Exemple #1
0
int main(int argc, char *argv[]) {
 
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int rank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();
  
  int nCells = args.Input<int>("--nCells", "num cells",2);  
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0);
  int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0);
  int order = args.Input<int>("--order","order of approximation",2);
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5);
  double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0);
  double ipSwitch = args.Input<double>("--ipSwitch","point at which to switch to graph norm", 0.0); // default to 0 to remain on robust norm
  bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false);

  int H1Order = order+1; 
  int pToAdd = args.Input<int>("--pToAdd","test space enrichment", 2);

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  vector<double> e1,e2;
  e1.push_back(1.0);e1.push_back(0.0);
  e2.push_back(0.0);e2.push_back(1.0);

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  // first order term with magnitude alpha
  double alpha = 0.0;
  //  confusionBF->addTerm(alpha * u, v);

  ////////////////////   BUILD MESH   ///////////////////////


  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));  
  MeshInfo meshInfo(mesh); // gets info like cell measure, etc

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = Teuchos::rcp(new IP);

  /*
   // robust test norm
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );  
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh));
  ip->addTerm(hSwitch*sqrt(eps) * v->grad() );
  ip->addTerm(hSwitch*beta * v->grad() );
  ip->addTerm(hSwitch*tau->div() );
  
  // graph norm
  ip->addTerm( (one-hSwitch)*((1.0/eps) * tau + v->grad()));
  ip->addTerm( (one-hSwitch)*(beta * v->grad() - tau->div()));

  // regularizing terms
  ip->addTerm(C_h/sqrt(eps) * tau );    
  ip->addTerm(invSqrtH*v);
  */

   // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );  
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  FunctionPtr hSwitch = Teuchos::rcp(new HSwitch(ipSwitch,mesh));
  robIP->addTerm(sqrt(eps) * v->grad() );
  robIP->addTerm(beta * v->grad() );
  robIP->addTerm(tau->div() );
  // regularizing terms
  robIP->addTerm(C_h/sqrt(eps) * tau );    
  robIP->addTerm(invSqrtH*v);

  IPPtr graphIP = confusionBF->graphNorm();
  graphIP->addTerm(invSqrtH*v);
  //  graphIP->addTerm(C_h/sqrt(eps) * tau );    
  IPPtr switchIP = Teuchos::rcp(new IPSwitcher(robIP,graphIP,ipSwitch)); // rob IP for h>ipSwitch mesh size, graph norm o/w
  ip = switchIP;
    
  LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm);
  LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm);
  vVecLT->addTerm(sqrt(eps)*v->grad());
  tauVecLT->addTerm(C_h/sqrt(eps)*tau);

  LinearTermPtr restLT = Teuchos::rcp(new LinearTerm);
  restLT->addTerm(alpha*v);
  restLT->addTerm(invSqrtH*v);
  restLT = restLT + beta * v->grad();
  restLT = restLT + tau->div();

  ////////////////////   SPECIFY RHS   ///////////////////////

  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  //  f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );

  SpatialFilterPtr Inflow = Teuchos::rcp(new LeftInflow);
  SpatialFilterPtr wallBoundary = Teuchos::rcp(new WallBoundary);//MeshUtilities::rampBoundary(rampHeight);
  SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary);

  bc->addDirichlet(uhat, wallBoundary, one);
  //  bc->addDirichlet(uhat, wallBoundary, Teuchos::rcp(new WallSmoothBC(eps)));
  bc->addDirichlet(beta_n_u_minus_sigma_n, Inflow, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  BCPtr nullBC = Teuchos::rcp((BC*)NULL); RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL); IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );  
  mesh->registerSolution(backgroundFlow); // to trigger issue with p-refinements
  map<int, Teuchos::RCP<Function> > functionMap; functionMap[u->ID()] = Function::constant(3.14);
  backgroundFlow->projectOntoMesh(functionMap);

  // lower p to p = 1 at SINGULARITY only
  vector<int> ids;
  /*
  for (int i = 0;i<mesh->numActiveElements();i++){
    bool cellIDset = false;
    int cellID = mesh->activeElements()[i]->cellID();
    int elemOrder = mesh->cellPolyOrder(cellID)-1;
    FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID);
    bool vertexOnWall = false; bool vertexAtSingularity = false;
    for (int j = 0;j<4;j++){
      if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10){
	vertexAtSingularity = true;     
	cellIDset = true;
      }
    }	
    if (!vertexAtSingularity && elemOrder<2 && !cellIDset ){
      ids.push_back(cellID);
      cout << "celliD = " << cellID << endl;
    }
  }
  */
  ids.push_back(1);
  ids.push_back(3);
  mesh->pRefine(ids); // to put order = 1

  return 0;
  
  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));  
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual));
  FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual));
  map<int,FunctionPtr> errRepMap;
  errRepMap[v->ID()] = e_v;
  errRepMap[tau->ID()] = e_tau;
  FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false);
  FunctionPtr errV = vVecLT->evaluate(errRepMap,false);
  FunctionPtr errRest = restLT->evaluate(errRepMap,false);
  FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx());
  FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy());
  FunctionPtr restErr = errRest*errRest;

  RefinementStrategy refinementStrategy( solution, energyThreshold );    

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                     PRE REFINEMENTS 
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////  

  if (rank==0){
    cout << "Number of pre-refinements = " << numPreRefs << endl;
  }
  for (int i =0;i<=numPreRefs;i++){   
    vector<ElementPtr> elems = mesh->activeElements();
    vector<ElementPtr>::iterator elemIt;
    vector<int> wallCells;    
    for (elemIt=elems.begin();elemIt != elems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      int numSides = mesh->getElement(cellID)->numSides();
      FieldContainer<double> vertices(numSides,2); //for quads

      mesh->verticesForCell(vertices, cellID);
      bool cellIDset = false;	
      for (int j = 0;j<numSides;j++){ 	
	if ((abs(vertices(j,0)-.5)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset){ // if at singularity, i.e. if a vertex is (1,0)
	  wallCells.push_back(cellID);
	  cellIDset = true;
	}
      }
    }
    if (i<numPreRefs){
      refinementStrategy.refineCells(wallCells);
    }
  }

  double minSideLength = meshInfo.getMinCellSideLength() ;
  double minCellMeasure = meshInfo.getMinCellMeasure() ;
  if (rank==0){
    cout << "after prerefs, sqrt min cell measure = " << sqrt(minCellMeasure) << ", min side length = " << minSideLength << endl;
  }

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0;refIndex<numRefs;refIndex++){
    if (rank==0){
      cout << "on ref index " << refIndex << endl;
    }    
    rieszResidual->computeRieszRep(); // in preparation to get anisotropy    

    vector<int> cellIDs;
    refinementStrategy.getCellsAboveErrorThreshhold(cellIDs);

    map<int,double> energyError = solution->energyError();  

    map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true);    
    for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin();elemIt!=mesh->activeElements().end();elemIt++){
      int cellID = (*elemIt)->cellID();
      double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID];
      //      if (rank==0)
	//      cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl;
    }

    /*
    map<int,double> ratio,xErr,yErr;
    vector<ElementPtr> elems = mesh->activeElements();
    for (vector<ElementPtr>::iterator elemIt = elems.begin();elemIt!=elems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      ratio[cellID] = 0.0;
      xErr[cellID] = 0.0;
      yErr[cellID] = 0.0;
      if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end()){ // if this cell is above energy thresh
	ratio[cellID] = yErrMap[cellID]/xErrMap[cellID];
	xErr[cellID] = xErrMap[cellID];
	yErr[cellID] = yErrMap[cellID];
      }
    }   
    FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio));
    FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr));
    FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr));
    exporter.exportFunction(ratioFxn, string("ratio")+oss.str());
    exporter.exportFunction(xErrFxn, string("xErr")+oss.str());
    exporter.exportFunction(yErrFxn, string("yErr")+oss.str());
    */
    if (useAnisotropy){
      refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements
    }else{
      refinementStrategy.refine(rank==0); // no anisotropy
    }

    // lower p to p = 1 at SINGULARITY only
    vector<int> ids;
    for (int i = 0;i<mesh->numActiveElements();i++){
      int cellID = mesh->activeElements()[i]->cellID();
      int elemOrder = mesh->cellPolyOrder(cellID)-1;
      FieldContainer<double> vv(4,2); mesh->verticesForCell(vv, cellID);
      bool vertexOnWall = false; bool vertexAtSingularity = false;
      for (int j = 0;j<4;j++){
	if ((abs(vv(j,0)-.5) + abs(vv(j,1)))<1e-10)
	  vertexAtSingularity = true;
      }	
      if (!vertexAtSingularity && elemOrder<2){
	ids.push_back(cellID);
      }
    }
    mesh->pRefine(ids); // to put order = 1
    /*
      if (elemOrder>1){
	if (vertexAtSingularity){
	  vector<int> ids;
	  ids.push_back(cellID);
	  mesh->pRefine(ids,1-(elemOrder-1)); // to put order = 1
	  //	  mesh->pRefine(ids); // to put order = 1
	  if (rank==0)
	    cout << "p unrefining elem with elemOrder = " << elemOrder << endl;
	}
      }else{
	if (!vertexAtSingularity){
	  vector<int> ids;
	  ids.push_back(cellID);	    
	  mesh->pRefine(ids,2-elemOrder);
	}	  
      }
      */



    double minSideLength = meshInfo.getMinCellSideLength() ;
    if (rank==0)
      cout << "minSideLength is " << minSideLength << endl;

    solution->condensedSolve();
    std::ostringstream oss;
    oss << refIndex;
    
  }

  // final solve on final mesh
  solution->setWriteMatrixToFile(true,"K.mat");
  solution->condensedSolve();

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                                          CHECK CONDITIONING 
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////

  bool checkConditioning = true;
  if (checkConditioning){
    double minSideLength = meshInfo.getMinCellSideLength() ;
    StandardAssembler assembler(solution);
    double maxCond = 0.0;
    int maxCellID = 0;
    for (int i = 0;i<mesh->numActiveElements();i++){
      int cellID = mesh->getActiveElement(i)->cellID();
      FieldContainer<double> ipMat = assembler.getIPMatrix(mesh->getElement(cellID));
      double cond = SerialDenseWrapper::getMatrixConditionNumber(ipMat);
      if (cond>maxCond){
	maxCond = cond;
	maxCellID = cellID;
      }
    }
    if (rank==0){
      cout << "cell ID  " << maxCellID << " has minCellLength " << minSideLength << " and condition estimate " << maxCond << endl;
    }
    string ipMatName = string("ipMat.mat");
    ElementPtr maxCondElem = mesh->getElement(maxCellID);
    FieldContainer<double> ipMat = assembler.getIPMatrix(maxCondElem);
    SerialDenseWrapper::writeMatrixToMatlabFile(ipMatName,ipMat);   
  }
  ////////////////////   print to file   ///////////////////////
  
  if (rank==0){
    exporter.exportSolution(string("robustIP"));
    cout << endl;
  }
 
  return 0;
} 
bool LinearTermTests::testRieszInversionAsProjection()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  double eps = .01;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2;
  int pToAdd = 2;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int nCells = 2;
  int horizontalCells = nCells, verticalCells = nCells;
  // create a new mesh:
  MeshPtr myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells, confusionBF, H1Order, H1Order+pToAdd);

  ElementTypePtr elemType = myMesh->getElement(0)->elementType();
  BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh));

  vector<GlobalIndexType> cellIDs = myMesh->cellIDsOfTypeGlobal(elemType);
  bool createSideCacheToo = true;

  basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo);

  LinearTermPtr integrand = Teuchos::rcp(new LinearTerm); // residual

  FunctionPtr x = Function::xn(1);
  FunctionPtr y = Function::yn(1);
  FunctionPtr testFxn1 = x;
  FunctionPtr testFxn2 = y;
  FunctionPtr fxnToProject = x * y + 1.0;

  integrand->addTerm(fxnToProject * v);

  IPPtr ip_L2 = Teuchos::rcp(new IP);
  ip_L2->addTerm(v);
  ip_L2->addTerm(tau);

  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, ip_L2, integrand));
  riesz->computeRieszRep();

  FunctionPtr rieszFxn = RieszRep::repFunction(v,riesz);
  int numCells = basisCache->getPhysicalCubaturePoints().dimension(0);
  int numPts = basisCache->getPhysicalCubaturePoints().dimension(1);

  FieldContainer<double> valProject( numCells, numPts );
  FieldContainer<double> valExpected( numCells, numPts );

  rieszFxn->values(valProject,basisCache);
  fxnToProject->values(valExpected,basisCache);

//  int rank = Teuchos::GlobalMPISession::getRank();
//  if (rank==0) cout << "physicalCubaturePoints:\n" << basisCache->getPhysicalCubaturePoints();

  double maxDiff;
  double tol = 1e-12;
  success = TestSuite::fcsAgree(valProject,valExpected,tol,maxDiff);
  if (success==false)
  {
    cout << "Failed Riesz Inversion Projection test with maxDiff = " << maxDiff << endl;
    serializeOutput("valExpected", valExpected);
    serializeOutput("valProject", valProject);
    serializeOutput("physicalPoints", basisCache->getPhysicalCubaturePoints());
  }
  return allSuccess(success);
}
int main(int argc, char *argv[]) {
  // Process command line arguments
  if (argc > 1)
    numRefs = atof(argv[1]);
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif

