Exemple #1
0
/**
Return the sum of the diagonal of a square matrix mat.

\param mat is a square scalar matrix
*/
double trace(const dmatrix& mat)
{
  if (mat.colmin() != mat.rowmin() || mat.colmax() != mat.rowmax() )
  {
    cerr << "Matrix not square in trace\n";
    ad_exit(1);
  }

  double sum = 0.0;
  for (int i = mat.colmin(); i <= mat.colmax(); ++i)
  {
    sum += mat.elem(i, i);
  }
  return sum;
}
Exemple #2
0
/**
Returns dvector where each element contains the sum total of each column 
in matrix.

\param matrix dmatrix
*/
dvector colsum(const dmatrix& matrix)
{
  int cmin = matrix.colmin();
  int cmax = matrix.colmax();
  int rmin = matrix.rowmin();
  int rmax = matrix.rowmax();

  dvector sums(cmin, cmax);
  sums.initialize();
  for (int j=cmin; j<=cmax; ++j)
  {
    for (int i=rmin; i<=rmax; ++i)
    {
      sums(j) += matrix(i, j);
    }
  }
  return sums;
}
Exemple #3
0
/**
 * Description not yet available.
 * \param
 */
dmatrix symmetrize(const dmatrix& m)
{
    if (m.rowmin() != m.colmin() || m.rowmax() != m.colmax() )
    {
        cerr << " Non square matrix passed to dmatrix symmetrize\n";
        ad_exit(1);
    }
    int rmin=m.rowmin();
    int rmax=m.rowmax();

    dmatrix s(rmin,rmax,rmin,rmax);
    for (int i=rmin; i<=rmax; i++)
    {
        s(i,i)=m(i,i);

        for (int j=rmin; j<i; j++)
        {
            s(i,j)=(m(i,j)+m(j,i))/2.;
            s(j,i)=s(i,j);
        }
    }
    return s;
}
dvariable mult_likelihood(const dmatrix &o, const dvar_matrix &p, dvar_matrix &nu, 
                          const dvariable &log_vn)
{

	// kludge to ensure observed and predicted matrixes are the same size
	if(o.colsize()!=p.colsize() || o.rowsize()!=p.rowsize())
	{
		cerr<<"Error in multivariate_t_likelihood, observed and predicted matrixes"
		" are not the same size\n";
		ad_exit(1);
	}
	dvariable vn = mfexp(log_vn);
	dvariable ff = 0.0;
	int r1 = o.rowmin();
	int r2 = o.rowmax();
	int c1 = o.colmin();
	int c2 = o.colmax();

	for(int i = r1; i <= r2; i++ )
	{
		dvar_vector sobs = vn * o(i)/sum(o(i));  //scale observed numbers by effective sample size.
		ff -= gammln(vn);
		for(int j = c1; j <= c2; j++ )
		{
			if( value(sobs(j)) > 0.0 )
				ff += gammln(sobs(j));
		}
		ff -= sobs * log(TINY + p(i));
		dvar_vector o1=o(i)/sum(o(i));
		dvar_vector p1=p(i)/sum(p(i));
		nu(i) = elem_div(o1-p1,sqrt(elem_prod(p1,1.-p1)/vn));


	}
	// exit(1);
	return ff;
}
Exemple #5
0
/**
 * Description not yet available.
 * \param
 */
dvar_matrix operator*(const dvar_matrix& m1, const dmatrix& cm2)
 {
   if (m1.colmin() != cm2.rowmin() || m1.colmax() != cm2.rowmax())
   {
     cerr << " Incompatible array bounds in "
     "dmatrix operator*(const dvar_matrix& x, const dmatrix& m)\n";
     ad_exit(21);
   }
   dmatrix cm1=value(m1);
   //dmatrix cm2=value(m2);
   dmatrix tmp(m1.rowmin(),m1.rowmax(), cm2.colmin(), cm2.colmax());
#ifdef OPT_LIB
   const size_t rowsize = (size_t)cm2.rowsize();
#else
   const int _rowsize = cm2.rowsize();
   assert(_rowsize > 0);
   const size_t rowsize = (size_t)_rowsize;
#endif
   try
   {
     double* temp_col = new double[rowsize];
     temp_col-=cm2.rowmin();
     for (int j=cm2.colmin(); j<=cm2.colmax(); j++)
     {
       for (int k=cm2.rowmin(); k<=cm2.rowmax(); k++)
       {
         temp_col[k] = cm2.elem(k,j);
       }
       for (int i=cm1.rowmin(); i<=cm1.rowmax(); i++)
       {
         double sum=0.0;
         dvector& temp_row = cm1(i);
         for (int k=cm1.colmin(); k<=cm1.colmax(); k++)
         {
           sum+=temp_row(k) * (temp_col[k]);
           // sum+=temp_row(k) * cm2(k,j);
         }
         tmp(i,j)=sum;
       }
     }
     temp_col+=cm2.rowmin();
     delete [] temp_col;
     temp_col = 0;
   }
   catch (std::bad_alloc& e)
   {
     cerr << "Error[" << __FILE__ << ':' << __LINE__
          << "]: Unable to allocate array.\n";
     //ad_exit(21);
     throw e;
   }
   dvar_matrix vtmp=nograd_assign(tmp);
   save_identifier_string("TEST1");
   //m1.save_dvar_matrix_value();
   m1.save_dvar_matrix_position();
   cm2.save_dmatrix_value();
   cm2.save_dmatrix_position();
   vtmp.save_dvar_matrix_position();
   save_identifier_string("TEST6");
   gradient_structure::GRAD_STACK1->
            set_gradient_stack(dmcm_prod);
   return vtmp;
 }