueSource.payloadGPR(); m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1); m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructureID()); m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1); m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2); m_jit.lshift32(scratch1, scratch2); m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes())); #if CPU(ARM64) m_jit.popToRestore(scratch2); m_jit.popToRestore(scratch1); #else m_jit.pop(scratch2); m_jit.pop(scratch1); #endif } } if (!!exit.m_valueProfile) { EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0); if (exit.m_jsValueSource.isAddress()) { // Save a register so we can use it. GPRReg scratch = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base()); #if CPU(ARM64) m_jit.pushToSave(scratch); #else m_jit.push(scratch); #endif m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)), scratch); m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag); m_jit.load32(exit.m_jsValueSource.asAddress(OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)), scratch); m_jit.store32(scratch, &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload); #if CPU(ARM64) m_jit.popToRestore(scratch); #else m_jit.pop(scratch); #endif } else if (exit.m_jsValueSource.hasKnownTag()) { m_jit.store32(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag); m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload); } else { m_jit.store32(exit.m_jsValueSource.tagGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.tag); m_jit.store32(exit.m_jsValueSource.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(bucket)->asBits.payload); } } } // Do a simplified OSR exit. See DFGOSRExitCompiler64.cpp's comment regarding how and wny we // do this simple approach. // 4) Save all state from GPRs into the scratch buffer. ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size()); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case UnboxedInt32InGPR: case UnboxedBooleanInGPR: case UnboxedCellInGPR: m_jit.store32( recovery.gpr(), &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); break; case InPair: m_jit.store32( recovery.tagGPR(), &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag); m_jit.store32( recovery.payloadGPR(), &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); break; default: break; } } // Now all GPRs are free to reuse. // 5) Save all state from FPRs into the scratch buffer. for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case InFPR: m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); m_jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0)); break; default: break; } } // Now all FPRs are free to reuse. // 6) Save all state from the stack into the scratch buffer. For simplicity we // do this even for state that's already in the right place on the stack. // It makes things simpler later. for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: case Int32DisplacedInJSStack: case DoubleDisplacedInJSStack: case CellDisplacedInJSStack: case BooleanDisplacedInJSStack: m_jit.load32( AssemblyHelpers::tagFor(recovery.virtualRegister()), GPRInfo::regT0); m_jit.load32( AssemblyHelpers::payloadFor(recovery.virtualRegister()), GPRInfo::regT1); m_jit.store32( GPRInfo::regT0, &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag); m_jit.store32( GPRInfo::regT1, &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); break; default: break; } } // 7) Do all data format conversions and store the results into the stack. bool haveArguments = false; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; int operand = operands.operandForIndex(index); switch (recovery.technique()) { case InPair: case DisplacedInJSStack: m_jit.load32( &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag, GPRInfo::regT0); m_jit.load32( &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, GPRInfo::regT1); m_jit.store32( GPRInfo::regT0, AssemblyHelpers::tagFor(operand)); m_jit.store32( GPRInfo::regT1, AssemblyHelpers::payloadFor(operand)); break; case InFPR: case DoubleDisplacedInJSStack: m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); m_jit.loadDouble(GPRInfo::regT0, FPRInfo::fpRegT0); m_jit.purifyNaN(FPRInfo::fpRegT0); m_jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand)); break; case UnboxedInt32InGPR: case Int32DisplacedInJSStack: m_jit.load32( &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, GPRInfo::regT0); m_jit.store32( AssemblyHelpers::TrustedImm32(JSValue::Int32Tag), AssemblyHelpers::tagFor(operand)); m_jit.store32( GPRInfo::regT0, AssemblyHelpers::payloadFor(operand)); break; case UnboxedCellInGPR: case CellDisplacedInJSStack: m_jit.load32( &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, GPRInfo::regT0); m_jit.store32( AssemblyHelpers::TrustedImm32(JSValue::CellTag), AssemblyHelpers::tagFor(operand)); m_jit.store32( GPRInfo::regT0, AssemblyHelpers::payloadFor(operand)); break; case UnboxedBooleanInGPR: case BooleanDisplacedInJSStack: m_jit.load32( &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, GPRInfo::regT0); m_jit.store32( AssemblyHelpers::TrustedImm32(JSValue::BooleanTag), AssemblyHelpers::tagFor(operand)); m_jit.store32( GPRInfo::regT0, AssemblyHelpers::payloadFor(operand)); break; case Constant: m_jit.store32( AssemblyHelpers::TrustedImm32(recovery.constant().tag()), AssemblyHelpers::tagFor(operand)); m_jit.store32( AssemblyHelpers::TrustedImm32(recovery.constant().payload()), AssemblyHelpers::payloadFor(operand)); break; case ArgumentsThatWereNotCreated: haveArguments = true; m_jit.store32( AssemblyHelpers::TrustedImm32(JSValue().tag()), AssemblyHelpers::tagFor(operand)); m_jit.store32( AssemblyHelpers::TrustedImm32(JSValue().payload()), AssemblyHelpers::payloadFor(operand)); break; default: break; } } // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know // that all new calls into this code will go to