  FunctionPtr beta = Teuchos::rcp(new Beta());

  ////////////////////////////////////////////////////////////////////
  // DEFINE VARIABLES 
  ////////////////////////////////////////////////////////////////////
  // test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  ////////////////////////////////////////////////////////////////////
  // CREATE MESH 
  ////////////////////////////////////////////////////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );

  FieldContainer<double> meshBoundary(4,2);

  meshBoundary(0,0) =  0.0; // x1
  meshBoundary(0,1) = -2.0; // y1
  meshBoundary(1,0) =  4.0;
  meshBoundary(1,1) = -2.0;
  meshBoundary(2,0) =  4.0;
  meshBoundary(2,1) =  2.0;
  meshBoundary(3,0) =  0.0;
  meshBoundary(3,1) =  2.0;

  int horizontalCells = 4, verticalCells = 4;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(meshBoundary, horizontalCells, verticalCells,
      confusionBF, H1Order, H1Order+pToAdd, false);

  ////////////////////////////////////////////////////////////////////
  // INITIALIZE BACKGROUND FLOW FUNCTIONS
  ////////////////////////////////////////////////////////////////////

  BCPtr nullBC = Teuchos::rcp((BC*)NULL);
  RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
  IPPtr nullIP = Teuchos::rcp((IP*)NULL);
  SolutionPtr prevTimeFlow = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );  
  SolutionPtr flowResidual = Teuchos::rcp(new Solution(mesh, nullBC, nullRHS, nullIP) );  

  FunctionPtr u_prev_time = Teuchos::rcp( new PreviousSolutionFunction(prevTimeFlow, u) );

  // ==================== SET INITIAL GUESS ==========================
  double u_free = 0.0;
  double sigma1_free = 0.0;
  double sigma2_free = 0.0;
  map<int, Teuchos::RCP<Function> > functionMap;
  functionMap[u->ID()] = Teuchos::rcp( new ConstantScalarFunction(u_free) );
  functionMap[sigma1->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma1_free) );
  functionMap[sigma2->ID()] = Teuchos::rcp( new ConstantScalarFunction(sigma2_free) );

  prevTimeFlow->projectOntoMesh(functionMap);
  // ==================== END SET INITIAL GUESS ==========================

  ////////////////////////////////////////////////////////////////////
  // DEFINE BILINEAR FORM
  ////////////////////////////////////////////////////////////////////

  // tau terms:
  confusionBF->addTerm(sigma1 / epsilon, tau->x());
  confusionBF->addTerm(sigma2 / epsilon, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////////////////////////////////////////////////////
  // TIMESTEPPING TERMS
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );

  double dt = 0.25;
  FunctionPtr invDt = Teuchos::rcp(new ScalarParamFunction(1.0/dt));    
  if (rank==0){
    cout << "Timestep dt = " << dt << endl;
  }
  if (transient)
  {
    confusionBF->addTerm( u, invDt*v );
    rhs->addTerm( u_prev_time * invDt * v );
  }

  ////////////////////////////////////////////////////////////////////
  // DEFINE INNER PRODUCT
  ////////////////////////////////////////////////////////////////////

  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / epsilon + v->grad() );
  qoptIP->addTerm( beta * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(epsilon) ); 
  if (!enforceLocalConservation)
  {
    robIP->addTerm( ip_scaling * v );
    if (transient)
      robIP->addTerm( invDt * v );
  }
  robIP->addTerm( sqrt(epsilon) * v->grad() );
  // Weight these two terms for inflow
  FunctionPtr ip_weight = Teuchos::rcp( new IPWeight() );
  robIP->addTerm( ip_weight * beta * v->grad() );
  robIP->addTerm( ip_weight * tau->div() );
  robIP->addTerm( ip_scaling/sqrt(epsilon) * tau );
  if (enforceLocalConservation)
    robIP->addZeroMeanTerm( v );

  ////////////////////////////////////////////////////////////////////
  // DEFINE RHS
  ////////////////////////////////////////////////////////////////////

  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////////////////////////////////////////////////////
  // DEFINE BC
  ////////////////////////////////////////////////////////////////////

  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );
  SpatialFilterPtr lBoundary = Teuchos::rcp( new LeftBoundary );
  SpatialFilterPtr tbBoundary = Teuchos::rcp( new TopBottomBoundary );
  SpatialFilterPtr rBoundary = Teuchos::rcp( new RightBoundary );
  FunctionPtr u0 = Teuchos::rcp( new ZeroBC );
  FunctionPtr u_inlet = Teuchos::rcp( new InletBC );
  // FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(beta_n_u_minus_sigma_n, lBoundary, u_inlet);
  bc->addDirichlet(beta_n_u_minus_sigma_n, tbBoundary, u0);
  bc->addDirichlet(uhat, rBoundary, u0);
  // pc->addConstraint(beta_n_u_minus_sigma_n - uhat == u0, rBoundary);

  ////////////////////////////////////////////////////////////////////
  // CREATE SOLUTION OBJECT
  ////////////////////////////////////////////////////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  // ==================== Enforce Local Conservation ==================
  if (enforceLocalConservation) {
    if (transient)
    {
      FunctionPtr conserved_rhs = u_prev_time * invDt;
      LinearTermPtr conserved_quantity = invDt * u;
      LinearTermPtr flux_part = Teuchos::rcp(new LinearTerm(-1.0, beta_n_u_minus_sigma_n));
      conserved_quantity->addTerm(flux_part, true);
      // conserved_quantity = conserved_quantity - beta_n_u_minus_sigma_n;
      solution->lagrangeConstraints()->addConstraint(conserved_quantity == conserved_rhs);
    }
    else
    {
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
    }
  }

  // ==================== Register Solutions ==========================
  mesh->registerSolution(solution);
  mesh->registerSolution(prevTimeFlow); // u_t(i-1)
  mesh->registerSolution(flowResidual); // u_t(i-1)

  double energyThreshold = 0.25; // for mesh refinements
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  ////////////////////////////////////////////////////////////////////
  // PSEUDO-TIME SOLVE STRATEGY 
  ////////////////////////////////////////////////////////////////////

  double time_tol = 1e-8;
  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    double L2_time_residual = 1e7;
    int timestepCount = 0;
    if (!transient)
      numTimeSteps = 1;
    while((L2_time_residual > time_tol) && (timestepCount < numTimeSteps))
    {
      solution->solve(false);
      // subtract solutions to get residual
      flowResidual->setSolution(solution); // reset previous time solution to current time sol
      flowResidual->addSolution(prevTimeFlow, -1.0);       
      double L2u = flowResidual->L2NormOfSolutionGlobal(u->ID());
      double L2sigma1 = flowResidual->L2NormOfSolutionGlobal(sigma1->ID());
      double L2sigma2 = flowResidual->L2NormOfSolutionGlobal(sigma2->ID());
      L2_time_residual = sqrt(L2u*L2u + L2sigma1*L2sigma1 + L2sigma2*L2sigma2);
      cout << endl << "Timestep: " << timestepCount << ", dt = " << dt << ", Time residual = " << L2_time_residual << endl;    	

      if (rank == 0)
      {
        stringstream outfile;
        if (transient)
          outfile << "TransientConfusion_" << refIndex << "_" << timestepCount;
        else
          outfile << "TransientConfusion_" << refIndex;
        solution->writeToVTK(outfile.str(), 5);
      }

      //////////////////////////////////////////////////////////////////////////
      // Check conservation by testing against one
      //////////////////////////////////////////////////////////////////////////
      VarPtr testOne = varFactory.testVar("1", CONSTANT_SCALAR);
      // Create a fake bilinear form for the testing
      BFPtr fakeBF = Teuchos::rcp( new BF(varFactory) );
      // Define our mass flux
      FunctionPtr flux_current_time = Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      FunctionPtr delta_u = Teuchos::rcp( new PreviousSolutionFunction(flowResidual, u) );
      LinearTermPtr surfaceFlux = -1.0 * flux_current_time * testOne;
      LinearTermPtr volumeChange = invDt * delta_u * testOne;
      LinearTermPtr massFluxTerm;
      if (transient)
      {
        massFluxTerm = volumeChange;
        // massFluxTerm->addTerm(surfaceFlux);
      }
      else
      {
        massFluxTerm = surfaceFlux;
      }
      // cout << "surface case = " << surfaceFlux->summands()[0].first->boundaryValueOnly() << " volume case = " << volumeChange->summands()[0].first->boundaryValueOnly() << endl;

      // FunctionPtr massFlux= Teuchos::rcp( new PreviousSolutionFunction(solution, beta_n_u_minus_sigma_n) );
      // LinearTermPtr massFluxTerm = massFlux * testOne;

      Teuchos::RCP<shards::CellTopology> quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
      DofOrderingFactory dofOrderingFactory(fakeBF);
      int fakeTestOrder = H1Order;
      DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(fakeTestOrder, *quadTopoPtr);

      int testOneIndex = testOrdering->getDofIndex(testOne->ID(),0);
      vector< ElementTypePtr > elemTypes = mesh->elementTypes(); // global element types
      map<int, double> massFluxIntegral; // cellID -> integral
      double maxMassFluxIntegral = 0.0;
      double totalMassFlux = 0.0;
      double totalAbsMassFlux = 0.0;
      for (vector< ElementTypePtr >::iterator elemTypeIt = elemTypes.begin(); elemTypeIt != elemTypes.end(); elemTypeIt++) 
      {
        ElementTypePtr elemType = *elemTypeIt;
        vector< ElementPtr > elems = mesh->elementsOfTypeGlobal(elemType);
        vector<int> cellIDs;
        for (int i=0; i<elems.size(); i++) {
          cellIDs.push_back(elems[i]->cellID());
        }
        FieldContainer<double> physicalCellNodes = mesh->physicalCellNodesGlobal(elemType);
        BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType,mesh) );
        basisCache->setPhysicalCellNodes(physicalCellNodes,cellIDs,true); // true: create side caches
        FieldContainer<double> cellMeasures = basisCache->getCellMeasures();
        FieldContainer<double> fakeRHSIntegrals(elems.size(),testOrdering->totalDofs());
        massFluxTerm->integrate(fakeRHSIntegrals,testOrdering,basisCache,true); // true: force side evaluation
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          // pick out the ones for testOne:
          massFluxIntegral[cellID] = fakeRHSIntegrals(i,testOneIndex);
        }
        // find the largest:
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
        }
        for (int i=0; i<elems.size(); i++) {
          int cellID = cellIDs[i];
          maxMassFluxIntegral = max(abs(massFluxIntegral[cellID]), maxMassFluxIntegral);
          totalMassFlux += massFluxIntegral[cellID];
          totalAbsMassFlux += abs( massFluxIntegral[cellID] );
        }
      }

      // Print results from processor with rank 0
      if (rank == 0)
      {
        cout << "largest mass flux: " << maxMassFluxIntegral << endl;
        cout << "total mass flux: " << totalMassFlux << endl;
        cout << "sum of mass flux absolute value: " << totalAbsMassFlux << endl;
      }

      prevTimeFlow->setSolution(solution); // reset previous time solution to current time sol
      timestepCount++;
    }

    if (refIndex < numRefs){
      if (rank==0){
        cout << "Performing refinement number " << refIndex << endl;
      }     
      refinementStrategy->refine(rank==0);    
      // RESET solution every refinement - make sure discretization error doesn't creep in
      // prevTimeFlow->projectOntoMesh(functionMap);
    }
  }

  return 0;
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  int polyOrder = 3;
  int pToAdd = 2; // for tests

  // define our manufactured solution or problem bilinear form:
  double epsilon = 1e-2;
  bool useTriangles = false;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int H1Order = polyOrder + 1;
  int horizontalCells = 1, verticalCells = 1;

  double energyThreshold = 0.2; // for mesh refinements
  double nonlinearStepSize = 0.5;
  double nonlinearRelativeEnergyTolerance = 0.015; // used to determine convergence of the nonlinear solution

  ////////////////////////////////////////////////////////////////////
  // SET UP PROBLEM
  ////////////////////////////////////////////////////////////////////

  Teuchos::RCP<BurgersBilinearForm> oldBurgersBF = Teuchos::rcp(new BurgersBilinearForm(epsilon));

  // new-style bilinear form definition
  VarFactory varFactory;
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  VarPtr tau = varFactory.testVar("\\tau",HDIV);
  VarPtr v = varFactory.testVar("v",HGRAD);
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells, bf, H1Order, H1Order+pToAdd, useTriangles);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  Teuchos::RCP<Solution> backgroundFlow = Teuchos::rcp(new Solution(mesh, Teuchos::rcp((BC*)NULL) , Teuchos::rcp((RHS*)NULL), Teuchos::rcp((DPGInnerProduct*)NULL))); // create null solution
  oldBurgersBF->setBackgroundFlow(backgroundFlow);

  // tau parts:
  // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK
  bf->addTerm(sigma1 / epsilon, tau->x());
  bf->addTerm(sigma2 / epsilon, tau->y());
  bf->addTerm(u, tau->div());
  bf->addTerm( - uhat, tau->dot_normal() );

  vector<double> e1(2); // (1,0)
  e1[0] = 1;
  vector<double> e2(2); // (0,1)
  e2[1] = 1;

  FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) );
  FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) );

  // v:
  // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK
  bf->addTerm( sigma1, v->dx() );
  bf->addTerm( sigma2, v->dy() );
  bf->addTerm( -u, beta * v->grad());
  bf->addTerm( beta_n_u_minus_sigma_hat, v);

  // ==================== SET INITIAL GUESS ==========================
  mesh->registerSolution(backgroundFlow);

  map<int, Teuchos::RCP<AbstractFunction> > functionMap;
  functionMap[BurgersBilinearForm::U] = Teuchos::rcp(new InitialGuess());
  functionMap[BurgersBilinearForm::SIGMA_1] = Teuchos::rcp(new ZeroFunction());
  functionMap[BurgersBilinearForm::SIGMA_2] = Teuchos::rcp(new ZeroFunction());

  backgroundFlow->projectOntoMesh(functionMap);

  // ==================== END SET INITIAL GUESS ==========================
  // compare stiffness matrices for first linear step:
  int trialOrder = 1;
  pToAdd = 0;
  int testOrder = trialOrder + pToAdd;
  CellTopoPtr quadTopoPtr = Teuchos::rcp(new shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() ));
  DofOrderingFactory dofOrderingFactory(bf);
  DofOrderingPtr testOrdering = dofOrderingFactory.testOrdering(testOrder, *quadTopoPtr);
  DofOrderingPtr trialOrdering = dofOrderingFactory.trialOrdering(trialOrder, *quadTopoPtr);

  int numCells = 1;
  // just use testOrdering for both trial and test spaces (we only use to define BasisCache)
  ElementTypePtr elemType  = Teuchos::rcp( new ElementType(trialOrdering, testOrdering, quadTopoPtr) );
  BasisCachePtr basisCache = Teuchos::rcp( new BasisCache(elemType) );
  quadPoints.resize(1,quadPoints.dimension(0),quadPoints.dimension(1));
  basisCache->setPhysicalCellNodes(quadPoints,vector<int>(1),true); // true: do create side cache
  FieldContainer<double> cellSideParities(numCells,quadTopoPtr->getSideCount());
  cellSideParities.initialize(1.0); // not worried here about neighbors actually having opposite parity -- just want the two BF implementations to agree...
  FieldContainer<double> expectedValues(numCells, testOrdering->totalDofs(), trialOrdering->totalDofs() );
  FieldContainer<double> actualValues(numCells, testOrdering->totalDofs(), trialOrdering->totalDofs() );
  oldBurgersBF->stiffnessMatrix(expectedValues, elemType, cellSideParities, basisCache);
  bf->stiffnessMatrix(actualValues, elemType, cellSideParities, basisCache);

  // compare beta's as well
  FieldContainer<double> expectedBeta = oldBurgersBF->getBeta(basisCache);
  Teuchos::Array<int> dim;
  expectedBeta.dimensions(dim);
  FieldContainer<double> actualBeta(dim);
  beta->values(actualBeta,basisCache);

  double tol = 1e-14;
  double maxDiff;
  if (rank == 0)
  {
    if ( ! TestSuite::fcsAgree(expectedBeta,actualBeta,tol,maxDiff) )
    {
      cout << "Test failed: old Burgers beta differs from new; maxDiff " << maxDiff << ".\n";
      cout << "Old beta: \n" << expectedBeta;
      cout << "New beta: \n" << actualBeta;
    }
    else
    {
      cout << "Old and new Burgers beta agree!!\n";
    }

    if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) )
    {
      cout << "Test failed: old Burgers stiffness differs from new; maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New: \n" << actualValues;
      cout << "TrialDofOrdering: \n" << *trialOrdering;
      cout << "TestDofOrdering:\n" << *testOrdering;
    }
    else
    {
      cout << "Old and new Burgers stiffness agree!!\n";
    }
  }

  // define our inner product:
  // Teuchos::RCP<BurgersInnerProduct> ip = Teuchos::rcp( new BurgersInnerProduct( bf, mesh ) );

  // function to scale the squared guy by epsilon/h
  FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
  IPPtr ip = Teuchos::rcp( new IP );
  ip->addTerm(tau);
  ip->addTerm(tau->div());
  ip->addTerm( epsilonOverHScaling * v );
  ip->addTerm( sqrt(sqrt(epsilon)) * v->grad() );
  ip->addTerm( beta * v->grad() );

  // use old IP instead, for now...
  Teuchos::RCP<BurgersInnerProduct> oldIP = Teuchos::rcp( new BurgersInnerProduct( oldBurgersBF, mesh ) );

  expectedValues.resize(numCells, testOrdering->totalDofs(), testOrdering->totalDofs() );
  actualValues.resize  (numCells, testOrdering->totalDofs(), testOrdering->totalDofs() );

  BasisCachePtr ipBasisCache = Teuchos::rcp( new BasisCache(elemType, true) ); // true: test vs. test
  ipBasisCache->setPhysicalCellNodes(quadPoints,vector<int>(1),false); // false: don't create side cache

  oldIP->computeInnerProductMatrix(expectedValues,testOrdering,ipBasisCache);
  ip->computeInnerProductMatrix(actualValues,testOrdering,ipBasisCache);

  tol = 1e-14;
  maxDiff = 0.0;
  if (rank==0)
  {
    if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) )
    {
      cout << "Test failed: old inner product differs from new IP; maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New IP: \n" << actualValues;
      cout << "testOrdering: \n" << *testOrdering;
    }
    else
    {
      cout << "Old inner product and new IP agree!!\n";
    }
  }

  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  // the RHS as implemented by BurgersProblem divides the first component of beta by 2.0
  // so we follow that.  I've not done the math; just imitating the code...
  Teuchos::RCP<RHSEasy> otherRHS = Teuchos::rcp( new RHSEasy );
  vector<double> e1_div2 = e1;
  e1_div2[0] /= 2.0;
  FunctionPtr rhsBeta = (e1_div2 * beta * e1 + Teuchos::rcp( new ConstantVectorFunction( e2 ) )) * u_prev;
  otherRHS->addTerm( rhsBeta * v->grad() - u_prev * tau->div() );

  Teuchos::RCP<BurgersProblem> problem = Teuchos::rcp( new BurgersProblem(oldBurgersBF) );

  expectedValues.resize(numCells, testOrdering->totalDofs() );
  actualValues.resize  (numCells, testOrdering->totalDofs() );

  problem->integrateAgainstStandardBasis(expectedValues,testOrdering,basisCache);
  otherRHS->integrateAgainstStandardBasis(actualValues,testOrdering,basisCache);

  tol = 1e-14;
  maxDiff = 0.0;
  if (rank==0)
  {
    if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) )
    {
      cout << "Test failed: old RHS differs from new (\"otherRHS\"); maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New: \n" << actualValues;
      cout << "testOrdering: \n" << *testOrdering;
    }
    else
    {
      cout << "Old and new RHS (\"otherRHS\") agree!!\n";
    }
  }

  FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev;
  rhs->addTerm( (e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div());

  if (! functionsAgree(e2 * u_prev,
                       Teuchos::rcp( new ConstantVectorFunction( e2 ) ) * u_prev,
                       basisCache) )
  {
    cout << "two like functions differ...\n";
  }

  FunctionPtr e1_f = Teuchos::rcp( new ConstantVectorFunction( e1 ) );
  FunctionPtr e2_f = Teuchos::rcp( new ConstantVectorFunction( e2 ) );
  FunctionPtr one  = Teuchos::rcp( new ConstantScalarFunction( 1.0 ) );
  if (! functionsAgree( Teuchos::rcp( new ProductFunction(e1_f, (e1_f + e2_f)) ), // e1_f * (e1_f + e2_f)
                        one,
                        basisCache) )
  {
    cout << "two like functions differ...\n";
  }

  if (! functionsAgree(u_prev_squared_div2,
                       (e1_div2 * beta) * u_prev,
                       basisCache) )
  {
    cout << "two like functions differ...\n";
  }

  if (! functionsAgree(e1 * u_prev_squared_div2,
                       (e1_div2 * beta * e1) * u_prev,
                       basisCache) )
  {
    cout << "two like functions differ...\n";
  }

  if (! functionsAgree(e1 * u_prev_squared_div2 + e2 * u_prev,
                       (e1_div2 * beta * e1 + Teuchos::rcp( new ConstantVectorFunction( e2 ) )) * u_prev,
                       basisCache) )
  {
    cout << "two like functions differ...\n";
  }

  problem->integrateAgainstStandardBasis(expectedValues,testOrdering,basisCache);
  rhs->integrateAgainstStandardBasis(actualValues,testOrdering,basisCache);

  tol = 1e-14;
  maxDiff = 0.0;
  if (rank==0)
  {
    if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) )
    {
      cout << "Test failed: old RHS differs from new (\"rhs\"); maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New: \n" << actualValues;
      cout << "testOrdering: \n" << *testOrdering;
    }
    else
    {
      cout << "Old and new RHS (\"rhs\") agree!!\n";
    }
  }

  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
  LinearTermPtr sigma_hat = beta * uhat->times_normal() - beta_n_u_minus_sigma_hat;
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  pc->addConstraint(sigma_hat==zero,outflowBoundary);

  FunctionPtr u0 = Teuchos::rcp( new U0 );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  Teuchos::RCP<BCEasy> inflowBC = Teuchos::rcp( new BCEasy );
  FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0;
  inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary, ( e1 * u0_squared_div_2 + e2 * u0) * n );

  // create a solution object
  Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
  mesh->registerSolution(solution);

  solution->setFilter(pc);

  // old penalty filter:
  Teuchos::RCP<LocalStiffnessMatrixFilter> penaltyBC = Teuchos::rcp(new PenaltyMethodFilter(problem));
//  solution->setFilter(penaltyBC);

  // compare old and new filters
  elemType = mesh->getElement(0)->elementType();
  trialOrdering = elemType->trialOrderPtr;
  testOrdering = elemType->testOrderPtr;
  // stiffness
  expectedValues.resize(numCells, trialOrdering->totalDofs(), trialOrdering->totalDofs() );
  actualValues.resize  (numCells, trialOrdering->totalDofs(), trialOrdering->totalDofs() );
  expectedValues.initialize(0.0);
  actualValues.initialize(0.0);
  // load
  FieldContainer<double> expectedLoad(numCells, trialOrdering->totalDofs() );
  FieldContainer<double> actualLoad(numCells, trialOrdering->totalDofs() );

  penaltyBC->filter(expectedValues,expectedLoad,basisCache,mesh,problem);
  pc->filter(actualValues,actualLoad,basisCache,mesh,problem);

  maxDiff = 0.0;
  if (rank==0)
  {
    if ( ! TestSuite::fcsAgree(expectedValues,actualValues,tol,maxDiff) )
    {
      cout << "Test failed: old penalty stiffness differs from new; maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New: \n" << actualValues;
      cout << "trialOrdering: \n" << *trialOrdering;
    }
    else
    {
      cout << "Old and new penalty stiffness agree!!\n";
    }
  }
  if (rank==0)
  {
    if ( ! TestSuite::fcsAgree(expectedLoad,actualLoad,tol,maxDiff) )
    {
      cout << "Test failed: old penalty load differs from new; maxDiff " << maxDiff << ".\n";
      cout << "Old: \n" << expectedValues;
      cout << "New: \n" << actualValues;
      cout << "trialOrdering: \n" << *trialOrdering;
    }
    else
    {
      cout << "Old and new penalty load agree!!\n";
    }
  }

  // define refinement strategy:
  Teuchos::RCP<RefinementStrategy> refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

  // =================== END INITIALIZATION CODE ==========================

  // refine the spectral mesh, for comparability with the original Burgers' driver
  mesh->hRefine(vector<int>(1),RefinementPattern::regularRefinementPatternQuad());

  int numRefs = 5;

  Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize));
  Teuchos::RCP<NonlinearSolveStrategy> solveStrategy = Teuchos::rcp(
        new NonlinearSolveStrategy(backgroundFlow, solution, stepSize, nonlinearRelativeEnergyTolerance)
      );

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    solveStrategy->solve(rank==0);
    refinementStrategy->refine(rank==0); // print to console on rank 0
  }

  // one more nonlinear solve on refined mesh
  int numNRSteps = 5;
  for (int i=0; i<numNRSteps; i++)
  {
    solution->solve(false);
    backgroundFlow->addSolution(solution,1.0);
  }

  if (rank==0)
  {
    backgroundFlow->writeFieldsToFile(BurgersBilinearForm::U, "u_ref.m");
    backgroundFlow->writeFieldsToFile(BurgersBilinearForm::SIGMA_1, "sigmax.m");
    backgroundFlow->writeFieldsToFile(BurgersBilinearForm::SIGMA_2, "sigmay.m");
    solution->writeFluxesToFile(BurgersBilinearForm::U_HAT, "du_hat_ref.dat");
  }

  return 0;

}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("uhat");
  VarPtr sigma_n = varFactory.fluxVar("fhat");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("sigma1");
  VarPtr sigma2 = varFactory.fieldVar("sigma2");

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr bf = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  bf->addTerm(sigma1, tau->x());
  bf->addTerm(sigma2, tau->y());
  bf->addTerm(u, tau->div());
  bf->addTerm(-uhat, tau->dot_normal());

