// // Output basic mesh information to screen // void ScreenOutput(const mesh& Mesh) { // Compute mesh quality parameters double totalarea = Mesh.get_area_prim(1); double maxarea = Mesh.get_area_prim(1); double minarea = Mesh.get_area_prim(1); for (int i=2; i<=Mesh.get_NumPhysElems(); i++) { double tmp = Mesh.get_area_prim(i); totalarea = totalarea + tmp; if (tmp < minarea) { minarea = tmp; } if (tmp > maxarea) { maxarea = tmp; } } double minAngle = 180.0; for (int i=1; i<=Mesh.get_NumPhysElems(); i++) { const int i1 = Mesh.get_tnode(i,1); const int i2 = Mesh.get_tnode(i,2); const int i3 = Mesh.get_tnode(i,3); point v12, v23, v31; v12.x = Mesh.get_node(i2,1) - Mesh.get_node(i1,1); v12.y = Mesh.get_node(i2,2) - Mesh.get_node(i1,2); v23.x = Mesh.get_node(i3,1) - Mesh.get_node(i2,1); v23.y = Mesh.get_node(i3,2) - Mesh.get_node(i2,2); v31.x = Mesh.get_node(i1,1) - Mesh.get_node(i3,1); v31.y = Mesh.get_node(i1,2) - Mesh.get_node(i3,2); double angle1 = acos((v12.x*-v31.x+v12.y*-v31.y) /(sqrt(v12.x*v12.x+v12.y*v12.y)*sqrt(v31.x*v31.x+v31.y*v31.y))); double angle2 = acos((v23.x*-v12.x+v23.y*-v12.y) /(sqrt(v23.x*v23.x+v23.y*v23.y)*sqrt(v12.x*v12.x+v12.y*v12.y))); double angle3 = acos((v31.x*-v23.x+v31.y*-v23.y) /(sqrt(v31.x*v31.x+v31.y*v31.y)*sqrt(v23.x*v23.x+v23.y*v23.y))); if ((angle1*180/pi) < minAngle) { minAngle = angle1*180/pi; } if ((angle2*180/pi) < minAngle) { minAngle = angle2*180/pi; } if ((angle3*180/pi) < minAngle) { minAngle = angle3*180/pi; } } // Output summary of results to screen printf("\n"); printf(" SUMMARY OF RESULTS:\n"); printf(" -------------------\n"); printf(" Number of Elements: %8i\n",Mesh.get_NumElems()); printf(" Number of Physical Elements: %8i\n",Mesh.get_NumPhysElems()); printf(" Number of Ghost Elements: %8i\n",Mesh.get_NumGhostElems()); printf(" Number of Nodes: %8i\n",Mesh.get_NumNodes()); printf(" Number of Physical Nodes: %8i\n",Mesh.get_NumPhysNodes()); printf(" Number of Boundary Nodes: %8i\n",Mesh.get_NumBndNodes()); printf(" Number of Edges: %8i\n",Mesh.get_NumEdges()); printf(" Number of Boundary Edges: %8i\n",Mesh.get_NumBndEdges()); printf("\n"); printf(" Total Area Covered: %24.16e\n",totalarea); printf(" Area Ratio: small/large: %24.16e\n",minarea/maxarea); printf(" Angle Ratio: minAngle/60: %24.16e\n",minAngle/60.0); printf("\n"); }
// Modified version of the all purpose routine L2Project specifically written // for projecting the "time-averaged" flux function onto the basis function. // // This routine also returns the coefficients of the Lax Wendroff Flux // Function when expanded with legendre basis functions, and therefore the // basis expansions produced by this routine can be used for all of the // Riemann solves. // // --------------------------------------------------------------------- // Inputs should have the following sizes: // TODO - document the inputs here // --------------------------------------------------------------------- void L2ProjectLxW_Unst( const int mterms, const double alpha, const double beta_dt, const double charlie_dt, const int istart, const int iend, // Start-stop indices const int QuadOrder, const int BasisOrder_qin, const int BasisOrder_auxin, const int BasisOrder_fout, const mesh& Mesh, const dTensor3* qin, const dTensor3* auxin, // state vector dTensor3* F, dTensor3* G, // time-averaged Flux function void FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& Aux, dTensor3& flux), void DFluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux), void D2FluxFunc (const dTensor2& xpts, const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) ) { if( fabs( alpha ) < 1e-14 && fabs( beta_dt ) < 1e-14 && fabs( charlie_dt ) < 1e-14 ) { F->setall(0.); G->setall(0.); return; } // starting and ending indices const int NumElems = Mesh.get_NumElems(); assert_ge(istart,1); assert_le(iend,NumElems); // qin variable assert_eq(NumElems,qin->getsize(1)); const int meqn = qin->getsize(2); const int kmax_qin = qin->getsize(3); assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2); // auxin variable assert_eq(NumElems,auxin->getsize(1)); const int maux = auxin->getsize(2); const int kmax_auxin = auxin->getsize(3); assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2); // fout variables assert_eq(NumElems, F->getsize(1)); const int mcomps_out = F->getsize(2); const int kmax_fout = F->getsize(3); assert_eq(kmax_fout, (BasisOrder_fout*(BasisOrder_fout+1))/2 ); // number of quadrature points assert_ge(QuadOrder, 1); assert_le(QuadOrder, 5); // Number of quadrature points int mpoints; switch( QuadOrder ) { case 1: mpoints = 1; break; case 2: mpoints = 3; break; case 3: mpoints = 6; break; case 4: mpoints = 12; break; case 5: mpoints = 16; break; } const int kmax = iMax(iMax(kmax_qin, kmax_auxin), kmax_fout); dTensor2 phi(mpoints, kmax); // Legendre basis (orthogonal) dTensor2 spts(mpoints, 2); // List of quadrature points dTensor1 wgts(mpoints); // List of quadrature weights setQuadPoints_Unst( QuadOrder, wgts, spts ); // ---------------------------------------------------------------------- // // Evaluate the basis functions at each point SetLegendreAtPoints_Unst(spts, phi); // ---------------------------------------------------------------------- // // ---------------------------------------------------------------------- // // First-order derivatives dTensor2 phi_xi (mpoints, kmax ); dTensor2 phi_eta(mpoints, kmax ); SetLegendreGrad_Unst( spts, phi_xi, phi_eta ); // ---------------------------------------------------------------------- // // ---------------------------------------------------------------------- // // Second-order derivatives dTensor2 phi_xi2 (mpoints, kmax ); dTensor2 phi_xieta(mpoints, kmax ); dTensor2 phi_eta2 (mpoints, kmax ); LegendreDiff2_Unst(spts, &phi_xi2, &phi_xieta, &phi_eta2 ); // ---------------------------------------------------------------------- // // ------------------------------------------------------------- // // Loop over every grid cell indexed by user supplied parameters // // described by istart...iend, jstart...jend // // ------------------------------------------------------------- // #pragma omp parallel for for (int i=istart; i<=iend; i++) { // These need to be defined locally. Each mesh element carries its // own change of basis matrix, so these need to be recomputed for // each element. The canonical derivatives, phi_xi, and phi_eta can // be computed and shared for each element. // First-order derivatives dTensor2 phi_x(mpoints, kmax_fout); // x-derivative of Legendre basis (orthogonal) dTensor2 phi_y(mpoints, kmax_fout); // y-derivative of Legendre basis (orthogonal) // Second-order derivatives dTensor2 phi_xx(mpoints, kmax_fout); // xx-derivative of Legendre basis (orthogonal) dTensor2 phi_xy(mpoints, kmax_fout); // xy-derivative of Legendre basis (orthogonal) dTensor2 phi_yy(mpoints, kmax_fout); // yy-derivative of Legendre basis (orthogonal) //find center of current cell const int i1 = Mesh.get_tnode(i,1); const int i2 = Mesh.get_tnode(i,2); const int i3 = Mesh.get_tnode(i,3); // Corners: const double x1 = Mesh.get_node(i1,1); const double y1 = Mesh.get_node(i1,2); const double x2 = Mesh.get_node(i2,1); const double y2 = Mesh.get_node(i2,2); const double x3 = Mesh.get_node(i3,1); const double y3 = Mesh.get_node(i3,2); // Center of current cell: const double xc = (x1+x2+x3)/3.0; const double yc = (y1+y2+y3)/3.0; // Variables that need to be written to, and therefore are // created for each thread dTensor2 xpts (mpoints, 2); dTensor2 qvals (mpoints, meqn); dTensor2 auxvals(mpoints, maux); // local storage for Flux function its Jacobian, and the Hessian: dTensor3 fvals(mpoints, meqn, 2); // flux function (vector) dTensor4 A(mpoints, meqn, meqn, 2); // Jacobian of flux dTensor5 H(mpoints, meqn, meqn, meqn, 2); // Hessian of flux // Compute q, aux and fvals at each Gaussian Quadrature point // for this current cell indexed by (i,j) // Save results into dTensor2 qvals, auxvals and fvals. for (int m=1; m<= mpoints; m++) { // convert phi_xi and phi_eta derivatives // to phi_x and phi_y derivatives through Jacobian // // Note that: // // pd_x = J11 pd_xi + J12 pd_eta and // pd_y = J21 pd_xi + J22 pd_eta. // // Squaring these operators yields the second derivatives. for (int k=1; k<=kmax_fout; k++) { phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) ); phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) ); phi_xx.