/** * \ingroup eigen * Eigenvectors * \param m \f$m\f$ * \return a variable matrix with the * eigenvectors of \f$m\f$ stored in its columns. */ dmatrix eigenvectors(const dmatrix &m) { if (m.rowsize() != m.colsize()) { cerr << "error -- non square matrix passed to dmatrix eigenvectors(const dmatrix& m)\n"; ad_exit(1); } int rmin = m.rowmin(); int rmax = m.rowmax(); dmatrix evecs(rmin, rmax, rmin, rmax); dvector evals(rmin, rmax); eigens(m, evecs, evals); return evecs; }
/** Eigenvalues. \param m Input matrix (unchanged on return). \return Vector of eigenvalues. */ dvector eigenvalues(const dmatrix& m) { if (m.rowsize()!=m.colsize()) { cerr << "error -- non square matrix passed to " "dvector eigen(const dmatrix& m)\n"; ad_exit(1); } dmatrix m1=symmetrize(m); m1.colshift(1); // set minimum column and row indices to 1 m1.rowshift(1); int n=m1.rowsize(); dvector diag(1,n); dvector off_diag(1,n); tri_dag(m1,diag,off_diag); get_eigen(diag,off_diag,m1); // eigenvalues are returned in diag // eigenvalues are returned in columns of z return diag; }
dvariable mult_likelihood(const dmatrix &o, const dvar_matrix &p, dvar_matrix &nu, const dvariable &log_vn) { // kludge to ensure observed and predicted matrixes are the same size if(o.colsize()!=p.colsize() || o.rowsize()!=p.rowsize()) { cerr<<"Error in multivariate_t_likelihood, observed and predicted matrixes" " are not the same size\n"; ad_exit(1); } dvariable vn = mfexp(log_vn); dvariable ff = 0.0; int r1 = o.rowmin(); int r2 = o.rowmax(); int c1 = o.colmin(); int c2 = o.colmax(); for(int i = r1; i <= r2; i++ ) { dvar_vector sobs = vn * o(i)/sum(o(i)); //scale observed numbers by effective sample size. ff -= gammln(vn); for(int j = c1; j <= c2; j++ ) { if( value(sobs(j)) > 0.0 ) ff += gammln(sobs(j)); } ff -= sobs * log(TINY + p(i)); dvar_vector o1=o(i)/sum(o(i)); dvar_vector p1=p(i)/sum(p(i)); nu(i) = elem_div(o1-p1,sqrt(elem_prod(p1,1.-p1)/vn)); } // exit(1); return ff; }