the new JIT, so the execute // counter only affects call frames that performed OSR exit and call frames // that were still executing the old JIT at the time of another call frame's // OSR exit. We want to ensure that the following is true: // // (a) Code the performs an OSR exit gets a chance to reenter optimized // code eventually, since optimized code is faster. But we don't // want to do such reentery too aggressively (see (c) below). // // (b) If there is code on the call stack that is still running the old // JIT's code and has never OSR'd, then it should get a chance to // perform OSR entry despite the fact that we've exited. // // (c) Code the performs an OSR exit should not immediately retry OSR // entry, since both forms of OSR are expensive. OSR entry is // particularly expensive. // // (d) Frequent OSR failures, even those that do not result in the code // running in a hot loop, result in recompilation getting triggered. // // To ensure (c), we'd like to set the execute counter to // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger // (a) and (b), since then every OSR exit would delay the opportunity for // every call frame to perform OSR entry. Essentially, if OSR exit happens // frequently and the function has few loops, then the counter will never // become non-negative and OSR entry will never be triggered. OSR entry // will only happen if a loop gets hot in the old JIT, which does a pretty // good job of ensuring (a) and (b). But that doesn't take care of (d), // since each speculation failure would reset the execute counter. // So we check here if the number of speculation failures is significantly // larger than the number of successes (we want 90% success rate), and if // there have been a large enough number of failures. If so, we set the // counter to 0; otherwise we set the counter to // counterValueForOptimizeAfterWarmUp(). handleExitCounts(m_jit, exit); // 9) Reify inlined call frames. reifyInlinedCallFrames(m_jit, exit); // 10) Create arguments if necessary and place them into the appropriate aliased // registers. if (haveArguments) { ArgumentsRecoveryGenerator argumentsRecovery; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != ArgumentsThatWereNotCreated) continue; argumentsRecovery.generateFor( operands.operandForIndex(index), exit.m_codeOrigin, m_jit); } } // 12) And finish. adjustAndJumpToTarget(m_jit, exit); }
void OSRExitCompiler::compileExit(const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery) { // 1) Pro-forma stuff. #if DFG_ENABLE(DEBUG_VERBOSE) dataLogF("OSR exit for ("); for (CodeOrigin codeOrigin = exit.m_codeOrigin; ; codeOrigin = codeOrigin.inlineCallFrame->caller) { dataLogF("bc#%u", codeOrigin.bytecodeIndex); if (!codeOrigin.inlineCallFrame) break; dataLogF(" -> %p ", codeOrigin.inlineCallFrame->executable.get()); } dataLogF(") "); dataLog(operands); #endif if (Options::printEachOSRExit()) { SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo; debugInfo->codeBlock = m_jit.codeBlock(); m_jit.debugCall(debugOperationPrintSpeculationFailure, debugInfo); } #if DFG_ENABLE(JIT_BREAK_ON_SPECULATION_FAILURE) m_jit.breakpoint(); #endif #if DFG_ENABLE(SUCCESS_STATS) static SamplingCounter counter("SpeculationFailure"); m_jit.emitCount(counter); #endif // 2) Perform speculation recovery. This only comes into play when an operation // starts mutating state before verifying the speculation it has already made. if (recovery) { switch (recovery->type()) { case SpeculativeAdd: m_jit.sub32(recovery->src(), recovery->dest()); m_jit.or64(GPRInfo::tagTypeNumberRegister, recovery->dest()); break; case BooleanSpeculationCheck: m_jit.xor64(AssemblyHelpers::TrustedImm32(static_cast<int32_t>(ValueFalse)), recovery->dest()); break; default: break; } } // 3) Refine some array and/or value profile, if appropriate. if (!!exit.m_jsValueSource) { if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { // If the instruction that this originated from has an array profile, then // refine it. If it doesn't, then do nothing. The latter could happen for // hoisted checks, or checks emitted for operations that didn't have array // profiling - either ops that aren't array accesses at all, or weren't // known to be array acceses in the bytecode. The latter case is a FIXME // while the former case is an outcome of a CheckStructure not knowing why // it was emitted (could be either due to an inline cache of a property // property access, or due to an array profile). CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = m_jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { GPRReg usedRegister; if (exit.m_jsValueSource.isAddress()) usedRegister = exit.m_jsValueSource.base(); else usedRegister = exit.m_jsValueSource.gpr(); GPRReg scratch1; GPRReg scratch2; scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister); scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1); #if CPU(ARM64) m_jit.pushToSave(scratch1); m_jit.pushToSave(scratch2); #else m_jit.push(scratch1); m_jit.push(scratch2); #endif GPRReg value; if (exit.m_jsValueSource.isAddress()) { value = scratch1; m_jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value); } else value = exit.m_jsValueSource.gpr(); m_jit.loadPtr(AssemblyHelpers::Address(value, JSCell::structureOffset()), scratch1); m_jit.storePtr(scratch1, arrayProfile->addressOfLastSeenStructure()); m_jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingTypeOffset()), scratch1); m_jit.move(AssemblyHelpers::TrustedImm32(1), scratch2); m_jit.lshift32(scratch1, scratch2); m_jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes())); #if CPU(ARM64) m_jit.popToRestore(scratch2); m_jit.popToRestore(scratch1); #else m_jit.pop(scratch2); m_jit.pop(scratch1); #endif } } if (!!exit.m_valueProfile) { EncodedJSValue* bucket = exit.m_valueProfile.getSpecFailBucket(0); if (exit.m_jsValueSource.isAddress()) { // We can't be sure that we have a spare register. So use the tagTypeNumberRegister, // since we know how to restore it. m_jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::tagTypeNumberRegister); m_jit.store64(GPRInfo::tagTypeNumberRegister, bucket); m_jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); } else m_jit.store64(exit.m_jsValueSource.gpr(), bucket); } } // What follows is an intentionally simple OSR exit implementation that generates // fairly poor code but is very easy to hack. In particular, it dumps all state that // needs conversion into a scratch buffer so that in step 6, where we actually do the // conversions, we know that all temp registers are free to use and the variable is // definitely in a well-known spot in the scratch buffer regardless of whether it had // originally been in a register or spilled. This allows us to decouple "where was // the variable" from "how was it represented". Consider that the // Int32DisplacedInJSStack recovery: it tells us that the value is in a // particular place and that that place holds an unboxed int32. We have two different // places that a value could be (displaced, register) and a bunch of different // ways of representing a value. The number of recoveries is two * a bunch. The code // below means that we have to have two + a bunch cases rather than two * a bunch. // Once we have loaded the value from wherever it was, the reboxing is the same // regardless of its location. Likewise, before we do the reboxing, the way we get to // the value (i.e. where we load it from) is the same regardless of its type. Because // the code below always dumps everything into a scratch buffer first, the two // questions become orthogonal, which simplifies adding new types and adding new // locations. // // This raises the question: does using such a suboptimal implementation of OSR exit, // where we always emit code to dump all state into a scratch buffer only to then // dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits // are rare. Our tiering strategy ensures this. This is because if an OSR exit is // taken more than ~100 times, we jettison the DFG code block along with all of its // exits. It is impossible for an OSR exit - i.e. the code we compile below - to // execute frequently enough for the codegen to matter that much. It probably matters // enough that we don't want to turn this into some super-slow function call, but so // long as we're generating straight-line code, that code can be pretty bad. Also // because we tend to exit only along one OSR exit from any DFG code block - that's an // empirical result that we're extremely confident about - the code size of this // doesn't matter much. Hence any attempt to optimize the codegen here is just purely // harmful to the system: it probably won't reduce either net memory usage or net // execution time. It will only prevent us from cleanly decoupling "where was the // variable" from "how was it represented", which will make it more difficult to add // features in the future and it will make it harder to reason about bugs. // 4) Save all state from GPRs into the scratch buffer. ScratchBuffer* scratchBuffer = m_jit.vm()->scratchBufferForSize(sizeof(EncodedJSValue) * operands.size()); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case InGPR: case UnboxedInt32InGPR: case UInt32InGPR: case UnboxedInt52InGPR: case UnboxedStrictInt52InGPR: case UnboxedCellInGPR: m_jit.store64(recovery.gpr(), scratch + index); break; default: break; } } // And voila, all GPRs are free to reuse. // 5) Save all state from FPRs into the scratch buffer. for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case InFPR: m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); m_jit.storeDouble(recovery.fpr(), GPRInfo::regT0); break; default: break; } } // Now, all FPRs are also free. // 6) Save all state from the stack into the scratch buffer. For simplicity we // do this even for state that's already in the right place on the stack. // It makes things simpler later. for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; switch (recovery.technique()) { case DisplacedInJSStack: case CellDisplacedInJSStack: case BooleanDisplacedInJSStack: case Int32DisplacedInJSStack: case DoubleDisplacedInJSStack: case Int52DisplacedInJSStack: case StrictInt52DisplacedInJSStack: m_jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, scratch + index); break; default: break; } } // 7) Do all data format conversions and store the results into the stack. bool haveArguments = false; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; int operand = operands.operandForIndex(index); switch (recovery.technique()) { case InGPR: case UnboxedCellInGPR: case DisplacedInJSStack: case CellDisplacedInJSStack: case BooleanDisplacedInJSStack: m_jit.load64(scratch + index, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case UnboxedInt32InGPR: case Int32DisplacedInJSStack: m_jit.load64(scratch + index, GPRInfo::regT0); m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0); m_jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case UnboxedInt52InGPR: case Int52DisplacedInJSStack: m_jit.load64(scratch + index, GPRInfo::regT0); m_jit.rshift64( AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0); m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case UnboxedStrictInt52InGPR: case StrictInt52DisplacedInJSStack: m_jit.load64(scratch + index, GPRInfo::regT0); m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case UInt32InGPR: m_jit.load64(scratch + index, GPRInfo::regT0); m_jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0); m_jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case InFPR: case DoubleDisplacedInJSStack: m_jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); m_jit.loadDouble(GPRInfo::regT0, FPRInfo::fpRegT0); m_jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); break; case