void TransformAndDrawPrim(void *verts, void *inds, int prim, int vertexCount, LinkedShader *program, float *customUV, int forceIndexType)
{
	// First, decode the verts and apply morphing
	VertexDecoder dec;
	dec.SetVertexType(gstate.vertType);
	dec.DecodeVerts(decoded, verts, inds, prim, vertexCount);

	bool useTexCoord = false;

	// Check if anything needs updating
	if (gstate.textureChanged)
	{
		if (gstate.textureMapEnable && !(gstate.clearmode & 1))
		{
			PSPSetTexture();
			useTexCoord = true;
		}
	}

	// Then, transform and draw in one big swoop (urgh!)
	// need to move this to the shader.
	
	// We're gonna have to keep software transforming RECTANGLES, unless we use a geom shader which we can't on OpenGL ES 2.0.
	// Usually, though, these primitives don't use lighting etc so it's no biggie performance wise, but it would be nice to get rid of
	// this code.

	// Actually, if we find the camera-relative right and down vectors, it might even be possible to add the extra points in pre-transformed
	// space and thus make decent use of hardware transform.

	// Actually again, single quads could be drawn more efficiently using GL_TRIANGLE_STRIP, no need to duplicate verts as for
	// GL_TRIANGLES. Still need to sw transform to compute the extra two corners though.
	
	// Temporary storage for RECTANGLES emulation
	float v2[3] = {0};
	float uv2[2] = {0};

	int numTrans = 0;
	TransformedVertex *trans = &transformed[0];

	// TODO: Could use glDrawElements in some cases, see below.


	// TODO: Split up into multiple draw calls for Android where you can't guarantee support for more than 0x10000 verts.
	int i = 0;

#ifdef ANDROID
	if (vertexCount > 0x10000/3)
		vertexCount = 0x10000/3;
#endif

	for (int i = 0; i < vertexCount; i++)
	{	
		int indexType = (gstate.vertType & GE_VTYPE_IDX_MASK);
		if (forceIndexType != -1) {
			indexType = forceIndexType;
		}

		int index;
		if (indexType == GE_VTYPE_IDX_8BIT)
		{
			index = ((u8*)inds)[i];
		} 
		else if (indexType == GE_VTYPE_IDX_16BIT)
		{
			index = ((u16*)inds)[i];
		}
		else
		{
			index = i;
		}

		float v[3] = {0,0,0};
		float c[4] = {1,1,1,1};
		float uv[2] = {0,0};

		if (gstate.vertType & GE_VTYPE_THROUGH_MASK)
		{
			// Do not touch the coordinates or the colors. No lighting.
			for (int j=0; j<3; j++)
				v[j] = decoded[index].pos[j];
			// TODO : check if has color
			for (int j=0; j<4; j++)
				c[j] = decoded[index].color[j];
			// TODO : check if has uv
			for (int j=0; j<2; j++)
				uv[j] = decoded[index].uv[j];

			//Rescale UV?
		}
		else
		{
			//We do software T&L for now
			float out[3], norm[3];
			if ((gstate.vertType & GE_VTYPE_WEIGHT_MASK) == GE_VTYPE_WEIGHT_NONE)
			{
				Vec3ByMatrix43(out, decoded[index].pos, gstate.worldMatrix);
				Norm3ByMatrix43(norm, decoded[index].normal, gstate.worldMatrix);
			}
			else
			{
				Vec3 psum(0,0,0);
				Vec3 nsum(0,0,0);
				int nweights = (gstate.vertType & GE_VTYPE_WEIGHT_MASK) >> GE_VTYPE_WEIGHT_SHIFT;
				for (int i = 0; i < nweights; i++)
				{
					Vec3ByMatrix43(out, decoded[index].pos, gstate.boneMatrix+i*12);
					Norm3ByMatrix43(norm, decoded[index].normal, gstate.boneMatrix+i*12);
					Vec3 tpos(out), tnorm(norm);
					psum += tpos*decoded[index].weights[i];
					nsum += tnorm*decoded[index].weights[i];
				}
				nsum.Normalize();
				psum.Write(out);
				nsum.Write(norm);
			}