  // v terms:
  bf->addTerm( sigma1, v->dx() );
  bf->addTerm( sigma2, v->dy() );
  bf->addTerm( -sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  IPPtr ip = bf->graphNorm();

  ////////////////////   SPECIFY RHS   ///////////////////////
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(1.0) );
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp( new PenaltyConstraints );

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  FunctionPtr one = Teuchos::rcp( new ConstantScalarFunction(1.0) );

  SpatialFilterPtr inflow = Teuchos::rcp( new Inflow );
  bc->addDirichlet(uhat, inflow, zero);

  SpatialFilterPtr leadingWedge = Teuchos::rcp( new LeadingWedge );
  bc->addDirichlet(uhat, leadingWedge, zero);

  SpatialFilterPtr trailingWedge = Teuchos::rcp( new TrailingWedge );
  bc->addDirichlet(sigma_n, trailingWedge, zero);
  // bc->addDirichlet(uhat, trailingWedge, zero);

  SpatialFilterPtr top = Teuchos::rcp( new Top );
  bc->addDirichlet(uhat, top, zero);

  SpatialFilterPtr outflow = Teuchos::rcp( new Outflow );
  bc->addDirichlet(uhat, outflow, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  bool allQuads = true;
  int H1Order = 3, pToAdd = 2;
  // define nodes for mesh
  vector< FieldContainer<double> > vertices;
  FieldContainer<double> pt(2);
  vector< vector<int> > elementIndices;
  vector<int> q(4);
  vector<int> t(3);

  if (allQuads)
  {
    pt(0) = -halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);

    q[0] = 0;
    q[1] = 1;
    q[2] = 4;
    q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 1;
    q[1] = 2;
    q[2] = 3;
    q[3] = 4;
    elementIndices.push_back(q);
  }
  else
  {
    pt(0) = -halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) = -1;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  0;
    vertices.push_back(pt);
    pt(0) =  halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) =  0;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  halfwidth;
    vertices.push_back(pt);
    pt(0) = -halfwidth;
    pt(1) =  0;
    vertices.push_back(pt);

    t[0] = 0;
    t[1] = 1;
    t[2] = 7;
    elementIndices.push_back(t);
    t[0] = 1;
    t[1] = 2;
    t[2] = 3;
    elementIndices.push_back(t);
    q[0] = 1;
    q[1] = 3;
    q[2] = 4;
    q[3] = 5;
    elementIndices.push_back(q);
    q[0] = 7;
    q[1] = 1;
    q[2] = 5;
    q[3] = 6;
    elementIndices.push_back(q);
  }

  Teuchos::RCP<Mesh> mesh = Teuchos::rcp( new Mesh(vertices, elementIndices, bf, H1Order, pToAdd) );

  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  for (int refIndex=0; refIndex<=numRefs; refIndex++)
  {
    solution->solve(false);

    if (rank==0)
    {
      stringstream outfile;
      outfile << "poissonwedge_" << refIndex;
      solution->writeToVTK(outfile.str());

      // Check local conservation
      FunctionPtr flux = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma_n) );
      FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
      Teuchos::Tuple<double, 3> fluxImbalances = checkConservation(flux, zero, varFactory, mesh);
      cout << "Mass flux: Largest Local = " << fluxImbalances[0]
           << ", Global = " << fluxImbalances[1] << ", Sum Abs = " << fluxImbalances[2] << endl;
    }

    if (refIndex < numRefs)
    {
      // refinementStrategy.refine(rank==0); // print to console on rank 0
      vector<int> cellsToRefine;
      vector<int> cells_h;
      vector<int> cells_p;
      refinementStrategy.getCellsAboveErrorThreshhold(cellsToRefine);
      for (int i=0; i < cellsToRefine.size(); i++)
        if (sqrt(mesh->getCellMeasure(cellsToRefine[i])) < 1e-3)
        {
          int pOrder = mesh->cellPolyOrder(cellsToRefine[i]);
          if (allQuads)
            cells_p.push_back(cellsToRefine[i]);
          else if (pOrder < 8)
            cells_p.push_back(cellsToRefine[i]);
          else
            cout << "Reached cell size and polynomial order limits" << endl;
          //   cells_h.push_back(cellsToRefine[i]);
        }
        else
          cells_h.push_back(cellsToRefine[i]);
      refinementStrategy.pRefineCells(mesh, cells_p);
      refinementStrategy.hRefineCells(mesh, cells_h);
    }
  }

  return 0;
}
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  bool useCompliantGraphNorm = false;
  bool enforceOneIrregularity = true;
  bool writeStiffnessMatrices = false;
  bool writeWorstCaseGramMatrices = false;
  int numRefs = 10;
  
  // problem parameters:
  double eps = 1e-8;
  vector<double> beta_const;
  beta_const.push_back(2.0);
  beta_const.push_back(1.0);
  
  int k = 2, delta_k = 2;
  
  Teuchos::CommandLineProcessor cmdp(false,true); // false: don't throw exceptions; true: do return errors for unrecognized options
  
  cmdp.setOption("polyOrder",&k,"polynomial order for field variable u");
  cmdp.setOption("delta_k", &delta_k, "test space polynomial order enrichment");
  cmdp.setOption("numRefs",&numRefs,"number of refinements");
  cmdp.setOption("eps", &eps, "epsilon");
  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
#ifdef HAVE_MPI
    MPI_Finalize();
#endif
    return -1;
  }
  
  int H1Order = k + 1;
  
  if (rank==0) {
    string normChoice = useCompliantGraphNorm ? "unit-compliant graph norm" : "standard graph norm";
    cout << "Using " << normChoice << "." << endl;
    cout << "eps = " << eps << endl;
    cout << "numRefs = " << numRefs << endl;
    cout << "p = " << k << endl;
  }
  
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u;
  if (useCompliantGraphNorm) {
    u = varFactory.fieldVar("u",HGRAD);
  } else {
    u = varFactory.fieldVar("u");
  }
  
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  
  if (!useCompliantGraphNorm) {
    qoptIP->addTerm( tau / eps + v->grad() );
    qoptIP->addTerm( beta_const * v->grad() - tau->div() );
    
    qoptIP->addTerm( v );
  } else {
    FunctionPtr h = Teuchos::rcp( new hFunction );
    
    // here, we're aiming at optimality in 1/h^2 |u|^2 + 1/eps^2 |sigma|^2
    
    qoptIP->addTerm( tau + eps * v->grad() );
    qoptIP->addTerm( h * beta_const * v->grad() - tau->div() );
    qoptIP->addTerm(v);
    qoptIP->addTerm(tau);
  }
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );
  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, outflowBoundary, u0);

  bc->addDirichlet(uhat, inflowBoundary, u0);
  
//  Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
//  pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // create a new mesh on a single-cell, unit square domain
  Teuchos::RCP<Mesh> mesh = MeshFactory::quadMeshMinRule(confusionBF, H1Order, delta_k);
  
  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );
//  solution->setFilter(pc);
  
  double energyThreshold = 0.2; // for mesh refinements
  
  bool useRieszRepBasedRefStrategy = true;
  
  if (rank==0) {
    if (useRieszRepBasedRefStrategy) {
      cout << "using RieszRep-based refinement strategy.\n";
    } else {
      cout << "using solution-based refinement strategy.\n";
    }
  }
  Teuchos::RCP<RefinementStrategy> refinementStrategy;
  if (!useRieszRepBasedRefStrategy) {
    refinementStrategy = Teuchos::rcp( new RefinementStrategy( solution, energyThreshold ) );
  } else {
    LinearTermPtr residual = confusionBF->testFunctional(solution) - rhs->linearTerm();
    refinementStrategy = Teuchos::rcp( new RefinementStrategy( mesh, residual, qoptIP, energyThreshold ) );
  }
  
  refinementStrategy->setReportPerCellErrors(true);
  refinementStrategy->setEnforceOneIrregularity(enforceOneIrregularity);
  
  for (int refIndex=0; refIndex<numRefs; refIndex++){
    if (writeStiffnessMatrices) {
      string stiffnessFile = fileNameForRefinement("confusion_stiffness", refIndex);
      solution->setWriteMatrixToFile(true, stiffnessFile);
    }
    solution->solve();
    if (writeWorstCaseGramMatrices) {
      string gramFile = fileNameForRefinement("confusion_gram", refIndex);
      bool jacobiScaling = true;
      double condNum = MeshUtilities::computeMaxLocalConditionNumber(qoptIP, mesh, jacobiScaling, gramFile);
      if (rank==0) {
        cout << "estimated worst-case Gram matrix condition number: " << condNum << endl;
        cout << "putative worst-case Gram matrix written to file " << gramFile << endl;
      }
    }
    if (refIndex == numRefs-1) { // write out second-to-last mesh
      if (rank==0)
        GnuPlotUtil::writeComputationalMeshSkeleton("confusionMesh", mesh, true);
    }
    refinementStrategy->refine(rank==0); // print to console on rank 0
  }
  if (writeStiffnessMatrices) {
    string stiffnessFile = fileNameForRefinement("confusion_stiffness", numRefs);
    solution->setWriteMatrixToFile(true, stiffnessFile);
  }
  if (writeWorstCaseGramMatrices) {
    string gramFile = fileNameForRefinement("confusion_gram", numRefs);
    bool jacobiScaling = true;
    double condNum = MeshUtilities::computeMaxLocalConditionNumber(qoptIP, mesh, jacobiScaling, gramFile);
    if (rank==0) {
      cout << "estimated worst-case Gram matrix condition number: " << condNum << endl;
      cout << "putative worst-case Gram matrix written to file " << gramFile << endl;
    }
  }
  // one more solve on the final refined mesh:
  solution->solve();
  
#ifdef HAVE_EPETRAEXT_HDF5
  ostringstream dir_name;
  dir_name << "confusion_eps" << eps;
  HDF5Exporter exporter(mesh,dir_name.str());
  exporter.exportSolution(solution, varFactory, 0);
  if (rank==0) cout << "wrote solution to " << dir_name.str() << endl;
#endif

  
  return 0;
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta_const;
  beta_const.push_back(1.0);
  beta_const.push_back(0.0);
//  FunctionPtr beta = Teuchos::rcp(new Beta());

  double eps = 1e-2;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////
  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////
  // mathematician's norm
  IPPtr mathIP = Teuchos::rcp(new IP());
  mathIP->addTerm(tau);
  mathIP->addTerm(tau->div());

  mathIP->addTerm(v);
  mathIP->addTerm(v->grad());

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta_const * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) );
  if (enforceLocalConservation)
  {
    robIP->addZeroMeanTerm( v );
  }
  else
  {
    robIP->addTerm( ip_scaling * v );
  }

  robIP->addTerm( sqrt(eps) * v->grad() );
  robIP->addTerm( beta_const * v->grad() );
  robIP->addTerm( tau->div() );
  robIP->addTerm( ip_scaling/sqrt(eps) * tau );

  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  //  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );

  SpatialFilterPtr inflowTop = Teuchos::rcp(new InflowLshapeTop);
  SpatialFilterPtr inflowBot = Teuchos::rcp(new InflowLshapeBottom);
  SpatialFilterPtr LshapeBot1 = Teuchos::rcp(new LshapeBottom1);
  SpatialFilterPtr LshapeBot2 = Teuchos::rcp(new LshapeBottom2);
  SpatialFilterPtr Top = Teuchos::rcp(new LshapeTop);
  SpatialFilterPtr Out = Teuchos::rcp(new LshapeOutflow);

  FunctionPtr u0 = Teuchos::rcp( new U0 );
  bc->addDirichlet(uhat, LshapeBot1, u0);
  bc->addDirichlet(uhat, LshapeBot2, u0);
  bc->addDirichlet(uhat, Top, u0);
  bc->addDirichlet(uhat, Out, u0);

  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  //  bc->addDirichlet(uhat, inflowBot, u0);
  FunctionPtr u0Top = Teuchos::rcp(new ParabolicProfile);
  FunctionPtr u0Bot = Teuchos::rcp(new LinearProfile);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowTop, beta_const*n*u0Top);
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*u0Bot);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBot, beta_const*n*zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 2;
  /*
  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int horizontalCells = 1, verticalCells = 1;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                                                confusionBF, H1Order, H1Order+pToAdd);
  */

  Teuchos::RCP<Mesh> mesh;
  // L-shaped domain for double ramp problem
  FieldContainer<double> A(2), B(2), C(2), D(2), E(2), F(2), G(2), H(2);
  A(0) = 0.0;
  A(1) = 0.5;
  B(0) = 0.0;
  B(1) = 1.0;
  C(0) = 0.5;
  C(1) = 1.0;
  D(0) = 1.0;
  D(1) = 1.0;
  E(0) = 1.0;
  E(1) = 0.5;
  F(0) = 1.0;
  F(1) = 0.0;
  G(0) = 0.5;
  G(1) = 0.0;
  H(0) = 0.5;
  H(1) = 0.5;
  vector<FieldContainer<double> > vertices;
  vertices.push_back(A);
  int A_index = 0;
  vertices.push_back(B);
  int B_index = 1;
  vertices.push_back(C);
  int C_index = 2;
  vertices.push_back(D);
  int D_index = 3;
  vertices.push_back(E);
  int E_index = 4;
  vertices.push_back(F);
  int F_index = 5;
  vertices.push_back(G);
  int G_index = 6;
  vertices.push_back(H);
  int H_index = 7;
  vector< vector<int> > elementVertices;
  vector<int> el1, el2, el3, el4, el5;
  // left patch:
  el1.push_back(A_index);
  el1.push_back(H_index);
  el1.push_back(C_index);
  el1.push_back(B_index);
  // top right:
  el2.push_back(H_index);
  el2.push_back(E_index);
  el2.push_back(D_index);
  el2.push_back(C_index);
  // bottom right:
  el3.push_back(G_index);
  el3.push_back(F_index);
  el3.push_back(E_index);
  el3.push_back(H_index);

  elementVertices.push_back(el1);
  elementVertices.push_back(el2);
  elementVertices.push_back(el3);

  mesh = Teuchos::rcp( new Mesh(vertices, elementVertices, confusionBF, H1Order, pToAdd) );

