/** Do the initial copy of the data from the input to the output workspace for * histogram workspaces. * Takes out the bin width if necessary. * @param inputWS The input workspace * @param outputWS The output workspace */ void ConvertUnitsUsingDetectorTable::fillOutputHist( const API::MatrixWorkspace_const_sptr inputWS, const API::MatrixWorkspace_sptr outputWS) { const int size = static_cast<int>(inputWS->blocksize()); // Loop over the histograms (detector spectra) Progress prog(this, 0.0, 0.2, m_numberOfSpectra); int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy PARALLEL_FOR2(inputWS, outputWS) for (int64_t i = 0; i < numberOfSpectra_i; ++i) { PARALLEL_START_INTERUPT_REGION // Take the bin width dependency out of the Y & E data if (m_distribution) { for (int j = 0; j < size; ++j) { const double width = std::abs(inputWS->dataX(i)[j + 1] - inputWS->dataX(i)[j]); outputWS->dataY(i)[j] = inputWS->dataY(i)[j] * width; outputWS->dataE(i)[j] = inputWS->dataE(i)[j] * width; } } else { // Just copy over outputWS->dataY(i) = inputWS->readY(i); outputWS->dataE(i) = inputWS->readE(i); } // Copy over the X data outputWS->setX(i, inputWS->refX(i)); prog.report("Convert to " + m_outputUnit->unitID()); PARALLEL_END_INTERUPT_REGION } PARALLEL_CHECK_INTERUPT_REGION }
void LoadNexusProcessed::loadBlock(NXDataSetTyped<double> & data, NXDataSetTyped<double> & errors, int64_t blocksize, int64_t nchannels, int64_t &hist,int64_t& wsIndex, API::MatrixWorkspace_sptr local_workspace) { data.load(static_cast<int>(blocksize),static_cast<int>(hist)); errors.load(static_cast<int>(blocksize),static_cast<int>(hist)); double *data_start = data(); double *data_end = data_start + nchannels; double *err_start = errors(); double *err_end = err_start + nchannels; int64_t final(hist + blocksize); while( hist < final ) { MantidVec& Y = local_workspace->dataY(wsIndex); Y.assign(data_start, data_end); data_start += nchannels; data_end += nchannels; MantidVec& E = local_workspace->dataE(wsIndex); E.assign(err_start, err_end); err_start += nchannels; err_end += nchannels; local_workspace->setX(wsIndex, m_xbins); ++hist; ++wsIndex; } }
void ConvertEmptyToTof::setTofInWS(const std::vector<double> &tofAxis, API::MatrixWorkspace_sptr outputWS) { const size_t numberOfSpectra = m_inputWS->getNumberHistograms(); int64_t numberOfSpectraInt64 = static_cast<int64_t>(numberOfSpectra); // cast to make openmp happy g_log.debug() << "Setting the TOF X Axis for numberOfSpectra=" << numberOfSpectra << '\n'; Progress prog(this, 0.0, 0.2, numberOfSpectra); PARALLEL_FOR2(m_inputWS, outputWS) for (int64_t i = 0; i < numberOfSpectraInt64; ++i) { PARALLEL_START_INTERUPT_REGION // Just copy over outputWS->dataY(i) = m_inputWS->readY(i); outputWS->dataE(i) = m_inputWS->readE(i); // copy outputWS->setX(i, tofAxis); prog.report(); PARALLEL_END_INTERUPT_REGION } // end for i PARALLEL_CHECK_INTERUPT_REGION outputWS->getAxis(0)->unit() = UnitFactory::Instance().create("TOF"); }
/** * Read spectra from the DAE * @param period :: Current period index * @param index :: First spectrum index * @param count :: Number of spectra to read * @param workspace :: Workspace to store the data * @param workspaceIndex :: index in workspace to store data */ void ISISHistoDataListener::getData(int period, int index, int count, API::MatrixWorkspace_sptr workspace, size_t workspaceIndex) { const int numberOfBins = m_numberOfBins[m_timeRegime]; const size_t bufferSize = count * (numberOfBins + 1) * sizeof(int); std::vector<int> dataBuffer(bufferSize); // Read in spectra from DAE int ndims = 2, dims[2]; dims[0] = count; dims[1] = numberOfBins + 1; int spectrumIndex = index + period * (m_totalNumberOfSpectra + 1); if (IDCgetdat(m_daeHandle, spectrumIndex, count, dataBuffer.data(), dims, &ndims) != 0) { g_log.error("Unable to read DATA from DAE " + m_daeName); throw Kernel::Exception::FileError("Unable to read DATA from DAE ", m_daeName); } for (size_t i = 0; i < static_cast<size_t>(count); ++i) { size_t wi = workspaceIndex + i; workspace->setX(wi, m_bins[m_timeRegime]); MantidVec &y = workspace->dataY(wi); MantidVec &e = workspace->dataE(wi); workspace->getSpectrum(wi)->setSpectrumNo(index + static_cast<specid_t>(i)); size_t shift = i * (numberOfBins + 1) + 1; y.assign(dataBuffer.begin() + shift, dataBuffer.begin() + shift + y.size()); std::transform(y.begin(), y.end(), e.begin(), dblSqrt); } }
/** Convert the workspace units according to a simple output = a * (input^b) relationship * @param outputWS :: the output workspace * @param factor :: the conversion factor a to apply * @param power :: the Power b to apply to the conversion */ void ConvertUnits::convertQuickly(API::MatrixWorkspace_sptr outputWS, const double& factor, const double& power) { Progress prog(this,0.2,1.0,m_numberOfSpectra); int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy // See if the workspace has common bins - if so the X vector can be common // First a quick check using the validator CommonBinsValidator sameBins; bool commonBoundaries = false; if ( sameBins.isValid(outputWS) == "" ) { commonBoundaries = WorkspaceHelpers::commonBoundaries(outputWS); // Only do the full check if the quick one passes if (commonBoundaries) { // Calculate the new (common) X values MantidVec::iterator iter; for (iter = outputWS->dataX(0).begin(); iter != outputWS->dataX(0).end(); ++iter) { *iter = factor * std::pow(*iter,power); } MantidVecPtr xVals; xVals.access() = outputWS->dataX(0); PARALLEL_FOR1(outputWS) for (int64_t j = 1; j < numberOfSpectra_i; ++j) { PARALLEL_START_INTERUPT_REGION outputWS->setX(j,xVals); prog.report("Convert to " + m_outputUnit->unitID()); PARALLEL_END_INTERUPT_REGION } PARALLEL_CHECK_INTERUPT_REGION if (!m_inputEvents) // if in event mode the work is done return; } }
/** * Execute smoothing of a single spectrum. * @param inputWS :: A workspace to pick a spectrum from. * @param wsIndex :: An index of a spectrum to smooth. * @return :: A single-spectrum workspace with the smoothed data. */ API::MatrixWorkspace_sptr WienerSmooth::smoothSingleSpectrum(API::MatrixWorkspace_sptr inputWS, size_t wsIndex) { size_t dataSize = inputWS->blocksize(); // it won't work for very small workspaces if (dataSize < 4) { g_log.debug() << "No smoothing, spectrum copied." << std::endl; return copyInput(inputWS, wsIndex); } // Due to the way RealFFT works the input should be even-sized const bool isOddSize = dataSize % 2 != 0; if (isOddSize) { // add a fake value to the end to make size even inputWS = copyInput(inputWS, wsIndex); wsIndex = 0; auto &X = inputWS->dataX(wsIndex); auto &Y = inputWS->dataY(wsIndex); auto &E = inputWS->dataE(wsIndex); double dx = X[dataSize - 1] - X[dataSize - 2]; X.push_back(X.back() + dx); Y.push_back(Y.back()); E.push_back(E.back()); } // the input vectors auto &X = inputWS->readX(wsIndex); auto &Y = inputWS->readY(wsIndex); auto &E = inputWS->readE(wsIndex); // Digital fourier transform works best for data oscillating around 0. // Fit a spline with a small number of break points to the data. // Make sure that the spline passes through the first and the last points // of the data. // The fitted spline will be subtracted from the data and the difference // will be smoothed with the Wiener filter. After that the spline will be // added to the smoothed data to produce the output. // number