			// Perform lighting here if enabled. don't need to check through, it's checked above.
			float dots[4] = {0,0,0,0};
			if (program->a_color0 != -1)
			{
				//c[1] = norm[1];
				float litColor[4] = {0,0,0,0};
				Light(litColor, decoded[index].color, out, norm, dots);
				if (gstate.lightingEnable & 1)
				{
					memcpy(c, litColor, sizeof(litColor));
				}
				else
				{
					// no lighting? copy the color.
					for (int j=0; j<4; j++)
						c[j] = decoded[index].color[j];
				}
			}
			else
			{
				// no color in the fragment program???
				for (int j=0; j<4; j++)
					c[j] = decoded[index].color[j];
			}

			if (customUV) {
				uv[0] = customUV[index * 2 + 0]*gstate.uScale + gstate.uOff;
				uv[1] = customUV[index * 2 + 1]*gstate.vScale + gstate.vOff;
			} else {
				// Perform texture coordinate generation after the transform and lighting - one style of UV depends on lights.
				switch (gstate.texmapmode & 0x3)
				{
				case 0:	// UV mapping
					// Texture scale/offset is only performed in this mode.
					uv[0] = decoded[index].uv[0]*gstate.uScale + gstate.uOff;
					uv[1] = decoded[index].uv[1]*gstate.vScale + gstate.vOff;
					break;
				case 1:
					{
						// Projection mapping
						Vec3 source;
						switch ((gstate.texmapmode >> 8) & 0x3)
						{
						case 0: // Use model space XYZ as source
							source = decoded[index].pos;
							break;
						case 1: // Use unscaled UV as source
							source = Vec3(decoded[index].uv[0], decoded[index].uv[1], 0.0f);
							break;
						case 2: // Use normalized normal as source
							source = Vec3(norm).Normalized();
							break;
						case 3: // Use non-normalized normal as source!
							source = Vec3(norm);
							break;
						}
						float uvw[3];
						Vec3ByMatrix43(uvw, &source.x, gstate.tgenMatrix);
						uv[0] = uvw[0];
						uv[1] = uvw[1];
					}
					break;
				case 2:
					// Shade mapping
					{
						int lightsource1 = gstate.texshade & 0x3;
						int lightsource2 = (gstate.texshade >> 8) & 0x3;
						uv[0] = dots[lightsource1];
						uv[1] = dots[lightsource2];
					}
					break;
				case 3:
					// Illegal
					break;
				}
			}
			// Transform the coord by the view matrix. Should this be done before or after texcoord generation?
			Vec3ByMatrix43(v, out, gstate.viewMatrix);
		}


		// We need to tesselate axis-aligned rectangles, as they're only specified by two coordinates.
		if (prim == GE_PRIM_RECTANGLES)
		{
			if ((i & 1) == 0)
			{
				// Save this vertex so we can generate when we get the next one. Color is taken from the last vertex.
				memcpy(v2, v, sizeof(float)*3);
				memcpy(uv2,uv,sizeof(float)*2);
			}
			else
			{
				// We have to turn the rectangle into two triangles, so 6 points. Sigh.

				// top left
				trans->x = v[0]; trans->y = v[1];
				trans->z = v[2]; 
				trans->uv[0] = uv[0]; trans->uv[1] = uv[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				// top right
				trans->x = v2[0]; trans->y = v[1];
				trans->z = v[2]; 
				trans->uv[0] = uv2[0]; trans->uv[1] = uv[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				// bottom right
				trans->x = v2[0]; trans->y = v2[1];
				trans->z = v[2]; 
				trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				// bottom left
				trans->x = v[0]; trans->y = v2[1];
				trans->z = v[2]; 
				trans->uv[0] = uv[0]; trans->uv[1] = uv2[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				// top left
				trans->x = v[0]; trans->y = v[1];
				trans->z = v[2]; 
				trans->uv[0] = uv[0]; trans->uv[1] = uv[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				// bottom right
				trans->x = v2[0]; trans->y = v2[1];
				trans->z = v[2]; 
				trans->uv[0] = uv2[0]; trans->uv[1] = uv2[1];
				memcpy(trans->color, c, 4*sizeof(float));
				trans++;

				numTrans += 6;
			}
		}
		else
		{
			memcpy(&trans->x, v, 3*sizeof(float));
			memcpy(trans->color, c, 4*sizeof(float));
			memcpy(trans->uv, uv, 2*sizeof(float));
			trans++;
			numTrans++;
		}
	}