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,1)*phi_xi2.get(m,k) + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,2)*phi_xieta.get(m,k) + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,1,2)*phi_eta2.get(m,k) ); phi_xy.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k) +(Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,1) + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,2))*phi_xieta.get(m,k) + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k) ); phi_yy.set(m,k, Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k) + Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,2)*phi_xieta.get(m,k) + Mesh.get_jmat(i,2,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k) ); } // point on the unit triangle const double s = spts.get(m,1); const double t = spts.get(m,2); // point on the physical triangle xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t ); xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvals.set(m,me, 0.0 ); for (int k=1; k<=kmax_qin; k++) { qvals.set(m,me, qvals.get(m,me) + phi.get(m,k) * qin->get(i,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvals.set(m,ma, 0.0 ); for (int k=1; k<=kmax_auxin; k++) { auxvals.set(m,ma, auxvals.get(m,ma) + phi.get(m,k) * auxin->get(i,ma,k) ); } } } // ----------------------------------------------------------------- // // // Part I: // // Project the flux function onto the basis // functions. This is the term of order O( 1 ) in the // "time-averaged" Taylor expansion of f and g. // // ----------------------------------------------------------------- // // Call user-supplied function to set fvals FluxFunc(xpts, qvals, auxvals, fvals); // Evaluate integral on current cell (project onto Legendre basis) // using Gaussian Quadrature for the integration // // TODO - do we want to optimize this by looking into using transposes, // as has been done in the 2d/cart code? (5/14/2014) -DS for (int me=1; me<=mcomps_out; me++) for (int k=1; k<=kmax; k++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int mp=1; mp <= mpoints; mp++) { tmp1 += wgts.get(mp)*fvals.get(mp, me, 1)*phi.get(mp, k); tmp2 += wgts.get(mp)*fvals.get(mp, me, 2)*phi.get(mp, k); } F->set(i, me, k, 2.0*tmp1 ); G->set(i, me, k, 2.0*tmp2 ); } // ----------------------------------------------------------------- // // // Part II: // // Project the derivative of the flux function onto the basis // functions. This is the term of order O( \dt ) in the // "time-averaged" Taylor expansion of f and g. // // ----------------------------------------------------------------- // // ----------------------------------------------------------------- // // Compute pointwise values for fx+gy: // // We can't multiply fvals of f, and g, // by alpha, otherwise we compute the wrong derivative here! // dTensor2 fx_plus_gy( mpoints, meqn ); fx_plus_gy.setall(0.); for( int mp=1; mp <= mpoints; mp++ ) for( int me=1; me <= meqn; me++ ) { double tmp = 0.; for( int k=2; k <= kmax; k++ ) { tmp += F->get( i, me, k ) * phi_x.get( mp, k ); tmp += G->get( i, me, k ) * phi_y.get( mp, k ); } fx_plus_gy.set( mp, me, tmp ); } // Call user-supplied Jacobian to set f'(q) and g'(q): DFluxFunc( xpts, qvals, auxvals, A ); // place-holders for point values of // f'(q)( fx + gy ) and g'(q)( fx + gy ): dTensor2 dt_times_fdot( mpoints, meqn ); dTensor2 dt_times_gdot( mpoints, meqn ); // Compute point values for f'(q) * (fx+gy) and g'(q) * (fx+gy): for( int mp=1; mp <= mpoints; mp++ ) for( int m1=1; m1 <= meqn; m1++ ) { double tmp1 = 0.; double tmp2 = 0.; for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += A.get(mp, m1, m2, 1 ) * fx_plus_gy.get(mp, m2); tmp2 += A.get(mp, m1, m2, 2 ) * fx_plus_gy.get(mp, m2); } dt_times_fdot.set( mp, m1, -beta_dt*tmp1 ); dt_times_gdot.set( mp, m1, -beta_dt*tmp2 ); } // --- Third-order terms --- // // // These are the terms that are O( \dt^2 ) in the "time-averaged" // flux function. dTensor2 f_tt( mpoints, meqn ); f_tt.setall(0.); dTensor2 g_tt( mpoints, meqn ); g_tt.setall(0.); if( mterms > 2 ) { // Construct the Hessian at each (quadrature) point D2FluxFunc( xpts, qvals, auxvals, H ); // Second-order derivative terms dTensor2 qx_vals (mpoints, meqn); qx_vals.setall(0.); dTensor2 qy_vals (mpoints, meqn); qy_vals.setall(0.); dTensor2 fxx_vals(mpoints, meqn); fxx_vals.setall(0.); dTensor2 gxx_vals(mpoints, meqn); gxx_vals.setall(0.); dTensor2 fxy_vals(mpoints, meqn); fxy_vals.setall(0.); dTensor2 gxy_vals(mpoints, meqn); gxy_vals.setall(0.); dTensor2 fyy_vals(mpoints, meqn); fyy_vals.setall(0.); dTensor2 gyy_vals(mpoints, meqn); gyy_vals.setall(0.); for( int m=1; m <= mpoints; m++ ) for( int me=1; me <= meqn; me++ ) { // Can start at k=1, because derivative of a constant is // zero. double tmp_qx = 0.; double tmp_qy = 0.; for( int k=2; k <= kmax; k++ ) { tmp_qx += phi_x.get(m,k) * qin->get(i,me,k); tmp_qy += phi_y.get(m,k) * qin->get(i,me,k); } qx_vals.set(m,me, tmp_qx ); qy_vals.set(m,me, tmp_qy ); // First non-zero terms start at third-order. for( int k=4; k <= kmax; k++ ) { fxx_vals.set(m,me, fxx_vals.get(m,me) + phi_xx.get(m,k)*F->get(i,me,k) ); gxx_vals.set(m,me, gxx_vals.get(m,me) + phi_xx.get(m,k)*G->get(i,me,k) ); fxy_vals.set(m,me, fxy_vals.get(m,me) + phi_xy.get(m,k)*F->get(i,me,k) ); gxy_vals.set(m,me, gxy_vals.get(m,me) + phi_xy.get(m,k)*G->get(i,me,k) ); fyy_vals.set(m,me, fyy_vals.get(m,me) + phi_yy.get(m,k)*F->get(i,me,k) ); gyy_vals.set(m,me, gyy_vals.get(m,me) + phi_yy.get(m,k)*G->get(i,me,k) ); } } // ----------------------------------- // // Part I: Compute (f_x + g_y)_{,t} // ----------------------------------- // // Compute terms that get multiplied by \pd2{ f }{ q } and \pd2{ g }{ q }. dTensor2 fx_plus_gy_t( mpoints, meqn ); for( int m = 1; m <= mpoints; m++ ) for( int me = 1; me <= meqn; me++ ) { double tmp = 0.; // Terms that get multiplied by the Hessian: for( int m1=1; m1 <= meqn; m1++ ) for( int m2=1; m2 <= meqn; m2++ ) { tmp += H.get(m,me,m1,m2,1)*qx_vals.get(m,m1)*fx_plus_gy.get(m,m2); tmp += H.get(m,me,m1,m2,2)*qy_vals.get(m,m1)*fx_plus_gy.get(m,m2); } // Terms that get multiplied by f'(q) and g'(q): for( int m1=1; m1 <= meqn; m1++ ) { tmp += A.get(m,me,m1,1)*( fxx_vals.get(m,m1)+gxy_vals.get(m,m1) ); tmp += A.get(m,me,m1,2)*( fxy_vals.get(m,m1)+gyy_vals.get(m,m1) ); } fx_plus_gy_t.set( m, me, tmp ); } // ----------------------------------- // // Part II: Compute // f'(q) * fx_plus_gy_t and // g'(q) * fx_plus_gy_t // ----------------------------------- // // Add in the third term that gets multiplied by A: for( int m=1; m <= mpoints; m++ ) for( int m1=1; m1 <= meqn; m1++ ) { double tmp1 = 0.; double tmp2 = 0.; for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += A.get(m,m1,m2,1)*fx_plus_gy_t.get(m,m2); tmp2 += A.get(m,m1,m2,2)*fx_plus_gy_t.get(m,m2); } f_tt.set( m, m1, tmp1 ); g_tt.set( m, m1, tmp2 ); } // ----------------------------------------------- // // Part III: Add in contributions from // f''(q) * (fx_plus_gy, fx_plus_gy ) and // g''(q) * (fx_plus_gy, fx_plus_gy ). // ----------------------------------------------- // for( int m =1; m <= mpoints; m++ ) for( int me =1; me <= meqn; me++ ) { double tmp1 = 0.; double tmp2 = 0.; // Terms that get multiplied by the Hessian: for( int m1=1; m1 <= meqn; m1++ ) for( int m2=1; m2 <= meqn; m2++ ) { tmp1 += H.get(m,me,m1,m2,1)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2); tmp2 += H.get(m,me,m1,m2,2)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2); } f_tt.set( m, me, f_tt.get(m,me) + tmp1 ); g_tt.set( m, me, g_tt.get(m,me) + tmp2 ); } } // End of computing "third"-order terms // ---------------------------------------------------------- // // // Construct basis coefficients (integrate_on_current_cell) // // ---------------------------------------------------------- // for (int me=1; me<=mcomps_out; me++) for (int k=1; k<=kmax; k++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int mp=1; mp<=mpoints; mp++) { tmp1 += wgts.get(mp)*phi.get(mp,k)*( dt_times_fdot.get(mp, me) + charlie_dt*f_tt.get(mp, me) ); tmp2 += wgts.get(mp)*phi.get(mp,k)*( dt_times_gdot.get(mp, me) + charlie_dt*g_tt.get(mp, me) ); } F->set(i,me,k, F->get(i,me,k) + 2.0*tmp1 ); G->set(i,me,k, G->get(i,me,k) + 2.0*tmp2 ); } } }