Constant: m_jit.store64( AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())), AssemblyHelpers::addressFor(operand)); break; case ArgumentsThatWereNotCreated: haveArguments = true; // We can't restore this yet but we can make sure that the stack appears // sane. m_jit.store64( AssemblyHelpers::TrustedImm64(JSValue::encode(JSValue())), AssemblyHelpers::addressFor(operand)); break; default: break; } } // 8) Adjust the old JIT's execute counter. Since we are exiting OSR, we know // that all new calls into this code will go to the new JIT, so the execute // counter only affects call frames that performed OSR exit and call frames // that were still executing the old JIT at the time of another call frame's // OSR exit. We want to ensure that the following is true: // // (a) Code the performs an OSR exit gets a chance to reenter optimized // code eventually, since optimized code is faster. But we don't // want to do such reentery too aggressively (see (c) below). // // (b) If there is code on the call stack that is still running the old // JIT's code and has never OSR'd, then it should get a chance to // perform OSR entry despite the fact that we've exited. // // (c) Code the performs an OSR exit should not immediately retry OSR // entry, since both forms of OSR are expensive. OSR entry is // particularly expensive. // // (d) Frequent OSR failures, even those that do not result in the code // running in a hot loop, result in recompilation getting triggered. // // To ensure (c), we'd like to set the execute counter to // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger // (a) and (b), since then every OSR exit would delay the opportunity for // every call frame to perform OSR entry. Essentially, if OSR exit happens // frequently and the function has few loops, then the counter will never // become non-negative and OSR entry will never be triggered. OSR entry // will only happen if a loop gets hot in the old JIT, which does a pretty // good job of ensuring (a) and (b). But that doesn't take care of (d), // since each speculation failure would reset the execute counter. // So we check here if the number of speculation failures is significantly // larger than the number of successes (we want 90% success rate), and if // there have been a large enough number of failures. If so, we set the // counter to 0; otherwise we set the counter to // counterValueForOptimizeAfterWarmUp(). handleExitCounts(m_jit, exit); // 9) Reify inlined call frames. reifyInlinedCallFrames(m_jit, exit); // 10) Create arguments if necessary and place them into the appropriate aliased // registers. if (haveArguments) { HashSet<InlineCallFrame*, DefaultHash<InlineCallFrame*>::Hash, NullableHashTraits<InlineCallFrame*> > didCreateArgumentsObject; for (size_t index = 0; index < operands.size(); ++index) { const ValueRecovery& recovery = operands[index]; if (recovery.technique() != ArgumentsThatWereNotCreated) continue; int operand = operands.operandForIndex(index); // Find the right inline call frame. InlineCallFrame* inlineCallFrame = 0; for (InlineCallFrame* current = exit.m_codeOrigin.inlineCallFrame; current; current = current->caller.inlineCallFrame) { if (current->stackOffset >= operand) { inlineCallFrame = current; break; } } if (!m_jit.baselineCodeBlockFor(inlineCallFrame)->usesArguments()) continue; VirtualRegister argumentsRegister = m_jit.baselineArgumentsRegisterFor(inlineCallFrame); if (didCreateArgumentsObject.add(inlineCallFrame).isNewEntry) { // We know this call frame optimized out an arguments object that // the baseline JIT would have created. Do that creation now. if (inlineCallFrame) { m_jit.addPtr(AssemblyHelpers::TrustedImm32(inlineCallFrame->stackOffset * sizeof(EncodedJSValue)), GPRInfo::callFrameRegister, GPRInfo::regT0); m_jit.setupArguments(GPRInfo::regT0); } else m_jit.setupArgumentsExecState(); m_jit.move( AssemblyHelpers::TrustedImmPtr( bitwise_cast<void*>(operationCreateArguments)), GPRInfo::nonArgGPR0); m_jit.call(GPRInfo::nonArgGPR0); m_jit.store64(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(argumentsRegister)); m_jit.store64( GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(unmodifiedArgumentsRegister(argumentsRegister))); m_jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); // no-op move on almost all platforms. } m_jit.load64(AssemblyHelpers::addressFor(argumentsRegister), GPRInfo::regT0); m_jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); } } // 11) Load the result of the last bytecode operation into regT0. if (exit.m_lastSetOperand.isValid()) m_jit.load64(AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister); // 12) And finish. adjustAndJumpToTarget(m_jit, exit); }
static void compileStubWithOSRExitStackmap( unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock) { StackMaps::Record* record; for (unsigned i = jitCode->stackmaps.records.size(); i--;) { record = &jitCode->stackmaps.records[i]; if (record->patchpointID == exit.m_stackmapID) break; } RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID); CCallHelpers jit(vm, codeBlock); // We need scratch space to save all registers and to build up the JSStack. // Use a scratch buffer to transfer all values. ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(sizeof(EncodedJSValue) * exit.m_values.size() + requiredScratchMemorySizeInBytes()); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; char* registerScratch = bitwise_cast<char*>(scratch + exit.m_values.size()); // Make sure that saveAllRegisters() has a place on top of the stack to spill things. That // function expects to be able to use top of stack for scratch memory. jit.push(GPRInfo::regT0); saveAllRegisters(jit, registerScratch); // Bring the stack back into a sane form. jit.pop(GPRInfo::regT0); jit.pop(GPRInfo::regT0); // The remaining code assumes that SP/FP are in the same state that they were in the FTL's // call frame. // Get the call frame and tag thingies. record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::callFrameRegister); jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); // Do some value profiling. if (exit.m_profileValueFormat != InvalidValueFormat) { record->locations[1].