Exemple #1
0
typename GaussianProcess<TScalarType>::MatrixType GaussianProcess<TScalarType>::InvertKernelMatrix(const typename GaussianProcess<TScalarType>::MatrixType &K,
                                                      typename GaussianProcess<TScalarType>::InversionMethod inv_method = GaussianProcess<TScalarType>::FullPivotLU,
                                                                                                   bool stable) const{
    // compute core matrix
    if(debug){
        std::cout << "GaussianProcess::InvertKernelMatrix: inverting kernel matrix... ";
        std::cout.flush();
    }

    typename GaussianProcess<TScalarType>::MatrixType core;

    switch(inv_method){
    // standard method: fast but not that accurate
    // Uses the LU decomposition with full pivoting for the inversion
    case FullPivotLU:{
        if(debug) std::cout << " (inversion method: FullPivotLU) " << std::flush;
        try{
            if(stable){
                core = K.inverse();
            }
            else{
                if(debug) std::cout << " (using lapack) " << std::flush;
                core = lapack::lu_invert<TScalarType>(K);
            }
        }
        catch(lapack::LAPACKException& e){
            core = K.inverse();
        }
    }
    break;

    // very accurate and very slow method, use it for small problems
    // Uses the two-sided Jacobi SVD decomposition
    case JacobiSVD:{
        if(debug) std::cout << " (inversion method: JacobiSVD) " << std::flush;
        Eigen::JacobiSVD<MatrixType> jacobisvd(K, Eigen::ComputeThinU | Eigen::ComputeThinV);
        if((jacobisvd.singularValues().real().array() < 0).any() && debug){
            std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues.";
            std::cout.flush();
        }
        core = jacobisvd.matrixV() * VectorType(1/jacobisvd.singularValues().array()).asDiagonal() * jacobisvd.matrixU().transpose();
    }
    break;

    // accurate method and faster than Jacobi SVD.
    // Uses the bidiagonal divide and conquer SVD
    case BDCSVD:{
        if(debug) std::cout << " (inversion method: BDCSVD) " << std::flush;
#ifdef EIGEN_BDCSVD_H
        Eigen::BDCSVD<MatrixType> bdcsvd(K, Eigen::ComputeThinU | Eigen::ComputeThinV);
        if((bdcsvd.singularValues().real().array() < 0).any() && debug){
            std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues.";
            std::cout.flush();
        }
        core = bdcsvd.matrixV() * VectorType(1/bdcsvd.singularValues().array()).asDiagonal() * bdcsvd.matrixU().transpose();
#else
        // this is checked, since BDCSVD is currently not in the newest release
        throw std::string("GaussianProcess::InvertKernelMatrix: BDCSVD is not supported by the provided Eigen library.");
#endif

    }
    break;

    // faster than the SVD method but less stable
    // computes the eigenvalues/eigenvectors of selfadjoint matrices
    case SelfAdjointEigenSolver:{
        if(debug) std::cout << " (inversion method: SelfAdjointEigenSolver) " << std::flush;
        try{
            core = lapack::chol_invert<TScalarType>(K);
        }
        catch(lapack::LAPACKException& e){
            Eigen::SelfAdjointEigenSolver<MatrixType> es;
            es.compute(K);
            VectorType eigenValues = es.eigenvalues().reverse();
            MatrixType eigenVectors = es.eigenvectors().rowwise().reverse();
            if((eigenValues.real().array() < 0).any() && debug){
                std::cout << "GaussianProcess::InvertKernelMatrix: warning: there are negative eigenvalues.";
                std::cout.flush();
            }
            core = eigenVectors * VectorType(1/eigenValues.array()).asDiagonal() * eigenVectors.transpose();
        }
    }
    break;
    }

    if(debug) std::cout << "[done]" << std::endl;
    return core;
}
template<typename VectorType> void vectorRedux(const VectorType& w)
{
  using std::abs;
  typedef typename VectorType::Index Index;
  typedef typename VectorType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  Index size = w.size();

  VectorType v = VectorType::Random(size);
  VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod

  for(int i = 1; i < size; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
    for(int j = 0; j < i; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
    VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
  }

  for(int i = 0; i < size-1; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
    for(int j = i; j < size; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
    VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
  }

  for(int i = 0; i < size/2; i++)
  {
    Scalar s(0), p(1);
    RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
    for(int j = i; j < size-i; j++)
    {
      s += v[j];
      p *= v_for_prod[j];
      minc = (std::min)(minc, numext::real(v[j]));
      maxc = (std::max)(maxc, numext::real(v[j]));
    }
    VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
    VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
    VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
    VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
  }
  
  // test empty objects
  VERIFY_IS_APPROX(v.head(0).sum(),   Scalar(0));
  VERIFY_IS_APPROX(v.tail(0).prod(),  Scalar(1));
  VERIFY_RAISES_ASSERT(v.head(0).mean());
  VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
  VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
}