// All-purpose routine for computing the L2-projection // of various functions onto the gradient of the Legendre basis // (Unstructured grid version) // void L2ProjectGrad_Unst( const dTensor2* vel_vec, const int istart, const int iend, const int QuadOrder, const int BasisOrder_qin, const int BasisOrder_auxin, const int BasisOrder_fout, const mesh& Mesh, const dTensor3* qin, const dTensor3* auxin, dTensor3* fout, void (*Func)(const dTensor2* vel_vec, const dTensor2&,const dTensor2&, const dTensor2&,dTensor3&)) { // starting and ending indeces const int NumElems = Mesh.get_NumElems(); assert_ge(istart,1); assert_le(iend,NumElems); // qin variable assert_eq(NumElems,qin->getsize(1)); const int meqn = qin->getsize(2); const int kmax_qin = qin->getsize(3); assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2); // auxin variable assert_eq(NumElems,auxin->getsize(1)); const int maux = auxin->getsize(2); const int kmax_auxin = auxin->getsize(3); assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2); // fout variables assert_eq(NumElems,fout->getsize(1)); const int mcomps_out = fout->getsize(2); const int kmax_fout = fout->getsize(3); assert_eq(kmax_fout,(BasisOrder_fout*(BasisOrder_fout+1))/2); // number of quadrature points assert_ge(QuadOrder,1); assert_le(QuadOrder,5); int mpoints; switch ( QuadOrder ) { case 1: mpoints = 0; break; case 2: mpoints = 1; break; case 3: mpoints = 6; break; case 4: mpoints = 7; break; case 5: mpoints = 16; break; } // trivial case if ( QuadOrder==1 ) { for (int i=istart; i<=iend; i++) for (int m=1; m<=mcomps_out; m++) for (int k=1; k<=kmax_fout; k++) { fout->set(i,m,k, 0.0 ); } } else { const int kmax = iMax(iMax(kmax_qin,kmax_auxin),kmax_fout); dTensor2 spts(mpoints,2); dTensor1 wgts(mpoints); dTensor2 xpts(mpoints,2); dTensor2 qvals(mpoints,meqn); dTensor2 auxvals(mpoints,maux); dTensor3 fvals(mpoints,mcomps_out,2); dTensor2 mu(mpoints,kmax); // monomial basis (non-orthogonal) dTensor2 phi(mpoints,kmax); // Legendre basis (orthogonal) dTensor2 mu_xi(mpoints,kmax_fout); // xi-derivative of monomial basis (non-orthogonal) dTensor2 mu_eta(mpoints,kmax_fout); // eta-derivative of monomial basis (non-orthogonal) dTensor2 phi_xi(mpoints,kmax_fout); // xi-derivative of Legendre basis (orthogonal) dTensor2 phi_eta(mpoints,kmax_fout); // eta-derivative of Legendre basis (orthogonal) dTensor2 phi_x(mpoints,kmax_fout); // x-derivative of Legendre basis (orthogonal) dTensor2 phi_y(mpoints,kmax_fout); // y-derivative of Legendre basis (orthogonal) switch ( QuadOrder ) { case 2: spts.set(1,1, 0.0 ); spts.set(1,2, 0.0 ); wgts.set(1, 0.5 ); break; case 3: spts.set(1,1, 0.112615157582632 ); spts.set(1,2, 0.112615157582632 ); spts.set(2,1, -0.225230315165263 ); spts.set(2,2, 0.112615157582632 ); spts.set(3,1, 0.112615157582632 ); spts.set(3,2, -0.225230315165263 ); spts.set(4,1, -0.241757119823562 ); spts.set(4,2, -0.241757119823562 ); spts.set(5,1, 0.483514239647126 ); spts.set(5,2, -0.241757119823562 ); spts.set(6,1, -0.241757119823562 ); spts.set(6,2, 0.483514239647126 ); wgts.set(1, 0.1116907948390055 ); wgts.set(2, 0.1116907948390055 ); wgts.set(3, 0.1116907948390055 ); wgts.set(4, 0.0549758718276610 ); wgts.set(5, 0.0549758718276610 ); wgts.set(6, 0.0549758718276610 ); break; case 4: spts.set(1,1, 0.000000000000000 ); spts.set(1,2, 0.000000000000000 ); spts.set(2,1, 0.136808730771782 ); spts.set(2,2, 0.136808730771782 ); spts.set(3,1, -0.273617461543563 ); spts.set(3,2, 0.136808730771782 ); spts.set(4,1, 0.136808730771782 ); spts.set(4,2, -0.273617461543563 ); spts.set(5,1, -0.232046826009877 ); spts.set(5,2, -0.232046826009877 ); spts.set(6,1, 0.464093652019754 ); spts.set(6,2, -0.232046826009877 ); spts.set(7,1, -0.232046826009877 ); spts.set(7,2, 0.464093652019754 ); wgts.set(1, 0.1125000000000000 ); wgts.set(2, 0.0661970763942530 ); wgts.set(3, 0.0661970763942530 ); wgts.set(4, 0.0661970763942530 ); wgts.set(5, 0.0629695902724135 ); wgts.set(6, 0.0629695902724135 ); wgts.set(7, 0.0629695902724135 ); break; case 5: spts.set(1,1, 0.000000000000000 ); spts.set(1,2, 0.000000000000000 ); spts.set(2,1, 0.125959254959390 ); spts.set(2,2, 0.125959254959390 ); spts.set(3,1, -0.251918509918779 ); spts.set(3,2, 0.125959254959390 ); spts.set(4,1, 0.125959254959390 ); spts.set(4,2, -0.251918509918779 ); spts.set(5,1, -0.162764025581573 ); spts.set(5,2, -0.162764025581573 ); spts.set(6,1, 0.325528051163147 ); spts.set(6,2, -0.162764025581573 ); spts.set(7,1, -0.162764025581573 ); spts.set(7,2, 0.325528051163147 ); spts.set(8,1, -0.282786105016302 ); spts.set(8,2, -0.282786105016302 ); spts.set(9,1, 0.565572210032605 ); spts.set(9,2, -0.282786105016302 ); spts.set(10,1, -0.282786105016302 ); spts.set(10,2, 0.565572210032605 ); spts.set(11,1, -0.324938555923375 ); spts.set(11,2, -0.070220503698695 ); spts.set(12,1, -0.324938555923375 ); spts.set(12,2, 0.395159059622071 ); spts.set(13,1, -0.070220503698695 ); spts.set(13,2, -0.324938555923375 ); spts.set(14,1, -0.070220503698695 ); spts.set(14,2, 0.395159059622071 ); spts.set(15,1, 0.395159059622071 ); spts.set(15,2, -0.324938555923375 ); spts.set(16,1, 0.395159059622071 ); spts.set(16,2, -0.070220503698695 ); wgts.set(1, 0.0721578038388935 ); wgts.set(2, 0.0475458171336425 ); wgts.set(3, 0.0475458171336425 ); wgts.set(4, 0.0475458171336425 ); wgts.set(5, 0.0516086852673590 ); wgts.set(6, 0.0516086852673590 ); wgts.set(7, 0.0516086852673590 ); wgts.set(8, 0.0162292488115990 ); wgts.set(9, 0.0162292488115990 ); wgts.set(10, 0.0162292488115990 ); wgts.set(11, 0.0136151570872175 ); wgts.set(12, 0.0136151570872175 ); wgts.set(13, 0.0136151570872175 ); wgts.set(14, 0.0136151570872175 ); wgts.set(15, 0.0136151570872175 ); wgts.set(16, 0.0136151570872175 ); break; } // Loop over each quadrature point and construct monomial polys for (int m=1; m<=mpoints; m++) { // coordinates const double xi = spts.get(m,1); const double xi2 = xi*xi; const double xi3 = xi2*xi; const double xi4 = xi3*xi; const double eta = spts.get(m,2); const double eta2 = eta*eta; const double eta3 = eta2*eta; const double eta4 = eta3*eta; // monomial basis functions at each gaussian quadrature point switch( kmax ) { case 15: // fifth order mu.set(m, 15, eta4 ); mu.set(m, 14, xi4 ); mu.set(m, 13, xi2*eta2 ); mu.set(m, 12, eta3*xi ); mu.set(m, 11, xi3*eta ); case 10: // fourth order mu.set(m, 10, eta3 ); mu.set(m, 9, xi3 ); mu.set(m, 8, xi*eta2 ); mu.set(m, 7, eta*xi2 ); case 6: // third order mu.set(m, 6, eta2 ); mu.set(m, 5, xi2 ); mu.set(m, 4, xi*eta ); case 3: // second order mu.set(m, 3, eta ); mu.set(m, 2, xi ); case 1: // first order mu.set(m, 1, 1.0 ); break; } // Loop over each quadrature point and construct Legendre polys for (int i=1; i<=kmax; i++) { double tmp = 0.0; for (int j=1; j<=i; j++) { tmp = tmp + Mmat[i-1][j-1]*mu.get(m,j); } phi.set(m,i, tmp ); } // Gradient of monomial basis functions at each gaussian quadrature point switch( kmax_fout ) { case 15: // fifth order mu_xi.set( m,15, 0.0 ); mu_xi.set( m,14, 4.0*xi3 ); mu_xi.set( m,13, 2.0*xi*eta2 ); mu_xi.set( m,12, eta3 ); mu_xi.set( m,11, 3.0*xi2*eta ); mu_eta.set( m,15, 4.0*eta3 ); mu_eta.set( m,14, 0.0 ); mu_eta.set( m,13, 2.0*xi2*eta ); mu_eta.set( m,12, 3.0*eta2*xi ); mu_eta.set( m,11, xi3 ); case 10: // fourth order mu_xi.set( m,10, 0.0 ); mu_xi.set( m,9, 3.0*xi2 ); mu_xi.set( m,8, eta2 ); mu_xi.set( m,7, 2.0*eta*xi ); mu_eta.set( m,10, 3.0*eta2 ); mu_eta.set( m,9, 0.0 ); mu_eta.set( m,8, 2.0*eta*xi ); mu_eta.set( m,7, xi2 ); case 6: // third order mu_xi.set( m,6, 0.0 ); mu_xi.set( m,5, 2.0*xi ); mu_xi.set( m,4, eta ); mu_eta.set( m,6, 2.0*eta ); mu_eta.set( m,5, 0.0 ); mu_eta.set( m,4, xi ); case 3: // second order mu_xi.set( m,3, 0.0 ); mu_xi.set( m,2, 1.0 ); mu_eta.set( m,3, 1.0 ); mu_eta.set( m,2, 0.0 ); case 1: // first order mu_xi.set( m,1, 0.0 ); mu_eta.set( m,1, 0.0 ); break; } // Loop over each quadrature point and construct Legendre polys for (int i=1; i<=kmax_fout; i++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int j=1; j<=i; j++) { tmp1 = tmp1 + Mmat[i-1][j-1]*mu_xi.get(m,j); tmp2 = tmp2 + Mmat[i-1][j-1]*mu_eta.get(m,j); } phi_xi.set(m,i, tmp1 ); phi_eta.set(m,i, tmp2 ); } } // ------------------------------------------------------------- // Loop over every grid cell indexed by user supplied parameters // described by istart...iend // ------------------------------------------------------------- #pragma omp parallel for for (int i=istart; i<=iend; i++) { // Find