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0); reboxAccordingToFormat( exit.m_profileValueFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureOffset()), GPRInfo::regT1); jit.storePtr(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructure()); jit.load8(MacroAssembler::Address(GPRInfo::regT1, Structure::indexingTypeOffset()), GPRInfo::regT1); jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); } } if (!!exit.m_valueProfile) jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0)); } // Save all state from wherever the exit data tells us it was, into the appropriate place in // the scratch buffer. This doesn't rebox any values yet. for (unsigned index = exit.m_values.size(); index--;) { ExitValue value = exit.m_values[index]; switch (value.kind()) { case ExitValueDead: jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0); break; case ExitValueConstant: jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0); break; case ExitValueArgument: record->locations[value.exitArgument().argument()].restoreInto( jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0); break; case ExitValueInJSStack: case ExitValueInJSStackAsInt32: case ExitValueInJSStackAsInt52: case ExitValueInJSStackAsDouble: jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } jit.store64(GPRInfo::regT0, scratch + index); } // Now get state out of the scratch buffer and place it back into the stack. This part does // all reboxing. for (unsigned index = exit.m_values.size(); index--;) { int operand = exit.m_values.operandForIndex(index); ExitValue value = exit.m_values[index]; jit.load64(scratch + index, GPRInfo::regT0); reboxAccordingToFormat( value.valueFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); } handleExitCounts(jit, exit); reifyInlinedCallFrames(jit, exit); jit.move(MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); jit.pop(MacroAssembler::framePointerRegister); jit.pop(GPRInfo::nonArgGPR0); // ignore the result. if (exit.m_lastSetOperand.isValid()) { jit.load64( AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister); } adjustAndJumpToTarget(jit, exit); LinkBuffer patchBuffer(*vm, &jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldShowDisassembly(), patchBuffer, ("FTL OSR exit #%u (bc#%u, %s) from %s, with operands = %s, and record = %s", exitID, exit.m_codeOrigin.bytecodeIndex, exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(exit.m_values)).data(), toCString(*record).data())); }
static void compileStubWithoutOSRExitStackmap( unsigned exitID, OSRExit& exit, VM* vm, CodeBlock* codeBlock) { CCallHelpers jit(vm, codeBlock); // Make ourselves look like a real C function. jit.push(MacroAssembler::framePointerRegister); jit.move(MacroAssembler::stackPointerRegister, MacroAssembler::framePointerRegister); // This is actually fairly easy, even though it is horribly gross. We know that // LLVM would have passes us all of the state via arguments. We know how to get // the arguments. And, we know how to pop stack back to the JIT stack frame, sort // of: we know that it's two frames beneath us. This is terrible and I feel // ashamed of it, but it will work for now. CArgumentGetter arguments(jit, 2); // First recover our call frame and tag thingies. arguments.loadNextPtr(GPRInfo::callFrameRegister); jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); // Do some value profiling. if (exit.m_profileValueFormat != InvalidValueFormat) { arguments.loadNextAndBox(exit.m_profileValueFormat, GPRInfo::nonArgGPR0); if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { jit.loadPtr(MacroAssembler::Address(GPRInfo::nonArgGPR0, JSCell::structureOffset()), GPRInfo::nonArgGPR1); jit.storePtr(GPRInfo::nonArgGPR1, arrayProfile->addressOfLastSeenStructure()); jit.load8(MacroAssembler::Address(GPRInfo::nonArgGPR1, Structure::indexingTypeOffset()), GPRInfo::nonArgGPR1); jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::nonArgGPR2); jit.lshift32(GPRInfo::nonArgGPR1, GPRInfo::nonArgGPR2); jit.or32(GPRInfo::nonArgGPR2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); } } if (!!exit.m_valueProfile) jit.store64(GPRInfo::nonArgGPR0, exit.m_valueProfile.getSpecFailBucket(0)); } // Use a scratch buffer to transfer all values. ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(sizeof(EncodedJSValue) * exit.m_values.size()); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; // Start by dumping all argument exit values to the stack. Vector<ExitArgumentForOperand, 16> sortedArguments; for (unsigned i = exit.m_values.size(); i--;) { ExitValue value = exit.m_values[i]; int operand = exit.m_values.operandForIndex(i); if (!value.isArgument()) continue; sortedArguments.append(ExitArgumentForOperand(value.exitArgument(), VirtualRegister(operand))); } std::sort(sortedArguments.begin(), sortedArguments.end(), lesserArgumentIndex); for (unsigned i = 0; i < sortedArguments.size(); ++i) { ExitArgumentForOperand argument = sortedArguments[i]; arguments.loadNextAndBox(argument.exitArgument().format(), GPRInfo::nonArgGPR0); jit.store64( GPRInfo::nonArgGPR0, scratch + exit.m_values.indexForOperand(argument.operand())); } // All temp registers are free at this point. // Move anything on the stack into the appropriate place in the scratch buffer. for (unsigned i = exit.m_values.size(); i--;) { ExitValue value = exit.m_values[i]; switch (value.kind()) { case ExitValueInJSStack: jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); break; case