	glEnableVertexAttribArray(program->a_position);
	if (useTexCoord && program->a_texcoord != -1) glEnableVertexAttribArray(program->a_texcoord);
	if (program->a_color0 != -1) glEnableVertexAttribArray(program->a_color0);
	const int vertexSize = sizeof(*trans);
	glVertexAttribPointer(program->a_position, 3, GL_FLOAT, GL_FALSE, vertexSize, transformed);
	if (useTexCoord && program->a_texcoord != -1) glVertexAttribPointer(program->a_texcoord, 2, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 3 * 4);	
	if (program->a_color0 != -1) glVertexAttribPointer(program->a_color0, 4, GL_FLOAT, GL_FALSE, vertexSize, ((uint8_t*)transformed) + 5 * 4);
	// NOTICE_LOG(G3D,"DrawPrimitive: %i", numTrans);
	glDrawArrays(glprim[prim], 0, numTrans);
	glDisableVertexAttribArray(program->a_position);
	if (useTexCoord && program->a_texcoord != -1) glDisableVertexAttribArray(program->a_texcoord);
	if (program->a_color0 != -1) glDisableVertexAttribArray(program->a_color0);

	/*
	if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_8BIT)
	{
		glDrawElements(glprim, vertexCount, GL_UNSIGNED_BYTE, inds);
	} 
	else if (((gstate.vertType ) & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT)
	{
		glDrawElements(glprim, vertexCount, GL_UNSIGNED_SHORT, inds);
	}
	else
	{*/

}
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;
	if (prim_type == GE_PRIM_POINTS) vtcs_per_prim = 1;
	else if (prim_type == GE_PRIM_LINES) vtcs_per_prim = 2;
	else if (prim_type == GE_PRIM_TRIANGLES) vtcs_per_prim = 3;
	else if (prim_type == GE_PRIM_RECTANGLES) vtcs_per_prim = 2;
	else {
		// TODO: Unsupported
	}

	if (prim_type == GE_PRIM_POINTS || prim_type == GE_PRIM_LINES || prim_type == GE_PRIM_TRIANGLES || prim_type == GE_PRIM_RECTANGLES) {
		for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
			VertexData data[max_vtcs_per_prim];

			for (int i = 0; i < vtcs_per_prim; ++i) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx+i] : indices8[vtx+i]);
				else
					vreader.Goto(vtx+i);

				data[i] = ReadVertex(vreader);
				if (outside_range_flag)
					break;
			}
			if (outside_range_flag) {
				outside_range_flag = false;
				continue;
			}


			switch (prim_type) {
			case GE_PRIM_TRIANGLES:
			{
				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if (!gstate.getCullMode())
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				else
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				break;
			}

			case GE_PRIM_RECTANGLES:
				Clipper::ProcessQuad(data[0], data[1]);
				break;
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_STRIP) {
		VertexData data[3];
		unsigned int skip_count = 2; // Don't draw a triangle when loading the first two vertices

		for (int vtx = 0; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[vtx % 3] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	} else if (prim_type == GE_PRIM_TRIANGLE_FAN) {
		VertexData data[3];
		unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

		if (indices)
			vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
		else
			vreader.Goto(0);
		data[0] = ReadVertex(vreader);

		for (int vtx = 1; vtx < vertex_count; ++vtx) {
			if (indices)
				vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
			else
				vreader.Goto(vtx);

			data[2 - (vtx % 2)] = ReadVertex(vreader);
			if (outside_range_flag) {
				// Drop all primitives containing the current vertex
				skip_count = 2;
				outside_range_flag = false;
				continue;
			}

			if (skip_count) {
				--skip_count;
				continue;
			}

			if (!gstate.isCullEnabled() || gstate.isModeClear()) {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
				// We need to reverse the vertex order for each second primitive,
				// but we additionally need to do that for every primitive if CCW cullmode is used.
				Clipper::ProcessTriangle(data[2], data[1], data[0]);
			} else {
				Clipper::ProcessTriangle(data[0], data[1], data[2]);
			}
		}
	}
}
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type)
{
	VertexDecoder vdecoder;
	vdecoder.SetVertexType(vertex_type);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	u8* indices8 = (u8*)indices;
	u16* indices16 = (u16*)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	// TODO: Do something less idiotic to manage this buffer
	SplinePatch* patches = new SplinePatch[num_patches_u * num_patches_v];

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
                if (indices)
                    vreader.Goto(indices_16bit ? indices16[idx] : indices8[idx]);
                else
                    vreader.Goto(idx);