center of current cell const int i1 = Mesh.get_tnode(i,1); const int i2 = Mesh.get_tnode(i,2); const int i3 = Mesh.get_tnode(i,3); const double x1 = Mesh.get_node(i1,1); const double y1 = Mesh.get_node(i1,2); const double x2 = Mesh.get_node(i2,1); const double y2 = Mesh.get_node(i2,2); const double x3 = Mesh.get_node(i3,1); const double y3 = Mesh.get_node(i3,2); const double xc = (x1+x2+x3)/3.0; const double yc = (y1+y2+y3)/3.0; // Compute q, aux and fvals at each Gaussian Quadrature point // for this current cell indexed by (i,j) // Save results into dTensor2 qvals, auxvals and fvals. for (int m=1; m<=mpoints; m++) { // convert phi_xi and phi_eta derivatives // to phi_x and phi_y derivatives through Jacobian for (int k=1; k<=kmax_fout; k++) { phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) ); phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k) + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) ); } // point on the unit triangle const double s = spts.get(m,1); const double t = spts.get(m,2); // point on the physical triangle xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t ); xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t ); // Solution values (q) at each grid point for (int me=1; me<=meqn; me++) { qvals.set(m,me, 0.0 ); for (int k=1; k<=kmax_qin; k++) { qvals.set(m,me, qvals.get(m,me) + phi.get(m,k) * qin->get(i,me,k) ); } } // Auxiliary values (aux) at each grid point for (int ma=1; ma<=maux; ma++) { auxvals.set(m,ma, 0.0 ); for (int k=1; k<=kmax_auxin; k++) { auxvals.set(m,ma, auxvals.get(m,ma) + phi.get(m,k) * auxin->get(i,ma,k) ); } } } // Call user-supplied function to set fvals Func(vel_vec, xpts, qvals, auxvals, fvals); // Evaluate integral on current cell (project onto Legendre basis) // using Gaussian Quadrature for the integration for (int m1=1; m1<=mcomps_out; m1++) for (int m2=1; m2<=kmax_fout; m2++) { double tmp = 0.0; for (int k=1; k<=mpoints; k++) { tmp = tmp + wgts.get(k)* ( fvals.get(k,m1,1)*phi_x.get(k,m2) + fvals.get(k,m1,2)*phi_y.get(k,m2) ); } fout->set(i, m1, m2, 2.0*tmp ); } } } }
// GAUSS-LOBATTO QUADRATURE ALONG EDGE void SetEdgeDataGL_Unst(const mesh& Mesh, int NumQuadPoints, int NumBasisOrder, edge_data_Unst* EdgeData) { // Quick error check if (NumQuadPoints<2 || NumQuadPoints>6 || NumBasisOrder<1 || NumBasisOrder>5) { printf(" \n"); printf(" Error in SetEdgeData_Unst.cpp \n"); printf(" NumQuadPoints must be 2,3,4,5, or 6.\n"); printf(" NumBasisOrder must be 1,2,3,4, or 5.\n"); printf(" NumQuadPoints = %i\n",NumQuadPoints); printf(" NumBasisOrder = %i\n",NumBasisOrder); printf("\n"); exit(1); } // --------------------------------- // Set quadrature weights and points // --------------------------------- switch( NumQuadPoints ) { case 2: EdgeData->GL_wgts1d->set(1, 1.0 ); EdgeData->GL_wgts1d->set(2, 1.0 ); EdgeData->GL_xpts1d->set(1, 1.0 ); EdgeData->GL_xpts1d->set(2, -1.0 ); break; case 3: EdgeData->GL_wgts1d->set(1, onethird ); EdgeData->GL_wgts1d->set(2, 4.0*onethird ); EdgeData->GL_wgts1d->set(3, onethird ); EdgeData->GL_xpts1d->set(1, 1.0 ); EdgeData->GL_xpts1d->set(2, 0.0 ); EdgeData->GL_xpts1d->set(3, -1.0 ); break; case 4: EdgeData->GL_wgts1d->set(1, 0.5*onethird ); EdgeData->GL_wgts1d->set(2, 2.5*onethird ); EdgeData->GL_wgts1d->set(3, 2.5*onethird ); EdgeData->GL_wgts1d->set(4, 0.5*onethird ); EdgeData->GL_xpts1d->set(1, 1.0 ); EdgeData->GL_xpts1d->set(2, osq5 ); EdgeData->GL_xpts1d->set(3, -osq5 ); EdgeData->GL_xpts1d->set(4, -1.0 ); break; case 5: EdgeData->GL_wgts1d->set(1, 0.1 ); EdgeData->GL_wgts1d->set(2, 49.0/90.0 ); EdgeData->GL_wgts1d->set(3, 32.0/45.0 ); EdgeData->GL_wgts1d->set(4, 49.0/90.0 ); EdgeData->GL_wgts1d->set(5, 0.1 ); EdgeData->GL_xpts1d->set(1, 1.0 ); EdgeData->GL_xpts1d->set(2, sq3*osq7 ); EdgeData->GL_xpts1d->set(3, 0.0 ); EdgeData->GL_xpts1d->set(4, -sq3*osq7 ); EdgeData->GL_xpts1d->set(5, -1.0 ); break; case 6: EdgeData->GL_wgts1d->set(1, 0.2*onethird ); EdgeData->GL_wgts1d->set(2, (1.4 - 0.1*sq7)*onethird ); EdgeData->GL_wgts1d->set(3, (1.4 + 0.1*sq7)*onethird ); EdgeData->GL_wgts1d->set(4, (1.4 + 0.1*sq7)*onethird ); EdgeData->GL_wgts1d->set(5, (1.4 - 0.1*sq7)*onethird ); EdgeData->GL_wgts1d->set(6, 0.2*onethird ); EdgeData->GL_xpts1d->set(1, 1.0 ); EdgeData->GL_xpts1d->set(2, (1/21.0)*sqrt(147.0+42.0*sq7) ); EdgeData->GL_xpts1d->set(3, (1/21.0)*sqrt(147.0-42.0*sq7) ); EdgeData->GL_xpts1d->set(4, -(1/21.0)*sqrt(147.0-42.0*sq7) ); EdgeData->GL_xpts1d->set(5, -(1/21.0)*sqrt(147.0+42.0*sq7) ); EdgeData->GL_xpts1d->set(6, -1.0 ); break; } // --------------------------------- // Legendre basis functions on the // left and right of each edge // --------------------------------- const int NumEdges = Mesh.get_NumEdges(); const int NumBasisComps = (NumBasisOrder*(NumBasisOrder+1))/2; dTensor1 xp1(3); dTensor1 yp1(3); dTensor1 xp2(3); dTensor1 yp2(3); dTensor1 xy1(2); dTensor1 xy2(2); dTensor1 mu1(NumBasisComps); dTensor1 mu2(NumBasisComps); for (int i=1; i<=NumEdges; i++) { // Get edge information const double x1 = Mesh.get_edge(i,1); const double y1 = Mesh.get_edge(i,2); const double x2 = Mesh.get_edge(i,3); const double y2 = Mesh.get_edge(i,4); const int e1 = Mesh.get_eelem(i,1); const int e2 = Mesh.get_eelem(i,2); // Get element information about // the two elements that meet at // the current edge const double Area1 = Mesh.get_area_prim(e1); const double Area2 = Mesh.get_area_prim(e2); for (int k=1; k<=3; k++) { xp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),1) ); yp1.set(k, Mesh.get_node(Mesh.get_tnode(e1,k),2) ); xp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),1) ); yp2.set(k, Mesh.get_node(Mesh.get_tnode(e2,k),2) ); } const double xc1 = (xp1.get(1) + xp1.get(2) + xp1.get(3))/3.0; const double yc1 = (yp1.get(1) + yp1.get(2) + yp1.get(3))/3.0; const double xc2 = (xp2.get(1) + xp2.get(2) + xp2.get(3))/3.0; const double yc2 = (yp2.get(1) + yp2.get(2) + yp2.get(3))/3.0; // quadrature points on the edge for (int m=1; m<=NumQuadPoints; m++) { // Take integration point s (in [-1,1]) // and map to physical domain const double s = EdgeData->GL_xpts1d->get(m); const double x = x1 + 0.5*(s+1.0)*(x2-x1); const double y = y1 + 0.5*(s+1.0)*(y2-y1); // Take physical point (x,y) // and map into the coordinates // of the two triangles that are // adjacent to the current edge xy1.set(1, ((yp1.get(3)-yp1.get(1))*(x-xc1) + (xp1.get(1)-xp1.get(3))*(y-yc1))/(2.0*Area1) ); xy1.set(2, ((yp1.get(1)-yp1.get(2))*(x-xc1) + (xp1.get(2)-xp1.get(1))*(y-yc1))/(2.0*Area1) ); xy2.set(1, ((yp2.get(3)-yp2.get(1))*(x-xc2) + (xp2.get(1)-xp2.get(3))*(y-yc2))/(2.0*Area2) ); xy2.set(2, ((yp2.get(1)-yp2.get(2))*(x-xc2) + (xp2.get(2)-xp2.get(1))*(y-yc2))/(2.0*Area2) ); // Evaluate monomials at locations xy1 double xi = xy1.get(1); double xi2 = xi*xi; double xi3 = xi*xi2; double xi4 = xi*xi3; double eta = xy1.get(2); double eta2 = eta*eta; double eta3 = eta*eta2; double eta4 = eta*eta3; switch( NumBasisOrder ) { case 5: // fifth order mu1.set(15, eta4 ); mu1.set(14, xi4 ); mu1.set(13, xi2*eta2 ); mu1.set(12, eta3*xi ); mu1.set(11, xi3*eta ); case 4: // fourth order mu1.set(10, eta3 ); mu1.set(9, xi3 ); mu1.set(8, xi*eta2 ); mu1.set(7, eta*xi2 ); case 3: // third order mu1.set(6, eta2 ); mu1.set(5, xi2 ); mu1.set(4, xi*eta ); case 2: // second order mu1.set(3, eta ); mu1.set(2, xi ); case 1: // first order mu1.set(1, 1.0 ); break; } // Evaluate monomials at locations xy2 xi = xy2.get(1); xi2 = xi*xi; xi3 = xi*xi2; xi4 = xi*xi3; eta = xy2.get(2); eta2 = eta*eta; eta3 = eta*eta2; eta4 = eta*eta3; switch( NumBasisOrder ) { case 5: // fifth order mu2.set(15, eta4 ); mu2.set(14, xi4 ); mu2.set(13, xi2*eta2 ); mu2.set(12, eta3*xi ); mu2.set(11, xi3*eta ); case 4: // fourth order mu2.set(10, eta3 ); mu2.set(9, xi3 ); mu2.set(8, xi*eta2 ); mu2.set(7, eta*xi2 ); case 3: // third order mu2.set(6, eta2 ); mu2.set(5, xi2 ); mu2.set(4, xi*eta ); case 2: // second order mu2.set(3, eta ); mu2.set(2, xi ); case 1: // first order mu2.set(1, 1.0 ); break; } // Finally, convert monomials to Legendre Polys // on the two adjacent triangle for (int k=1; k<=NumBasisComps; k++) { double tmp1 = 0.0; double tmp2 = 0.0; for (int j=1; j<=k; j++) { tmp1 = tmp1 + Mmat[k-1][j-1]*mu1.get(j); tmp2 = tmp2 + Mmat[k-1][j-1]*mu2.get(j); } EdgeData->GL_phi_left->set(i,m,k, tmp1 ); EdgeData->GL_phi_right->set(i,m,k, tmp2 ); } } } }