ExitValueInJSStackAsInt32: jit.load32( AssemblyHelpers::addressFor(value.virtualRegister()).withOffset( OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)), GPRInfo::regT0); jit.or64(GPRInfo::tagTypeNumberRegister, GPRInfo::regT0); break; case ExitValueInJSStackAsInt52: jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); jit.rshift64( AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0); jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); break; case ExitValueInJSStackAsDouble: jit.loadDouble(AssemblyHelpers::addressFor(value.virtualRegister()), FPRInfo::fpRegT0); jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0); break; case ExitValueDead: case ExitValueConstant: case ExitValueArgument: // Don't do anything for these. continue; default: RELEASE_ASSERT_NOT_REACHED(); break; } jit.store64(GPRInfo::regT0, scratch + i); } // Move everything from the scratch buffer to the stack; this also reifies constants. for (unsigned i = exit.m_values.size(); i--;) { ExitValue value = exit.m_values[i]; int operand = exit.m_values.operandForIndex(i); MacroAssembler::Address address = AssemblyHelpers::addressFor(operand); switch (value.kind()) { case ExitValueDead: jit.store64(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), address); break; case ExitValueConstant: jit.store64(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), address); break; case ExitValueInJSStack: case ExitValueInJSStackAsInt32: case ExitValueInJSStackAsInt52: case ExitValueInJSStackAsDouble: case ExitValueArgument: jit.load64(scratch + i, GPRInfo::regT0); jit.store64(GPRInfo::regT0, address); break; default: RELEASE_ASSERT_NOT_REACHED(); break; } } handleExitCounts(jit, exit); reifyInlinedCallFrames(jit, exit); jit.pop(MacroAssembler::framePointerRegister); jit.move(MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); jit.pop(MacroAssembler::framePointerRegister); jit.pop(GPRInfo::nonArgGPR0); // ignore the result. if (exit.m_lastSetOperand.isValid()) { jit.load64( AssemblyHelpers::addressFor(exit.m_lastSetOperand), GPRInfo::cachedResultRegister); } adjustAndJumpToTarget(jit, exit); LinkBuffer patchBuffer(*vm, &jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldShowDisassembly(), patchBuffer, ("FTL OSR exit #%u (bc#%u, %s) from %s, with operands = %s", exitID, exit.m_codeOrigin.bytecodeIndex, exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(exit.m_values)).data())); }
MacroAssemblerCodeRef osrExitGenerationThunkGenerator(VM* vm) { AssemblyHelpers jit(vm, 0); // Note that the "return address" will be the OSR exit ID. ptrdiff_t stackMisalignment = MacroAssembler::pushToSaveByteOffset(); // Pretend that we're a C call frame. jit.pushToSave(MacroAssembler::framePointerRegister); jit.move(MacroAssembler::stackPointerRegister, MacroAssembler::framePointerRegister); stackMisalignment += MacroAssembler::pushToSaveByteOffset(); // Now create ourselves enough stack space to give saveAllRegisters() a scratch slot. unsigned numberOfRequiredPops = 0; do { jit.pushToSave(GPRInfo::regT0); stackMisalignment += MacroAssembler::pushToSaveByteOffset(); numberOfRequiredPops++; } while (stackMisalignment % stackAlignmentBytes()); ScratchBuffer* scratchBuffer = vm->scratchBufferForSize(requiredScratchMemorySizeInBytes()); char* buffer = static_cast<char*>(scratchBuffer->dataBuffer()); saveAllRegisters(jit, buffer); // Tell GC mark phase how much of the scratch buffer is active during call. jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::nonArgGPR1); jit.storePtr(MacroAssembler::TrustedImmPtr(requiredScratchMemorySizeInBytes()), GPRInfo::nonArgGPR1); jit.loadPtr(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0); jit.peek( GPRInfo::argumentGPR1, (stackMisalignment - MacroAssembler::pushToSaveByteOffset()) / sizeof(void*)); MacroAssembler::Call functionCall = jit.call(); // At this point we want to make a tail call to what was returned to us in the // returnValueGPR. But at the same time as we do this, we must restore all registers. // The way we will accomplish this is by arranging to have the tail call target in the // return address "slot" (be it a register or the stack). jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0); // Make sure we tell the GC that we're not using the scratch buffer anymore. jit.move(MacroAssembler::TrustedImmPtr(scratchBuffer->activeLengthPtr()), GPRInfo::regT1); jit.storePtr(MacroAssembler::TrustedImmPtr(0), GPRInfo::regT1); // Prepare for tail call. while (numberOfRequiredPops--) jit.popToRestore(GPRInfo::regT1); jit.popToRestore(MacroAssembler::framePointerRegister); // At this point we're sitting on the return address - so if we did a jump right now, the // tail-callee would be happy. Instead we'll stash the callee in the return address and then // restore all registers. jit.restoreReturnAddressBeforeReturn(GPRInfo::regT0); restoreAllRegisters(jit, buffer); jit.ret(); LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID); patchBuffer.link(functionCall, compileFTLOSRExit); return FINALIZE_CODE(patchBuffer, ("FTL OSR exit generation thunk")); }