  ////////////////////   SOLVE & REFINE   ///////////////////////
  // Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  int numRefs = 8;

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    solution->solve(false);
    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  // one more solve on the final refined mesh:
  solution->solve(false);

  if (rank==0)
  {
    solution->writeToVTK("step.vtu",min(H1Order+1,4));
    solution->writeFluxesToFile(uhat->ID(), "uhat.dat");

    cout << "wrote files: u.m, uhat.dat\n";
  }

  return 0;
}
Exemple #8
0
bool ScratchPadTests::testResidualMemoryError()
{

  int rank = Teuchos::GlobalMPISession::getRank();

  double tol = 1e-11;
  bool success = true;

  int nCells = 2;
  double eps = 1e-2;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  robIP->addTerm(tau);
  robIP->addTerm(tau->div());
  robIP->addTerm(v->grad());
  robIP->addTerm(v);

  ////////////////////   SPECIFY RHS   ///////////////////////

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = zero;
  //  FunctionPtr f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new LRInflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new LROutflowSquareBoundary);

  FunctionPtr n = Function::normal();

  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);

  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*one);
  bc->addDirichlet(uhat, outflowBoundary, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  //  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  solution->solve(false);
  mesh->registerSolution(solution);
  double energyErr1 = solution->energyErrorTotal();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual);

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  refinementStrategy.refine();
  solution->solve(false);
  double energyErr2 = solution->energyErrorTotal();

  // if energy error rises
  if (energyErr1 < energyErr2)
  {
    if (rank==0)
      cout << "energy error increased from " << energyErr1 << " to " << energyErr2 << " after refinement.\n";
    success = false;
  }

  return success;
}
void FunctionTests::setup()
{
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta_const;
  beta_const.push_back(2.0);
  beta_const.push_back(1.0);

  double eps = 1e-2;

  // standard confusion bilinear form
  _confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  _confusionBF->addTerm(sigma1 / eps, tau->x());
  _confusionBF->addTerm(sigma2 / eps, tau->y());
  _confusionBF->addTerm(u, tau->div());
  _confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  _confusionBF->addTerm( sigma1, v->dx() );
  _confusionBF->addTerm( sigma2, v->dy() );
  _confusionBF->addTerm( beta_const * u, - v->grad() );
  _confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = -1.0; // x1
  quadPoints(0,1) = -1.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = -1.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = -1.0;
  quadPoints(3,1) = 1.0;

  int H1Order = 1, pToAdd = 0;
  int horizontalCells = 1, verticalCells = 1;

  // create a pointer to a new mesh:
  _spectralConfusionMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                           _confusionBF, H1Order, H1Order+pToAdd);

  // some 2D test points:
  // setup test points:
  static const int NUM_POINTS_1D = 10;
  double x[NUM_POINTS_1D] = {-1.0,-0.8,-0.6,-.4,-.2,0,0.2,0.4,0.6,0.8};
  double y[NUM_POINTS_1D] = {-0.8,-0.6,-.4,-.2,0,0.2,0.4,0.6,0.8,1.0};

  _testPoints = FieldContainer<double>(NUM_POINTS_1D*NUM_POINTS_1D,2);
  for (int i=0; i<NUM_POINTS_1D; i++)
  {
    for (int j=0; j<NUM_POINTS_1D; j++)
    {
      _testPoints(i*NUM_POINTS_1D + j, 0) = x[i];
      _testPoints(i*NUM_POINTS_1D + j, 1) = y[j];
    }
  }

  _elemType = _spectralConfusionMesh->getElementType(0);
  vector<GlobalIndexType> cellIDs;
  GlobalIndexType cellID = 0;
  cellIDs.push_back(cellID);
  _basisCache = Teuchos::rcp( new BasisCache( _elemType, _spectralConfusionMesh ) );
  _basisCache->setRefCellPoints(_testPoints);

  _basisCache->setPhysicalCellNodes( _spectralConfusionMesh->physicalCellNodesForCell(cellID), cellIDs, true );
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
    Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
    int rank=mpiSession.getRank();
    int numProcs=mpiSession.getNProc();
#else
    int rank = 0;
    int numProcs = 1;
#endif
    int polyOrder = 2;

    // define our manufactured solution or problem bilinear form:
    double epsilon = 1e-3;
    bool useTriangles = false;

    int pToAdd = 2;
    int nCells = 2;
    if ( argc > 1)
    {
        nCells = atoi(argv[1]);
        if (rank==0)
        {
            cout << "numCells = " << nCells << endl;
        }
    }
    int numSteps = 20;
    if ( argc > 2)
    {
        numSteps = atoi(argv[2]);
        if (rank==0)
        {
            cout << "num NR steps = " << numSteps << endl;
        }
    }
    int useHessian = 0; // defaults to "not use"
    if ( argc > 3)
    {
        useHessian = atoi(argv[3]);
        if (rank==0)
        {
            cout << "useHessian = " << useHessian << endl;
        }
    }

    int thresh = numSteps; // threshhold for when to apply linesearch/hessian
    if ( argc > 4)
    {
        thresh = atoi(argv[4]);
        if (rank==0)
        {
            cout << "thresh = " << thresh << endl;
        }
    }

    int H1Order = polyOrder + 1;

    double energyThreshold = 0.2; // for mesh refinements
    double nonlinearStepSize = 0.5;
    double nonlinearRelativeEnergyTolerance = 1e-8; // used to determine convergence of the nonlinear solution

    ////////////////////////////////////////////////////////////////////
    // DEFINE VARIABLES
    ////////////////////////////////////////////////////////////////////

    // new-style bilinear form definition
    VarFactory varFactory;
    VarPtr uhat = varFactory.traceVar("\\widehat{u}");
    VarPtr beta_n_u_minus_sigma_hat = varFactory.fluxVar("\\widehat{\\beta_n u - \\sigma_n}");
    VarPtr u = varFactory.fieldVar("u");
    VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
    VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

    VarPtr tau = varFactory.testVar("\\tau",HDIV);
    VarPtr v = varFactory.testVar("v",HGRAD);
    BFPtr bf = Teuchos::rcp( new BF(varFactory) ); // initialize bilinear form

    ////////////////////////////////////////////////////////////////////
    // CREATE MESH
    ////////////////////////////////////////////////////////////////////

    // create a pointer to a new mesh:
    Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells, bf, H1Order, H1Order+pToAdd);
    mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

    ////////////////////////////////////////////////////////////////////
    // INITIALIZE BACKGROUND FLOW FUNCTIONS
    ////////////////////////////////////////////////////////////////////
    BCPtr nullBC = Teuchos::rcp((BC*)NULL);
    RHSPtr nullRHS = Teuchos::rcp((RHS*)NULL);
    IPPtr nullIP = Teuchos::rcp((IP*)NULL);
    SolutionPtr backgroundFlow = Teuchos::rcp(new Solution(mesh, nullBC,
                                 nullRHS, nullIP) );

    vector<double> e1(2); // (1,0)
    e1[0] = 1;
    vector<double> e2(2); // (0,1)
    e2[1] = 1;

    FunctionPtr u_prev = Teuchos::rcp( new PreviousSolutionFunction(backgroundFlow, u) );
    FunctionPtr beta = e1 * u_prev + Teuchos::rcp( new ConstantVectorFunction( e2 ) );

    ////////////////////////////////////////////////////////////////////
    // DEFINE BILINEAR FORM
    ////////////////////////////////////////////////////////////////////

    // tau parts:
    // 1/eps (sigma, tau)_K + (u, div tau)_K - (u_hat, tau_n)_dK
    bf->addTerm(sigma1 / epsilon, tau->x());
    bf->addTerm(sigma2 / epsilon, tau->y());
    bf->addTerm(u, tau->div());
    bf->addTerm( - uhat, tau->dot_normal() );

    // v:
    // (sigma, grad v)_K - (sigma_hat_n, v)_dK - (u, beta dot grad v) + (u_hat * n dot beta, v)_dK
    bf->addTerm( sigma1, v->dx() );
    bf->addTerm( sigma2, v->dy() );
    bf->addTerm( -u, beta * v->grad());
    bf->addTerm( beta_n_u_minus_sigma_hat, v);

    // ==================== SET INITIAL GUESS ==========================
    mesh->registerSolution(backgroundFlow);
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    FunctionPtr u0 = Teuchos::rcp( new U0 );

    map<int, Teuchos::RCP<Function> > functionMap;
    functionMap[u->ID()] = u0;
    functionMap[sigma1->ID()] = zero;
    functionMap[sigma2->ID()] = zero;

    backgroundFlow->projectOntoMesh(functionMap);
    // ==================== END SET INITIAL GUESS ==========================

    ////////////////////////////////////////////////////////////////////
    // DEFINE INNER PRODUCT
    ////////////////////////////////////////////////////////////////////
    // function to scale the squared guy by epsilon/h
    FunctionPtr epsilonOverHScaling = Teuchos::rcp( new EpsilonScaling(epsilon) );
    IPPtr ip = Teuchos::rcp( new IP );
    ip->addTerm( epsilonOverHScaling * (1.0/sqrt(epsilon))* tau);
    ip->addTerm( tau->div());
    //  ip->addTerm( epsilonOverHScaling * v );
    ip->addTerm( v );
    ip->addTerm( sqrt(epsilon) * v->grad() );
    ip->addTerm(v->grad());
    //  ip->addTerm( beta * v->grad() );

    ////////////////////////////////////////////////////////////////////
    // DEFINE RHS
    ////////////////////////////////////////////////////////////////////
    RHSPtr rhs = RHS::rhs();
    FunctionPtr u_prev_squared_div2 = 0.5 * u_prev * u_prev;

    rhs->addTerm((e1 * u_prev_squared_div2 + e2 * u_prev) * v->grad() - u_prev * tau->div());

    ////////////////////////////////////////////////////////////////////
    // DEFINE DIRICHLET BC
    ////////////////////////////////////////////////////////////////////
    FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
    SpatialFilterPtr outflowBoundary = Teuchos::rcp( new TopBoundary);
    SpatialFilterPtr inflowBoundary = Teuchos::rcp( new NegatedSpatialFilter(outflowBoundary) );
    BCPtr inflowBC = BC::bc();
    FunctionPtr u0_squared_div_2 = 0.5 * u0 * u0;
    inflowBC->addDirichlet(beta_n_u_minus_sigma_hat,inflowBoundary,
                           ( e1 * u0_squared_div_2 + e2 * u0) * n );

    ////////////////////////////////////////////////////////////////////
    // CREATE SOLUTION OBJECT
    ////////////////////////////////////////////////////////////////////
    Teuchos::RCP<Solution> solution = Teuchos::rcp(new Solution(mesh, inflowBC, rhs, ip));
    mesh->registerSolution(solution);

    ////////////////////////////////////////////////////////////////////
    // WARNING: UNFINISHED HESSIAN BIT
    ////////////////////////////////////////////////////////////////////
    VarFactory hessianVars = varFactory.getBubnovFactory(VarFactory::BUBNOV_TRIAL);
    VarPtr du = hessianVars.test(u->ID());
    BFPtr hessianBF = Teuchos::rcp( new BF(hessianVars) ); // initialize bilinear form
    //  FunctionPtr e_v = Function::constant(1.0); // dummy error rep function for now - should do nothing

    FunctionPtr u_current  = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );

    FunctionPtr sig1_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) );
    FunctionPtr sig2_prev = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) );
    FunctionPtr sig_prev = (e1*sig1_prev + e2*sig2_prev);
    FunctionPtr fnhat = Teuchos::rcp(new PreviousSolutionFunction(solution,beta_n_u_minus_sigma_hat));
    FunctionPtr uhat_prev = Teuchos::rcp(new PreviousSolutionFunction(solution,uhat));
    LinearTermPtr residual = Teuchos::rcp(new LinearTerm);// residual
    residual->addTerm(fnhat*v - (e1 * (u_prev_squared_div2 - sig1_prev) + e2 * (u_prev - sig2_prev)) * v->grad());
    residual->addTerm((1/epsilon)*sig_prev * tau + u_prev * tau->div() - uhat_prev*tau->dot_normal());

    LinearTermPtr Bdu = Teuchos::rcp(new LinearTerm);// residual
    Bdu->addTerm( u_current*tau->div() - u_current*(beta*v->grad()));

    Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(mesh, ip, residual));
    Teuchos::RCP<RieszRep> duRiesz = Teuchos::rcp(new RieszRep(mesh, ip, Bdu));
    riesz->computeRieszRep();
    FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,riesz));
    e_v->writeValuesToMATLABFile(mesh, "e_v.m");
    FunctionPtr posErrPart = Teuchos::rcp(new PositivePart(e_v->dx()));
    hessianBF->addTerm(e_v->dx()*u,du);
    //  hessianBF->addTerm(posErrPart*u,du);
    Teuchos::RCP<HessianFilter> hessianFilter = Teuchos::rcp(new HessianFilter(hessianBF));

    if (useHessian)
    {
        solution->setWriteMatrixToFile(true,"hessianStiffness.dat");
    }
    else
    {
        solution->setWriteMatrixToFile(true,"stiffness.dat");
    }

    Teuchos::RCP< LineSearchStep > LS_Step = Teuchos::rcp(new LineSearchStep(riesz));
    ofstream out;
    out.open("Burgers.txt");
    double NL_residual = 9e99;
    for (int i = 0; i<numSteps; i++)
    {
        solution->solve(false); // do one solve to initialize things...
        double stepLength = 1.0;
        stepLength = LS_Step->stepSize(backgroundFlow,solution, NL_residual);
        if (useHessian)
        {
            solution->setFilter(hessianFilter);
        }
        backgroundFlow->addSolution(solution,stepLength);
        NL_residual = LS_Step->getNLResidual();
        if (rank==0)
        {
            cout << "NL residual after adding = " << NL_residual << " with step size " << stepLength << endl;
            out << NL_residual << endl; // saves initial NL error
        }
    }
    out.close();


    ////////////////////////////////////////////////////////////////////
    // DEFINE REFINEMENT STRATEGY
    ////////////////////////////////////////////////////////////////////
    Teuchos::RCP<RefinementStrategy> refinementStrategy;
    refinementStrategy = Teuchos::rcp(new RefinementStrategy(solution,energyThreshold));

    int numRefs = 0;

    Teuchos::RCP<NonlinearStepSize> stepSize = Teuchos::rcp(new NonlinearStepSize(nonlinearStepSize));
    Teuchos::RCP<NonlinearSolveStrategy> solveStrategy;
    solveStrategy = Teuchos::rcp( new NonlinearSolveStrategy(backgroundFlow, solution, stepSize,
                                  nonlinearRelativeEnergyTolerance));

    ////////////////////////////////////////////////////////////////////
    // SOLVE
    ////////////////////////////////////////////////////////////////////

    for (int refIndex=0; refIndex<numRefs; refIndex++)
    {
        solveStrategy->solve(rank==0);       // print to console on rank 0
        refinementStrategy->refine(rank==0); // print to console on rank 0
    }
    //  solveStrategy->solve(rank==0);

    if (rank==0)
    {
        backgroundFlow->writeToVTK("Burgers.vtu",min(H1Order+1,4));
        solution->writeFluxesToFile(uhat->ID(), "burgers.dat");
        cout << "wrote solution files" << endl;
    }

    return 0;
}
Exemple #11
0
int main(int argc, char *argv[]) {
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  choice::Args args( argc, argv );
  int rank = 0;
  int numProcs = 1;
#endif

  int nCells = args.Input<int>("--nCells", "num cells",2);  
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0); 
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("--energyThreshold","adaptivity thresh",.5);
  if (rank==0){
    cout << "nCells = " << nCells << ", numRefs = " << numRefs << ", eps = " << eps << endl;
  }
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory; 
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);
  
  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  
  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());
  
  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);
  
  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);  
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) ); 
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);

  
  robIP->addTerm( ip_scaling * v);
  robIP->addTerm( ip_scaling/sqrt(eps) * tau );
  robIP->addTerm( sqrt(eps) * v->grad() );
  robIP->addTerm( beta * v->grad() );
  robIP->addTerm( tau->div() );  
  /*
  robIP->addTerm(v);
  robIP->addTerm(v->grad());
  robIP->addTerm(tau->div());
  robIP->addTerm(invSqrtH*tau);  
  */
  FunctionPtr h2_scaling = Teuchos::rcp( new ZeroMeanScaling ); // see what effect this has
  //  robIP->addZeroMeanTerm( h2_scaling*v );
  
  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  //  FunctionPtr f = zero;
  //  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary(beta) );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary);

  FunctionPtr u_exact = Teuchos::rcp( new Uex(eps,0) );
  FunctionPtr sig1_exact = Teuchos::rcp( new Uex(eps,1) );
  FunctionPtr sig2_exact = Teuchos::rcp( new Uex(eps,2) );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );

  vector<double> e1(2); // (1,0)
  vector<double> e2(2); // (0,1)
  e1[0] = 1;
  e2[1] = 1;
  FunctionPtr sigma = sig1_exact*e1 + sig2_exact*e2;

  bc->addDirichlet(uhat, outflowBoundary, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_exact-sigma*n);  
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_exact);   // ignoring sigma
  FunctionPtr u_disc = Teuchos::rcp( new Udisc );
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta*n*u_disc);  

  //  bc->addDirichlet(uhat, inflowBoundary, u_exact);  

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 3;
  
  int horizontalCells = nCells, verticalCells = nCells;
  
  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
    
  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  //  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, qoptIP) );

  if (enforceLocalConservation) {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }
  
  RefinementStrategy refinementStrategy( solution, energyThreshold );
   
  ofstream convOut;
  stringstream convOutFile;
  convOutFile << "erickson_conv_" << round(-log(eps)/log(10.0)) <<".txt";
  convOut.open(convOutFile.str().c_str());
  for (int refIndex=0; refIndex < numRefs; refIndex++){    
    solution->condensedSolve(false);
    //    solution->solve(false);

    double quadTol = 1e-7;
    int cubEnrich = 25;
    FunctionPtr u_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, u) );
    FunctionPtr sigma1_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma1) );
    FunctionPtr sigma2_soln = Teuchos::rcp( new PreviousSolutionFunction(solution, sigma2) );
    FunctionPtr u_diff = (u_soln - u_exact)*(u_soln - u_exact);
    FunctionPtr sig1_diff = (sigma1_soln - sig1_exact)*(sigma1_soln - sig1_exact);
    FunctionPtr sig2_diff = (sigma2_soln - sig2_exact)*(sigma2_soln - sig2_exact);
    double u_L2_error = u_diff->integrate(mesh,cubEnrich);
    double sigma_L2_error = sig1_diff->integrate(mesh,cubEnrich) + sig2_diff->integrate(mesh,cubEnrich);
    double L2_error = sqrt(u_L2_error + sigma_L2_error);
    double energy_error = solution->energyErrorTotal();
    u_soln->writeValuesToMATLABFile(mesh, "u_soln.m");
    u_diff->writeValuesToMATLABFile(mesh, "u_diff.m");
    u_exact->writeValuesToMATLABFile(mesh, "u_exact.m");
    sig1_exact->writeValuesToMATLABFile(mesh, "s1_exact.m");
    sig2_exact->writeValuesToMATLABFile(mesh, "s2_exact.m");

    convOut << mesh->numGlobalDofs() << " " << L2_error << " " << energy_error << endl;
    if (rank==0){
      cout << "L2 error = " << L2_error << ", energy error = " << energy_error << ", ratio = " << L2_error/energy_error << endl;
      cout << "u squared L2 error = " << u_L2_error << ", sigma squared l2 error = " << sigma_L2_error << ", num dofs = " << mesh->numGlobalDofs() << endl;
    }

    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  convOut.close();  

  // one more solve on the final refined mesh:
  solution->condensedSolve(false);

  VTKExporter exporter(solution, mesh, varFactory);
  if (rank==0){
    exporter.exportSolution("robustIP");
    cout << endl;
  }

  return 0; 
  /*
  // determine trialIDs
  vector< int > trialIDs = mesh->bilinearForm()->trialIDs();
  vector< int > fieldIDs;
  vector< int > fluxIDs;
  vector< int >::iterator idIt;

  for (idIt = trialIDs.begin();idIt!=trialIDs.end();idIt++){
    int trialID = *(idIt);
    if (!mesh->bilinearForm()->isFluxOrTrace(trialID)){ // if field
      fieldIDs.push_back(trialID);
    } else {
      fluxIDs.push_back(trialID);
    }
  } 
  int numFieldInds = 0;
  map<int,vector<int> > globalFluxInds;   // from cellID to localDofInd vector
  map<int,vector<int> > globalFieldInds;   // from cellID to localDofInd vector
  map<int,vector<int> > localFieldInds;   // from cellID to localDofInd vector
  map<int,vector<int> > localFluxInds;   // from cellID to localDofInd vector
  set<int>              allFluxInds;    // unique set of all flux inds

  mesh->getDofIndices(allFluxInds,globalFluxInds,globalFieldInds,localFluxInds,localFieldInds);

  if (rank==0){

    vector< ElementPtr > activeElems = mesh->activeElements();
    vector< ElementPtr >::iterator elemIt;

    cout << "num flux dofs = " << allFluxInds.size() << endl;
    cout << "num field dofs = " << mesh->numFieldDofs() << endl;
    cout << "num flux dofs = " << mesh->numFluxDofs() << endl;
    elemIt = activeElems.begin();
    int cellID = (*elemIt)->cellID();
    cout << "num LOCAL field dofs = " << localFieldInds[cellID].size() << endl;
  
    ofstream fieldInds; 
    fieldInds.open("fieldInds.dat");
    for (elemIt = activeElems.begin();elemIt!=activeElems.end();elemIt++){
      int cellID = (*elemIt)->cellID();
      vector<int> inds = globalFieldInds[cellID];
      vector<int> locFieldInds = localFieldInds[cellID];
      cout << "local field inds for cell ID " << cellID << endl;
      for (int i = 0;i<inds.size();++i){
	fieldInds << inds[i]+1 << endl;
	cout << locFieldInds[i] << endl;
      }
      vector<int> finds = globalFluxInds[cellID];
      vector<int> locFluxInds = localFluxInds[cellID];
      cout << "local flux inds for cell ID " << cellID << endl;
      for (int i = 0;i<finds.size();++i){
	cout << locFluxInds[i] << endl;
      }
      cout << "global flux inds for cell ID " << cellID << endl;
      for (int i = 0;i<finds.size();++i){
	cout << globalFluxInds[cellID][i] << endl;
      }
    }
    fieldInds.close();

    ofstream fluxInds;
    fluxInds.open("fluxInds.dat");
    set<int>::iterator fluxIt;
    for (fluxIt = allFluxInds.begin();fluxIt!=allFluxInds.end();fluxIt++){
      fluxInds << (*fluxIt)+1 << endl; // offset by 1 for matlab
    }
    fluxInds.close();
  }
  
  return 0;
  */
}
int main(int argc, char *argv[])
{
#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  int rank=mpiSession.getRank();
  int numProcs=mpiSession.getNProc();
#else
  int rank = 0;
  int numProcs = 1;
#endif
  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta_const;
  double c = sqrt(1.25);
  beta_const.push_back(1.0/c);
  beta_const.push_back(.5/c);
//  FunctionPtr beta = Teuchos::rcp(new Beta());

  double eps = 1e-3;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(-uhat, tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( beta_const * u, - v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // quasi-optimal norm
  IPPtr qoptIP = Teuchos::rcp(new IP);
  qoptIP->addTerm( v );
  qoptIP->addTerm( tau / eps + v->grad() );
  qoptIP->addTerm( beta_const * v->grad() - tau->div() );

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr ip_scaling = Teuchos::rcp( new EpsilonScaling(eps) );
  if (enforceLocalConservation)
  {
    robIP->addZeroMeanTerm( v );
  }
  else
  {
    robIP->addTerm( ip_scaling * v );
  }
  robIP->addTerm( sqrt(eps) * v->grad() );

  bool useNewBC = false;
  FunctionPtr weight = Teuchos::rcp( new SqrtWeight(eps) );
  if (useNewBC)
  {
    robIP->addTerm( beta_const * v->grad() );
    robIP->addTerm( tau->div() );
    robIP->addTerm( ip_scaling/sqrt(eps) * tau );
  }
  else
  {
    robIP->addTerm( weight * beta_const * v->grad() );
    robIP->addTerm( weight * tau->div() );
    robIP->addTerm( weight * ip_scaling/sqrt(eps) * tau );
  }


  ////////////////////   SPECIFY RHS   ///////////////////////
  FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );
  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary );

  FunctionPtr u0 = Teuchos::rcp( new U0 );
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  bc->addDirichlet(uhat, outflowBoundary, zero);
  if (useNewBC)
  {
    bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, beta_const*n*u0);
  }
  else
  {
    SpatialFilterPtr inflowBot = Teuchos::rcp( new InflowSquareBot );
    SpatialFilterPtr inflowLeft = Teuchos::rcp( new InflowSquareLeft );

    bc->addDirichlet(beta_n_u_minus_sigma_n, inflowLeft, beta_const*n*u0);
    bc->addDirichlet(uhat, inflowBot, u0);
  }

  // Teuchos::RCP<PenaltyConstraints> pc = Teuchos::rcp(new PenaltyConstraints);
  // pc->addConstraint(uhat==u0,inflowBoundary);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 2, pToAdd = 2;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int nCells = 2;
  int horizontalCells = nCells, verticalCells = nCells;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = Mesh::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                            confusionBF, H1Order, H1Order+pToAdd);