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}
	delete[] patches;
}
Exemple #4
0
void TransformUnit::SubmitPrimitive(void* vertices, void* indices, u32 prim_type, int vertex_count, u32 vertex_type, int *bytesRead)
{
	// TODO: Cache VertexDecoder objects
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	if (bytesRead)
		*bytesRead = vertex_count * vdecoder.VertexSize();

	// Frame skipping.
	if (gstate_c.skipDrawReason & SKIPDRAW_SKIPFRAME) {
		return;
	}

	u16 index_lower_bound = 0;
	u16 index_upper_bound = vertex_count - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, vertex_count, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, vertices, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	const int max_vtcs_per_prim = 3;
	int vtcs_per_prim = 0;

	switch (prim_type) {
	case GE_PRIM_POINTS: vtcs_per_prim = 1; break;
	case GE_PRIM_LINES: vtcs_per_prim = 2; break;
	case GE_PRIM_TRIANGLES: vtcs_per_prim = 3; break;
	case GE_PRIM_RECTANGLES: vtcs_per_prim = 2; break;
	}

	VertexData data[max_vtcs_per_prim];

	// TODO: Do this in two passes - first process the vertices (before indexing/stripping),
	// then resolve the indices. This lets us avoid transforming shared vertices twice.

	switch (prim_type) {
	case GE_PRIM_POINTS:
	case GE_PRIM_LINES:
	case GE_PRIM_TRIANGLES:
	case GE_PRIM_RECTANGLES:
		{
			for (int vtx = 0; vtx < vertex_count; vtx += vtcs_per_prim) {
				for (int i = 0; i < vtcs_per_prim; ++i) {
					if (indices) {
						if (indices_32bit) {
							vreader.Goto(indices32[vtx + i]);
						} else if (indices_16bit) {
							vreader.Goto(indices16[vtx + i]);
						} else {
							vreader.Goto(indices8[vtx + i]);
						}
					} else {
						vreader.Goto(vtx+i);
					}

					data[i] = ReadVertex(vreader);
					if (outside_range_flag)
						break;
				}
				if (outside_range_flag) {
					outside_range_flag = false;
					continue;
				}

				switch (prim_type) {
				case GE_PRIM_TRIANGLES:
				{
					if (!gstate.isCullEnabled() || gstate.isModeClear()) {
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					} else if (!gstate.getCullMode())
						Clipper::ProcessTriangle(data[2], data[1], data[0]);
					else
						Clipper::ProcessTriangle(data[0], data[1], data[2]);
					break;
				}

				case GE_PRIM_RECTANGLES:
					Clipper::ProcessRect(data[0], data[1]);
					break;

				case GE_PRIM_LINES:
					Clipper::ProcessLine(data[0], data[1]);
					break;

				case GE_PRIM_POINTS:
					Clipper::ProcessPoint(data[0]);
					break;
				}
			}
			break;
		}

	case GE_PRIM_LINE_STRIP:
		{
			int skip_count = 1; // Don't draw a line when loading the first vertex
			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx & 1] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
				} else {
					Clipper::ProcessLine(data[(vtx & 1) ^ 1], data[vtx & 1]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_STRIP:
		{
			int skip_count = 2; // Don't draw a triangle when loading the first two vertices

			for (int vtx = 0; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[vtx % 3] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}

	case GE_PRIM_TRIANGLE_FAN:
		{
			unsigned int skip_count = 1; // Don't draw a triangle when loading the first two vertices

			if (indices)
				vreader.Goto(indices_16bit ? indices16[0] : indices8[0]);
			else
				vreader.Goto(0);
			data[0] = ReadVertex(vreader);

			for (int vtx = 1; vtx < vertex_count; ++vtx) {
				if (indices)
					vreader.Goto(indices_16bit ? indices16[vtx] : indices8[vtx]);
				else
					vreader.Goto(vtx);

				data[2 - (vtx % 2)] = ReadVertex(vreader);
				if (outside_range_flag) {
					// Drop all primitives containing the current vertex
					skip_count = 2;
					outside_range_flag = false;
					continue;
				}

				if (skip_count) {
					--skip_count;
					continue;
				}

				if (!gstate.isCullEnabled() || gstate.isModeClear()) {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else if ((!gstate.getCullMode()) ^ (vtx % 2)) {
					// We need to reverse the vertex order for each second primitive,
					// but we additionally need to do that for every primitive if CCW cullmode is used.
					Clipper::ProcessTriangle(data[2], data[1], data[0]);
				} else {
					Clipper::ProcessTriangle(data[0], data[1], data[2]);
				}
			}
			break;
		}
	}