static void compileStub( unsigned exitID, JITCode* jitCode, OSRExit& exit, VM* vm, CodeBlock* codeBlock) { StackMaps::Record* record = nullptr; for (unsigned i = jitCode->stackmaps.records.size(); i--;) { record = &jitCode->stackmaps.records[i]; if (record->patchpointID == exit.m_stackmapID) break; } RELEASE_ASSERT(record->patchpointID == exit.m_stackmapID); // This code requires framePointerRegister is the same as callFrameRegister static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same"); CCallHelpers jit(vm, codeBlock); // We need scratch space to save all registers, to build up the JS stack, to deal with unwind // fixup, pointers to all of the objects we materialize, and the elements inside those objects // that we materialize. // Figure out how much space we need for those object allocations. unsigned numMaterializations = 0; size_t maxMaterializationNumArguments = 0; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { numMaterializations++; maxMaterializationNumArguments = std::max( maxMaterializationNumArguments, materialization->properties().size()); } ScratchBuffer* scratchBuffer = vm->scratchBufferForSize( sizeof(EncodedJSValue) * ( exit.m_values.size() + numMaterializations + maxMaterializationNumArguments) + requiredScratchMemorySizeInBytes() + codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t)); EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; EncodedJSValue* materializationPointers = scratch + exit.m_values.size(); EncodedJSValue* materializationArguments = materializationPointers + numMaterializations; char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments); uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes()); HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer; unsigned materializationCount = 0; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { materializationToPointer.add( materialization, materializationPointers + materializationCount++); } // Note that we come in here, the stack used to be as LLVM left it except that someone called pushToSave(). // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use // that slot for saveAllRegisters(). saveAllRegisters(jit, registerScratch); // Bring the stack back into a sane form and assert that it's sane. jit.popToRestore(GPRInfo::regT0); jit.checkStackPointerAlignment(); if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) { Profiler::Database& database = *vm->m_perBytecodeProfiler; Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); Profiler::OSRExit* profilerExit = compilation->addOSRExit( exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), exit.m_kind, exit.m_kind == UncountableInvalidation); jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); } // The remaining code assumes that SP/FP are in the same state that they were in the FTL's // call frame. // Get the call frame and tag thingies. // Restore the exiting function's callFrame value into a regT4 jit.move(MacroAssembler::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister); jit.move(MacroAssembler::TrustedImm64(TagMask), GPRInfo::tagMaskRegister); // Do some value profiling. if (exit.m_profileDataFormat != DataFormatNone) { record->locations[0].restoreInto(jit, jitCode->stackmaps, registerScratch, GPRInfo::regT0); reboxAccordingToFormat( exit.m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; if (ArrayProfile* arrayProfile = jit.baselineCodeBlockFor(codeOrigin)->getArrayProfile(codeOrigin.bytecodeIndex)) { jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1); jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID()); jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeOffset()), GPRInfo::regT1); jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); } } if (!!exit.m_valueProfile) jit.store64(GPRInfo::regT0, exit.m_valueProfile.getSpecFailBucket(0)); } // Materialize all objects. Don't materialize an object until all // of the objects it needs have been materialized. We break cycles // by populating objects late - we only consider an object as // needing another object if the later is needed for the // allocation of the former. HashSet<ExitTimeObjectMaterialization*> toMaterialize; for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) toMaterialize.add(materialization); while (!toMaterialize.isEmpty()) { unsigned previousToMaterializeSize = toMaterialize.size(); Vector<ExitTimeObjectMaterialization*> worklist; worklist.appendRange(toMaterialize.begin(), toMaterialize.end()); for (ExitTimeObjectMaterialization* materialization : worklist) { // Check if we can do anything about this right now. bool allGood = true; for (ExitPropertyValue value : materialization->properties()) { if (!value.value().isObjectMaterialization()) continue; if (!value.location().neededForMaterialization()) continue; if (toMaterialize.contains(value.value().objectMaterialization())) { // Gotta skip this one, since it needs a // materialization that hasn't been materialized. allGood = false; break; } } if (!allGood) continue; // All systems go for materializing the object. First we // recover the values of all of its fields and then we // call a function to actually allocate the beast. // We only recover the fields that are needed for the allocation. for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { const ExitPropertyValue& property = materialization->properties()[propertyIndex]; const ExitValue& value = property.value(); if (!property.location().neededForMaterialization()) continue; compileRecovery( jit, value, record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); } // This call assumes that we don't pass arguments on the stack. jit.setupArgumentsWithExecState( CCallHelpers::TrustedImmPtr(materialization), CCallHelpers::TrustedImmPtr(materializationArguments)); jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0); jit.call(GPRInfo::nonArgGPR0); jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization)); // Let everyone know that we're done. toMaterialize.remove(materialization); } // We expect progress! This ensures that we crash rather than looping infinitely if there // is something broken about this fixpoint. Or, this could happen if we ever violate the // "materializations form a DAG" rule. RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize); } // Now that all the objects have been allocated, we populate them // with the correct values. This time we can recover all the // fields, including those that are only needed for the allocation. for (ExitTimeObjectMaterialization* materialization : exit.m_materializations) { for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { const ExitValue& value = materialization->properties()[propertyIndex].value(); compileRecovery( jit, value, record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); } // This call assumes that we don't pass arguments on the stack jit.setupArgumentsWithExecState( CCallHelpers::TrustedImmPtr(materialization), CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)), CCallHelpers::TrustedImmPtr(materializationArguments)); jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0); jit.call(GPRInfo::nonArgGPR0); } // Save all state from wherever the exit data tells us it was, into the appropriate place in // the scratch buffer. This also does the reboxing. for (unsigned index = exit.m_values.size(); index--;) { compileRecovery( jit, exit.m_values[index], record, jitCode->stackmaps, registerScratch, materializationToPointer); jit.store64(GPRInfo::regT0, scratch + index); } // Henceforth we make it look like the exiting function was called through a register // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then // we restore the various things according to either exit.m_values or by copying from the // old frame, and finally we save the various callee-save registers into where the // restoration thunk would restore them from. // Before we start messing with the frame, we need to set aside any registers that the // FTL code was preserving. for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) { RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i); jit.load64( MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()), GPRInfo::regT0); jit.store64(GPRInfo::regT0, unwindScratch + i); } jit.load32(CCallHelpers::payloadFor(JSStack::ArgumentCount), GPRInfo::regT2); // Let's say that the FTL function had failed its arity check. In that case, the stack will // contain some extra stuff. // // We compute the padded stack space: // // paddedStackSpace = roundUp(codeBlock->numParameters - regT2 + 1) // // The stack will have regT2 + CallFrameHeaderSize stuff. // We want to make the stack look like this, from higher addresses down: // // - argument padding // - actual arguments // - call frame header // This code assumes that we're dealing with FunctionCode. RELEASE_ASSERT(codeBlock->codeType() == FunctionCode); jit.add32( MacroAssembler::TrustedImm32(-codeBlock->numParameters()), GPRInfo::regT2, GPRInfo::regT3); MacroAssembler::Jump arityIntact = jit.branch32( MacroAssembler::GreaterThanOrEqual, GPRInfo::regT3, MacroAssembler::TrustedImm32(0)); jit.neg32(GPRInfo::regT3); jit.add32(MacroAssembler::TrustedImm32(1 + stackAlignmentRegisters() - 1), GPRInfo::regT3); jit.and32(MacroAssembler::TrustedImm32(-stackAlignmentRegisters()), GPRInfo::regT3); jit.add32(GPRInfo::regT3, GPRInfo::regT2); arityIntact.link(&jit); CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin); // First set up SP so that our data doesn't get clobbered by signals. unsigned conservativeStackDelta = (exit.m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) + maxFrameExtentForSlowPathCall; conservativeStackDelta = WTF::roundUpToMultipleOf( stackAlignmentBytes(), conservativeStackDelta); jit.addPtr( MacroAssembler::TrustedImm32(-conservativeStackDelta), MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); jit.checkStackPointerAlignment(); RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters(); RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters(); for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) { if (!allFTLCalleeSaves.get(reg)) continue; unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg); RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg); if (reg.isGPR()) { GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr(); if (unwindIndex == UINT_MAX) { // The FTL compilation didn't preserve this register. This means that it also // didn't use the register. So its value at the beginning of OSR exit should be // preserved by the thunk. Luckily, we saved all registers into the register // scratch buffer, so we can restore them from there. jit.load64(registerScratch + offsetOfReg(reg), regToLoad); } else { // The FTL compilation preserved the register. Its new value is therefore // irrelevant, but we can get the value that was preserved by using the unwind // data. We've already copied all unwind-able preserved registers into the unwind // scratch buffer, so we can get it from there. jit.load64(unwindScratch + unwindIndex, regToLoad); } if (baselineRegisterOffset) jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); } else { FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr(); if (unwindIndex == UINT_MAX) jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad); else jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad); if (baselineRegisterOffset) jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); } } size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters(); // Now get state out of the scratch buffer and place it back into the stack. The values are // already reboxed so we just move them. for (unsigned index = exit.m_values.size(); index--;) { VirtualRegister reg = exit.m_values.virtualRegisterForIndex(index); if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves)) continue; jit.load64(scratch + index, GPRInfo::regT0); jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg)); } handleExitCounts(jit, exit); reifyInlinedCallFrames(jit, exit); adjustAndJumpToTarget(jit, exit, false); LinkBuffer patchBuffer(*vm, jit, codeBlock); exit.m_code = FINALIZE_CODE_IF( shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), patchBuffer, ("FTL OSR exit #%u (%s, %s) from %s, with operands = %s, and record = %s", exitID, toCString(exit.m_codeOrigin).data(), exitKindToString(exit.m_kind), toCString(*codeBlock).data(), toCString(ignoringContext<DumpContext>(exit.m_values)).data(), toCString(*record).data())); }