  ////////////////////   SOLVE & REFINE   ///////////////////////
  Teuchos::RCP<Solution> solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  // solution->setFilter(pc);

  if (enforceLocalConservation)
  {
    FunctionPtr zero = Teuchos::rcp( new ConstantScalarFunction(0.0) );
    solution->lagrangeConstraints()->addConstraint(beta_n_u_minus_sigma_n == zero);
  }

  double energyThreshold = 0.2; // for mesh refinements
  RefinementStrategy refinementStrategy( solution, energyThreshold );

  int numRefs = 9;

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    solution->solve(false);
    refinementStrategy.refine(rank==0); // print to console on rank 0
  }
  // one more solve on the final refined mesh:
  solution->solve(false);

  if (rank==0)
  {
    solution->writeToVTK("Hughes.vtu",min(H1Order+1,4));
    solution->writeFluxesToFile(uhat->ID(), "uhat.dat");

    cout << "wrote files: u.m, uhat.dat\n";
  }

  return 0;
}
Exemple #13
0
// tests to make sure that the rieszNorm computed via matrices is the same as the one computed thru direct integration
bool ScratchPadTests::testRieszIntegration()
{
  double tol = 1e-11;
  bool success = true;

  int nCells = 2;
  double eps = .25;

  ////////////////////   DECLARE VARIABLES   ///////////////////////

  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);

  // just H1 projection
  ip->addTerm(v->grad());
  ip->addTerm(v);
  ip->addTerm(tau);
  ip->addTerm(tau->div());

  ////////////////////   SPECIFY RHS AND HELPFUL FUNCTIONS   ///////////////////////

  FunctionPtr n = Function::normal();
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);
  FunctionPtr one = Function::constant(1.0);

  FunctionPtr zero = Function::constant(0.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary );

  bc->addDirichlet(uhat, squareBoundary, zero);

  ////////////////////   BUILD MESH   ///////////////////////

  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  LinearTermPtr lt = Teuchos::rcp(new LinearTerm);
  FunctionPtr fxn = Function::xn(1); // fxn = x
  lt->addTerm(fxn*v + fxn->grad()*v->grad());
  lt->addTerm(fxn*tau->x() + fxn*tau->y() + (fxn->dx() + fxn->dy())*tau->div());
  Teuchos::RCP<RieszRep> rieszLT = Teuchos::rcp(new RieszRep(mesh, ip, lt));
  rieszLT->computeRieszRep();
  double rieszNorm = rieszLT->getNorm();
  FunctionPtr e_v = RieszRep::repFunction(v,rieszLT);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszLT);
  map<int,FunctionPtr> repFxns;
  repFxns[v->ID()] = e_v;
  repFxns[tau->ID()] = e_tau;

  double integratedNorm = sqrt((lt->evaluate(repFxns,false))->integrate(mesh,5,true));
  success = abs(rieszNorm-integratedNorm)<tol;
  if (success==false)
  {
    cout << "Failed testRieszIntegration; riesz norm is computed to be = " << rieszNorm << ", while using integration it's computed to be " << integratedNorm << endl;
    return success;
  }
  return success;
}
bool LinearTermTests::testMixedTermConsistency()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  double eps = .01;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 1;
  int pToAdd = 1;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int nCells = 1;
  int horizontalCells = nCells, verticalCells = nCells;
  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                              confusionBF, H1Order, H1Order+pToAdd);

  ElementTypePtr elemType = myMesh->getElement(0)->elementType();
  //  DofOrderingPtr testOrder = elemType->testOrderPtr;
  BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh, true));


  LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual

  vector<double> e1(2); // (1,0)
  vector<double> e2(2); // (0,1)
  e1[0] = 1;
  e2[1] = 1;
  FunctionPtr n = Function::normal();
  FunctionPtr X = Function::xn(1);
  FunctionPtr Y = Function::yn(1);
  FunctionPtr testFxn1 = X;
  FunctionPtr testFxn2 = Y;
  FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy();
  FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2;

  integrandIBP->addTerm(vectorTest*n*v + -vectorTest*v->grad()); // boundary term

  // define dummy IP to initialize riesz rep class, but just integrate RHS
  IPPtr dummyIP = Teuchos::rcp(new IP);
  dummyIP->addTerm(v);
  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, dummyIP, integrandIBP));
  map<GlobalIndexType,FieldContainer<double> > rieszRHS = riesz->integrateFunctional();

  set<GlobalIndexType> cellIDs = myMesh->cellIDsInPartition();
  for (set<GlobalIndexType>::iterator cellIDIt=cellIDs.begin(); cellIDIt !=cellIDs.end(); cellIDIt++)
  {
    GlobalIndexType cellID = *cellIDIt;

    ElementTypePtr elemTypePtr = myMesh->getElementType(cellID);
    DofOrderingPtr testOrderingPtr = elemTypePtr->testOrderPtr;
    int numTestDofs = testOrderingPtr->totalDofs();

    BasisCachePtr basisCache = BasisCache::basisCacheForCell(myMesh, cellID, true);

    FieldContainer<double> rhsIBPValues(1,numTestDofs);
    integrandIBP->integrate(rhsIBPValues, testOrderingPtr, basisCache);
    FieldContainer<double> rieszValues(1,numTestDofs);
    (riesz->getFunctional())->integrate(rieszValues, testOrderingPtr, basisCache);
    double maxDiff;
    double tol = 1e-13;
    FieldContainer<double> rhsIBPVals(numTestDofs);
    for (int i = 0; i< numTestDofs; i++)
    {
      rhsIBPVals(i) = rhsIBPValues(0,i);
      //      cout << "riesz rhs values = " << rieszRHS[cellID](i) << ", rhsIBPValues = " << rhsIBPVals(i) << ", riesz returned values = " << rieszValues(0,i) << endl;
    }
    bool fcsAgree = TestSuite::fcsAgree(rieszRHS[cellID],rhsIBPVals,tol,maxDiff);
    if (!fcsAgree)
    {
      success=false;
      cout << "Failed mixed term consistency test with maxDiff = " << maxDiff << " on cellID " << cellID<< endl;
    }
  }
  return allSuccess(success);

}
Exemple #15
0
int main(int argc, char *argv[])
{

#ifdef HAVE_MPI
  Teuchos::GlobalMPISession mpiSession(&argc, &argv,0);
  choice::MpiArgs args( argc, argv );
#else
  choice::Args args( argc, argv );
#endif
  int rank = Teuchos::GlobalMPISession::getRank();
  int numProcs = Teuchos::GlobalMPISession::getNProc();

  int nCells = args.Input<int>("--nCells", "num cells",2);
  int numRefs = args.Input<int>("--numRefs","num adaptive refinements",0);
  int numPreRefs = args.Input<int>("--numPreRefs","num preemptive adaptive refinements",0);
  int order = args.Input<int>("--order","order of approximation",2);
  double eps = args.Input<double>("--epsilon","diffusion parameter",1e-2);
  double energyThreshold = args.Input<double>("-energyThreshold","energy thresh for adaptivity", .5);
  double rampHeight = args.Input<double>("--rampHeight","ramp height at x = 2", 0.0);
  bool useAnisotropy = args.Input<bool>("--useAnisotropy","aniso flag ", false);

  FunctionPtr zero = Function::constant(0.0);
  FunctionPtr one = Function::constant(1.0);
  FunctionPtr n = Teuchos::rcp( new UnitNormalFunction );
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactory varFactory;
  VarPtr tau = varFactory.testVar("\\tau", HDIV);
  VarPtr v = varFactory.testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory.traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory.fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory.fieldVar("u");
  VarPtr sigma1 = varFactory.fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory.fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  // first order term with magnitude alpha
  double alpha = 0.0;
  confusionBF->addTerm(alpha * u, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr robIP = Teuchos::rcp(new IP);
  FunctionPtr C_h = Teuchos::rcp( new EpsilonScaling(eps) );
  FunctionPtr invH = Teuchos::rcp(new InvHScaling);
  FunctionPtr invSqrtH = Teuchos::rcp(new InvSqrtHScaling);
  FunctionPtr sqrtH = Teuchos::rcp(new SqrtHScaling);
  robIP->addTerm(v*alpha);
  robIP->addTerm(invSqrtH*v);
  //  robIP->addTerm(v);
  robIP->addTerm(sqrt(eps) * v->grad() );
  robIP->addTerm(beta * v->grad() );
  robIP->addTerm(tau->div() );
  robIP->addTerm(C_h/sqrt(eps) * tau );

  LinearTermPtr vVecLT = Teuchos::rcp(new LinearTerm);
  LinearTermPtr tauVecLT = Teuchos::rcp(new LinearTerm);
  vVecLT->addTerm(sqrt(eps)*v->grad());
  tauVecLT->addTerm(C_h/sqrt(eps)*tau);

  LinearTermPtr restLT = Teuchos::rcp(new LinearTerm);
  restLT->addTerm(alpha*v);
  restLT->addTerm(invSqrtH*v);
  restLT = restLT + beta * v->grad();
  restLT = restLT + tau->div();

  ////////////////////   SPECIFY RHS   ///////////////////////

  Teuchos::RCP<RHSEasy> rhs = Teuchos::rcp( new RHSEasy );
  FunctionPtr f = zero;
  //  f = one;
  rhs->addTerm( f * v ); // obviously, with f = 0 adding this term is not necessary!

  ////////////////////   CREATE BCs   ///////////////////////
  Teuchos::RCP<BCEasy> bc = Teuchos::rcp( new BCEasy );

  //  SpatialFilterPtr inflowBoundary = Teuchos::rcp( new InflowSquareBoundary );
  //  SpatialFilterPtr outflowBoundary = Teuchos::rcp( new OutflowSquareBoundary);
  //  bc->addDirichlet(beta_n_u_minus_sigma_n, inflowBoundary, zero);
  //  bc->addDirichlet(uhat, outflowBoundary, zero);

  SpatialFilterPtr rampInflow = Teuchos::rcp(new LeftInflow);
  SpatialFilterPtr rampBoundary = MeshUtilities::rampBoundary(rampHeight);
  SpatialFilterPtr freeStream = Teuchos::rcp(new FreeStreamBoundary);
  SpatialFilterPtr outflowBoundary = Teuchos::rcp(new OutflowBoundary);
  bc->addDirichlet(uhat, rampBoundary, one);
  //  bc->addDirichlet(uhat, outflowBoundary, one);
  bc->addDirichlet(beta_n_u_minus_sigma_n, rampInflow, zero);
  bc->addDirichlet(beta_n_u_minus_sigma_n, freeStream, zero);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  //  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildRampMesh(rampHeight,confusionBF, H1Order, H1Order+pToAdd);
  mesh->setPartitionPolicy(Teuchos::rcp(new ZoltanMeshPartitionPolicy("HSFC")));

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, robIP) );
  //  solution->solve(false);
  solution->condensedSolve();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution));
  RieszRepPtr rieszResidual = Teuchos::rcp(new RieszRep(mesh, robIP, residual));
  rieszResidual->computeRieszRep();
  FunctionPtr e_v = Teuchos::rcp(new RepFunction(v,rieszResidual));
  FunctionPtr e_tau = Teuchos::rcp(new RepFunction(tau,rieszResidual));
  map<int,FunctionPtr> errRepMap;
  errRepMap[v->ID()] = e_v;
  errRepMap[tau->ID()] = e_tau;
  FunctionPtr errTau = tauVecLT->evaluate(errRepMap,false);
  FunctionPtr errV = vVecLT->evaluate(errRepMap,false);
  FunctionPtr errRest = restLT->evaluate(errRepMap,false);
  FunctionPtr xErr = (errTau->x())*(errTau->x()) + (errV->dx())*(errV->dx());
  FunctionPtr yErr = (errTau->y())*(errTau->y()) + (errV->dy())*(errV->dy());
  FunctionPtr restErr = errRest*errRest;

  RefinementStrategy refinementStrategy( solution, energyThreshold );

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  //                     PRE REFINEMENTS
  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

  if (rank==0)
  {
    cout << "Number of pre-refinements = " << numPreRefs << endl;
  }
  for (int i =0; i<=numPreRefs; i++)
  {
    vector<ElementPtr> elems = mesh->activeElements();
    vector<ElementPtr>::iterator elemIt;
    vector<int> wallCells;
    for (elemIt=elems.begin(); elemIt != elems.end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      int numSides = mesh->getElement(cellID)->numSides();
      FieldContainer<double> vertices(numSides,2); //for quads

      mesh->verticesForCell(vertices, cellID);
      bool cellIDset = false;
      for (int j = 0; j<numSides; j++)
      {
        if ((abs(vertices(j,0)-1.0)<1e-7) && (abs(vertices(j,1))<1e-7) && !cellIDset)  // if at singularity, i.e. if a vertex is (1,0)
        {
          wallCells.push_back(cellID);
          cellIDset = true;
        }
      }
    }
    if (i<numPreRefs)
    {
      refinementStrategy.refineCells(wallCells);
    }
  }

  ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
  VTKExporter exporter(solution, mesh, varFactory);

  for (int refIndex=0; refIndex<numRefs; refIndex++)
  {
    if (rank==0)
    {
      cout << "on ref index " << refIndex << endl;
    }
    rieszResidual->computeRieszRep(); // in preparation to get anisotropy

    vector<int> cellIDs;
    refinementStrategy.getCellsAboveErrorThreshhold(cellIDs);

    map<int,double> energyError = solution->energyError();

    map<int,double> xErrMap = xErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> yErrMap = yErr->cellIntegrals(cellIDs,mesh,5,true);
    map<int,double> restErrMap = restErr->cellIntegrals(cellIDs,mesh,5,true);
    for (vector<ElementPtr>::iterator elemIt = mesh->activeElements().begin(); elemIt!=mesh->activeElements().end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      double err = xErrMap[cellID]+ yErrMap[cellID] + restErrMap[cellID];
      if (rank==0)
        cout << "err thru LT = " << sqrt(err) << ", while energy err = " << energyError[cellID] << endl;
    }

    map<int,double> ratio,xErr,yErr;
    vector<ElementPtr> elems = mesh->activeElements();
    for (vector<ElementPtr>::iterator elemIt = elems.begin(); elemIt!=elems.end(); elemIt++)
    {
      int cellID = (*elemIt)->cellID();
      ratio[cellID] = 0.0;
      xErr[cellID] = 0.0;
      yErr[cellID] = 0.0;
      if (std::find(cellIDs.begin(),cellIDs.end(),cellID)!=cellIDs.end())  // if this cell is above energy thresh
      {
        ratio[cellID] = yErrMap[cellID]/xErrMap[cellID];
        xErr[cellID] = xErrMap[cellID];
        yErr[cellID] = yErrMap[cellID];
      }
    }
    FunctionPtr ratioFxn = Teuchos::rcp(new EnergyErrorFunction(ratio));
    FunctionPtr xErrFxn = Teuchos::rcp(new EnergyErrorFunction(xErr));
    FunctionPtr yErrFxn = Teuchos::rcp(new EnergyErrorFunction(yErr));
    std::ostringstream oss;
    oss << refIndex;
    exporter.exportFunction(ratioFxn, string("ratio")+oss.str());
    exporter.exportFunction(xErrFxn, string("xErr")+oss.str());
    exporter.exportFunction(yErrFxn, string("yErr")+oss.str());

    if (useAnisotropy)
    {
      refinementStrategy.refine(rank==0,xErrMap,yErrMap); //anisotropic refinements
    }
    else
    {
      refinementStrategy.refine(rank==0); // no anisotropy
    }

    solution->condensedSolve();
  }

  // final solve on final mesh
  solution->condensedSolve();

  ////////////////////   print to file   ///////////////////////

  FunctionPtr orderFxn = Teuchos::rcp(new MeshPolyOrderFunction(mesh));
  std::ostringstream oss;
  oss << nCells;
  if (rank==0)
  {
    exporter.exportSolution(string("robustIP")+oss.str());
    exporter.exportFunction(orderFxn, "meshOrder");
    cout << endl;
  }

  return 0;
}
// tests Riesz inversion by integration by parts
bool LinearTermTests::testRieszInversion()
{
  bool success = true;

  ////////////////////   DECLARE VARIABLES   ///////////////////////
  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);
  double eps = .01;

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int H1Order = 1;
  int pToAdd = 1;

  FieldContainer<double> quadPoints(4,2);

  quadPoints(0,0) = 0.0; // x1
  quadPoints(0,1) = 0.0; // y1
  quadPoints(1,0) = 1.0;
  quadPoints(1,1) = 0.0;
  quadPoints(2,0) = 1.0;
  quadPoints(2,1) = 1.0;
  quadPoints(3,0) = 0.0;
  quadPoints(3,1) = 1.0;

  int nCells = 1;
  int horizontalCells = nCells, verticalCells = nCells;
  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> myMesh = MeshFactory::buildQuadMesh(quadPoints, horizontalCells, verticalCells,
                              confusionBF, H1Order, H1Order+pToAdd);

  ElementTypePtr elemType = myMesh->getElement(0)->elementType();
  BasisCachePtr basisCache = Teuchos::rcp(new BasisCache(elemType, myMesh));

  vector<GlobalIndexType> cellIDs;
  vector<ElementPtr> elems = myMesh->activeElements();
  vector<ElementPtr>::iterator elemIt;
  for (elemIt=elems.begin(); elemIt!=elems.end(); elemIt++)
  {
    int cellID = (*elemIt)->cellID();
    cellIDs.push_back(cellID);
  }
  bool createSideCacheToo = true;

  basisCache->setPhysicalCellNodes(myMesh->physicalCellNodesGlobal(elemType), cellIDs, createSideCacheToo);

  LinearTermPtr integrand = Teuchos::rcp(new LinearTerm);// residual
  LinearTermPtr integrandIBP = Teuchos::rcp(new LinearTerm);// residual

  vector<double> e1(2); // (1,0)
  vector<double> e2(2); // (0,1)
  e1[0] = 1;
  e2[1] = 1;
  FunctionPtr n = Function::normal();
  FunctionPtr X = Function::xn(1);
  FunctionPtr Y = Function::yn(1);
  FunctionPtr testFxn1 = X;
  FunctionPtr testFxn2 = Y;
  FunctionPtr divTestFxn = testFxn1->dx() + testFxn2->dy();
  FunctionPtr vectorTest = testFxn1*e1 + testFxn2*e2;

  integrand->addTerm(divTestFxn*v);
  integrandIBP->addTerm(vectorTest*n*v - vectorTest*v->grad()); // boundary term

  IPPtr sobolevIP = Teuchos::rcp(new IP);
  sobolevIP->addTerm(v);
  sobolevIP->addTerm(tau);

  Teuchos::RCP<RieszRep> riesz = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrand));
  //  riesz->setPrintOption(true);
  riesz->computeRieszRep();
  Teuchos::RCP<RieszRep> rieszIBP = Teuchos::rcp(new RieszRep(myMesh, sobolevIP, integrandIBP));
  riesz->setFunctional(integrandIBP);
  //  rieszIBP->setPrintOption(true);
  rieszIBP->computeRieszRep();

  FunctionPtr rieszOrigFxn = RieszRep::repFunction(v,riesz);
  FunctionPtr rieszIBPFxn = RieszRep::repFunction(v,rieszIBP);
  int numCells = basisCache->getPhysicalCubaturePoints().dimension(0);
  int numPts = basisCache->getPhysicalCubaturePoints().dimension(1);

  FieldContainer<double> valOriginal( numCells, numPts);
  FieldContainer<double> valIBP( numCells, numPts);
  rieszOrigFxn->values(valOriginal,basisCache);
  rieszIBPFxn->values(valIBP,basisCache);

  double maxDiff;
  double tol = 1e-14;
  success = TestSuite::fcsAgree(valOriginal,valIBP,tol,maxDiff);

  if (success==false)
  {
    cout << "Failed TestRieszInversion with maxDiff = " << maxDiff << endl;
  }
  return success;
}
Exemple #17
0
// tests to make sure the energy error calculated thru direct integration works for vector valued test functions too
bool ScratchPadTests::testLTResidual()
{
  double tol = 1e-11;
  int rank = Teuchos::GlobalMPISession::getRank();

  bool success = true;

  int nCells = 2;
  double eps = .1;

  ////////////////////   DECLARE VARIABLES   ///////////////////////

  // define test variables
  VarFactoryPtr varFactory = VarFactory::varFactory();
  VarPtr tau = varFactory->testVar("\\tau", HDIV);
  VarPtr v = varFactory->testVar("v", HGRAD);

  // define trial variables
  VarPtr uhat = varFactory->traceVar("\\widehat{u}");
  VarPtr beta_n_u_minus_sigma_n = varFactory->fluxVar("\\widehat{\\beta \\cdot n u - \\sigma_{n}}");
  VarPtr u = varFactory->fieldVar("u");
  VarPtr sigma1 = varFactory->fieldVar("\\sigma_1");
  VarPtr sigma2 = varFactory->fieldVar("\\sigma_2");

  vector<double> beta;
  beta.push_back(1.0);
  beta.push_back(0.0);

  ////////////////////   DEFINE BILINEAR FORM   ///////////////////////

  BFPtr confusionBF = Teuchos::rcp( new BF(varFactory) );
  // tau terms:
  confusionBF->addTerm(sigma1 / eps, tau->x());
  confusionBF->addTerm(sigma2 / eps, tau->y());
  confusionBF->addTerm(u, tau->div());
  confusionBF->addTerm(uhat, -tau->dot_normal());

  // v terms:
  confusionBF->addTerm( sigma1, v->dx() );
  confusionBF->addTerm( sigma2, v->dy() );
  confusionBF->addTerm( -u, beta * v->grad() );
  confusionBF->addTerm( beta_n_u_minus_sigma_n, v);

  ////////////////////   DEFINE INNER PRODUCT(S)   ///////////////////////

  // robust test norm
  IPPtr ip = Teuchos::rcp(new IP);

  // choose the mesh-independent norm even though it may have boundary layers
  ip->addTerm(v->grad());
  ip->addTerm(v);
  ip->addTerm(tau);
  ip->addTerm(tau->div());

  ////////////////////   SPECIFY RHS AND HELPFUL FUNCTIONS   ///////////////////////

  FunctionPtr n = Function::normal();
  vector<double> e1,e2;
  e1.push_back(1.0);
  e1.push_back(0.0);
  e2.push_back(0.0);
  e2.push_back(1.0);
  FunctionPtr one = Function::constant(1.0);

  FunctionPtr zero = Function::constant(0.0);
  RHSPtr rhs = RHS::rhs();
  FunctionPtr f = one; // if this is set to zero instead, we pass the test (a clue?)
  rhs->addTerm( f * v );

  ////////////////////   CREATE BCs   ///////////////////////
  BCPtr bc = BC::bc();
  SpatialFilterPtr squareBoundary = Teuchos::rcp( new SquareBoundary );

  bc->addDirichlet(uhat, squareBoundary, one);

  ////////////////////   BUILD MESH   ///////////////////////
  // define nodes for mesh
  int order = 2;
  int H1Order = order+1;
  int pToAdd = 2;

  // create a pointer to a new mesh:
  Teuchos::RCP<Mesh> mesh = MeshUtilities::buildUnitQuadMesh(nCells,confusionBF, H1Order, H1Order+pToAdd);

  ////////////////////   SOLVE & REFINE   ///////////////////////

  Teuchos::RCP<Solution> solution;
  solution = Teuchos::rcp( new Solution(mesh, bc, rhs, ip) );
  solution->solve(false);
  double energyError = solution->energyErrorTotal();

  LinearTermPtr residual = rhs->linearTermCopy();
  residual->addTerm(-confusionBF->testFunctional(solution),true);

//  FunctionPtr uh = Function::solution(uhat,solution);
//  FunctionPtr fn = Function::solution(beta_n_u_minus_sigma_n,solution);
//  FunctionPtr uF = Function::solution(u,solution);
//  FunctionPtr sigma = e1*Function::solution(sigma1,solution)+e2*Function::solution(sigma2,solution);
//  residual->addTerm(- (fn*v - uh*tau->dot_normal()));
//  residual->addTerm(- (uF*(tau->div() - beta*v->grad()) + sigma*((1/eps)*tau + v->grad())));
//  residual->addTerm(-(fn*v - uF*beta*v->grad() + sigma*v->grad())); // just v portion
//  residual->addTerm(uh*tau->dot_normal() - uF*tau->div() - sigma*((1/eps)*tau)); // just tau portion

  Teuchos::RCP<RieszRep> rieszResidual = Teuchos::rcp(new RieszRep(mesh, ip, residual));
  rieszResidual->computeRieszRep();
  double energyErrorLT = rieszResidual->getNorm();

  int cubEnrich = 0;
  bool testVsTest = true;
  FunctionPtr e_v = RieszRep::repFunction(v,rieszResidual);
  FunctionPtr e_tau = RieszRep::repFunction(tau,rieszResidual);
  // experiment by Nate: manually specify the error (this appears to produce identical results, as it should)
//  FunctionPtr err = e_v * e_v + e_tau * e_tau + e_v->grad() * e_v->grad() + e_tau->div() * e_tau->div();
  map<int,FunctionPtr> errFxns;
  errFxns[v->ID()] = e_v;
  errFxns[tau->ID()] = e_tau;
  LinearTermPtr ipAtErrFxns = ip->evaluate(errFxns);
  FunctionPtr err = ip->evaluate(errFxns)->evaluate(errFxns);
  double energyErrorIntegrated = sqrt(err->integrate(mesh,cubEnrich,testVsTest));

  // check that energy error computed thru Solution and through rieszRep are the same
  bool success1 = abs(energyError-energyErrorLT)<tol;
  // checks that matrix-computed and integrated errors are the same
  bool success2 = abs(energyErrorLT-energyErrorIntegrated)<tol;
  success = success1==true && success2==true;
  if (!success)
  {
    if (rank==0)
      cout << "Failed testLTResidual; energy error = " << energyError << ", while linearTerm error is computed to be " << energyErrorLT << ", and when computing through integration of the Riesz rep function, error = " << energyErrorIntegrated << endl;
  }
  //  VTKExporter exporter(solution, mesh, varFactory);
  //  exporter.exportSolution("testLTRes");
  //  cout << endl;

  return success;
}