	host->GPUNotifyDraw();
}
Exemple #5
0
void TransformUnit::SubmitSpline(void* control_points, void* indices, int count_u, int count_v, int type_u, int type_v, GEPatchPrimType prim_type, u32 vertex_type) {
	VertexDecoder vdecoder;
	VertexDecoderOptions options;
	memset(&options, 0, sizeof(options));
	options.expandAllUVtoFloat = false;
	vdecoder.SetVertexType(vertex_type, options);
	const DecVtxFormat& vtxfmt = vdecoder.GetDecVtxFmt();

	static u8 buf[65536 * 48]; // yolo
	u16 index_lower_bound = 0;
	u16 index_upper_bound = count_u * count_v - 1;
	bool indices_16bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_16BIT;
	bool indices_32bit = (vertex_type & GE_VTYPE_IDX_MASK) == GE_VTYPE_IDX_32BIT;
	u8 *indices8 = (u8 *)indices;
	u16 *indices16 = (u16 *)indices;
	u32 *indices32 = (u32 *)indices;
	if (indices)
		GetIndexBounds(indices, count_u*count_v, vertex_type, &index_lower_bound, &index_upper_bound);
	vdecoder.DecodeVerts(buf, control_points, index_lower_bound, index_upper_bound);

	VertexReader vreader(buf, vtxfmt, vertex_type);

	int num_patches_u = count_u - 3;
	int num_patches_v = count_v - 3;

	if (patchBufferSize_ < num_patches_u * num_patches_v) {
		if (patchBuffer_) {
			FreeAlignedMemory(patchBuffer_);
		}
		patchBuffer_ = (SplinePatch *)AllocateAlignedMemory(num_patches_u * num_patches_v, 16);
		patchBufferSize_ = num_patches_u * num_patches_v;
	}
	SplinePatch *patches = patchBuffer_;

	for (int patch_u = 0; patch_u < num_patches_u; ++patch_u) {
		for (int patch_v = 0; patch_v < num_patches_v; ++patch_v) {
			SplinePatch& patch = patches[patch_u + patch_v * num_patches_u];

			for (int point = 0; point < 16; ++point) {
				int idx = (patch_u + point%4) + (patch_v + point/4) * count_u;
				if (indices) {
					if (indices_32bit) {
						vreader.Goto(indices32[idx]);
					} else if (indices_16bit) {
						vreader.Goto(indices16[idx]);
					} else {
						vreader.Goto(indices8[idx]);
					}
				} else {
					vreader.Goto(idx);
				}

				patch.points[point] = ReadVertex(vreader);
			}
			patch.type = (type_u | (type_v<<2));
			if (patch_u != 0) patch.type &= ~START_OPEN_U;
			if (patch_v != 0) patch.type &= ~START_OPEN_V;
			if (patch_u != num_patches_u-1) patch.type &= ~END_OPEN_U;
			if (patch_v != num_patches_v-1) patch.type &= ~END_OPEN_V;
		}
	}

	for (int patch_idx = 0; patch_idx < num_patches_u*num_patches_v; ++patch_idx) {
		SplinePatch& patch = patches[patch_idx];

		// TODO: Should do actual patch subdivision instead of just drawing the control points!
		const int tile_min_u = (patch.type & START_OPEN_U) ? 0 : 1;
		const int tile_min_v = (patch.type & START_OPEN_V) ? 0 : 1;
		const int tile_max_u = (patch.type & END_OPEN_U) ? 3 : 2;
		const int tile_max_v = (patch.type & END_OPEN_V) ? 3 : 2;
		for (int tile_u = tile_min_u; tile_u < tile_max_u; ++tile_u) {
			for (int tile_v = tile_min_v; tile_v < tile_max_v; ++tile_v) {
				int point_index = tile_u + tile_v*4;

				VertexData v0 = patch.points[point_index];
				VertexData v1 = patch.points[point_index+1];
				VertexData v2 = patch.points[point_index+4];
				VertexData v3 = patch.points[point_index+5];

				// TODO: Backface culling etc
				Clipper::ProcessTriangle(v0, v1, v2);
				Clipper::ProcessTriangle(v2, v1, v0);
				Clipper::ProcessTriangle(v2, v1, v3);
				Clipper::ProcessTriangle(v3, v1, v2);
			}
		}
	}

	host->GPUNotifyDraw();
}
Exemple #6
0
// This normalizes a set of vertices in any format to SimpleVertex format, by processing away morphing AND skinning.
// The rest of the transform pipeline like lighting will go as normal, either hardware or software.
// The implementation is initially a bit inefficient but shouldn't be a big deal.
// An intermediate buffer of not-easy-to-predict size is stored at bufPtr.
u32 TransformDrawEngine::NormalizeVertices(u8 *outPtr, u8 *bufPtr, const u8 *inPtr, int lowerBound, int upperBound, u32 vertType) {
	// First, decode the vertices into a GPU compatible format. This step can be eliminated but will need a separate
	// implementation of the vertex decoder.
	VertexDecoder *dec = GetVertexDecoder(vertType);
	dec->DecodeVerts(bufPtr, inPtr, lowerBound, upperBound);

	// OK, morphing eliminated but bones still remain to be taken care of.
	// Let's do a partial software transform where we only do skinning.

	VertexReader reader(bufPtr, dec->GetDecVtxFmt(), vertType);

	SimpleVertex *sverts = (SimpleVertex *)outPtr;	

	const u8 defaultColor[4] = {
		(u8)gstate.getMaterialAmbientR(),
		(u8)gstate.getMaterialAmbientG(),
		(u8)gstate.getMaterialAmbientB(),
		(u8)gstate.getMaterialAmbientA(),
	};

	// Let's have two separate loops, one for non skinning and one for skinning.
	if ((vertType & GE_VTYPE_WEIGHT_MASK) != GE_VTYPE_WEIGHT_NONE) {
		int numBoneWeights = vertTypeGetNumBoneWeights(vertType);
		for (int i = lowerBound; i <= upperBound; i++) {
			reader.Goto(i);
			SimpleVertex &sv = sverts[i];
			if (vertType & GE_VTYPE_TC_MASK) {
				reader.ReadUV(sv.uv);
			}

			if (vertType & GE_VTYPE_COL_MASK) {
				reader.ReadColor0_8888(sv.color);
			} else {
				memcpy(sv.color, defaultColor, 4);
			}

			float nrm[3], pos[3];
			float bnrm[3], bpos[3];

			if (vertType & GE_VTYPE_NRM_MASK) {
				// Normals are generated during tesselation anyway, not sure if any need to supply
				reader.ReadNrm(nrm);
			} else {
				nrm[0] = 0;
				nrm[1] = 0;
				nrm[2] = 1.0f;
			}
			reader.ReadPos(pos);

			// Apply skinning transform directly
			float weights[8];
			reader.ReadWeights(weights);
			// Skinning
			Vec3f psum(0,0,0);
			Vec3f nsum(0,0,0);
			for (int i = 0; i < numBoneWeights; i++) {
				if (weights[i] != 0.0f) {
					Vec3ByMatrix43(bpos, pos, gstate.boneMatrix+i*12);
					Vec3f tpos(bpos);
					psum += tpos * weights[i];

					Norm3ByMatrix43(bnrm, nrm, gstate.boneMatrix+i*12);
					Vec3f tnorm(bnrm);
					nsum += tnorm * weights[i];
				}
			}
			sv.pos = psum;
			sv.nrm = nsum;
		}
	} else {
		for (int i = lowerBound; i <= upperBound; i++) {
			reader.Goto(i);
			SimpleVertex &sv = sverts[i];
			if (vertType & GE_VTYPE_TC_MASK) {
				reader.ReadUV(sv.uv);
			} else {
				sv.uv[0] = 0;  // This will get filled in during tesselation
				sv.uv[1] = 0;
			}
			if (vertType & GE_VTYPE_COL_MASK) {
				reader.ReadColor0_8888(sv.color);
			} else {
				memcpy(sv.color, defaultColor, 4);
			}
			if (vertType & GE_VTYPE_NRM_MASK) {
				// Normals are generated during tesselation anyway, not sure if any need to supply
				reader.ReadNrm((float *)&sv.nrm);
			} else {
				sv.nrm.x = 0;
				sv.nrm.y = 0;
				sv.nrm.z = 1.0f;
			}
			reader.ReadPos((float *)&sv.pos);
		}
	}

	// Okay, there we are! Return the new type (but keep the index bits)
	return GE_VTYPE_TC_FLOAT | GE_VTYPE_COL_8888 | GE_VTYPE_NRM_FLOAT | GE_VTYPE_POS_FLOAT | (vertType & GE_VTYPE_IDX_MASK);
}