of spline break points, must be smaller than the data size but // between 2 and 10 size_t nbreak = 10; if (nbreak * 3 > dataSize) nbreak = dataSize / 3; // NB. The spline mustn't fit too well to the data. If it does smoothing // doesn't happen. // TODO: it's possible that the spline is unnecessary and a simple linear // function will // do a better job. g_log.debug() << "Spline break points " << nbreak << std::endl; // define the spline API::IFunction_sptr spline = API::FunctionFactory::Instance().createFunction("BSpline"); auto xInterval = getStartEnd(X, inputWS->isHistogramData()); spline->setAttributeValue("StartX", xInterval.first); spline->setAttributeValue("EndX", xInterval.second); spline->setAttributeValue("NBreak", static_cast<int>(nbreak)); // fix the first and last parameters to the first and last data values spline->setParameter(0, Y.front()); spline->fix(0); size_t lastParamIndex = spline->nParams() - 1; spline->setParameter(lastParamIndex, Y.back()); spline->fix(lastParamIndex); // fit the spline to the data auto fit = createChildAlgorithm("Fit"); fit->initialize(); fit->setProperty("Function", spline); fit->setProperty("InputWorkspace", inputWS); fit->setProperty("WorkspaceIndex", static_cast<int>(wsIndex)); fit->setProperty("CreateOutput", true); fit->execute(); // get the fit output workspace; spectrum 2 contains the difference that is to // be smoothed API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace"); // Fourier transform the difference spectrum auto fourier = createChildAlgorithm("RealFFT"); fourier->initialize(); fourier->setProperty("InputWorkspace", fitOut); fourier->setProperty("WorkspaceIndex", 2); // we don't require bin linearity as we don't need the exact transform fourier->setProperty("IgnoreXBins", true); fourier->execute(); API::MatrixWorkspace_sptr fourierOut = fourier->getProperty("OutputWorkspace"); // spectrum 2 of the transformed workspace has the transform modulus which is // a square // root of the power spectrum auto &powerSpec = fourierOut->dataY(2); // convert the modulus to power spectrum wich is the base of the Wiener filter std::transform(powerSpec.begin(), powerSpec.end(), powerSpec.begin(), PowerSpectrum()); // estimate power spectrum's noise as the average of its high frequency half size_t n2 = powerSpec.size(); double noise = std::accumulate(powerSpec.begin() + n2 / 2, powerSpec.end(), 0.0); noise /= static_cast<double>(n2); // index of the maximum element in powerSpec const size_t imax = static_cast<size_t>(std::distance( powerSpec.begin(), std::max_element(powerSpec.begin(), powerSpec.end()))); if (noise == 0.0) { noise = powerSpec[imax] / guessSignalToNoiseRatio; } g_log.debug() << "Maximum signal " << powerSpec[imax] << std::endl; g_log.debug() << "Noise " << noise << std::endl; // storage for the Wiener filter, initialized with 0.0's std::vector<double> wf(n2); // The filter consists of two parts: // 1) low frequency region, from 0 until the power spectrum falls to the // noise level, filter is calculated // from the power spectrum // 2) high frequency noisy region, filter is a smooth function of frequency // decreasing to 0 // the following code is an adaptation of a fortran routine // noise starting index size_t i0 = 0; // intermediate variables double xx = 0.0; double xy = 0.0; double ym = 0.0; // low frequency filter values: the higher the power spectrum the closer the // filter to 1.0 for (size_t i = 0; i < n2; ++i) { double cd1 = powerSpec[i] / noise; if (cd1 < 1.0 && i > imax) { i0 = i; break; } double cd2 = log(cd1); wf[i] = cd1 / (1.0 + cd1); double j = static_cast<double>(i + 1); xx += j * j; xy += j * cd2; ym += cd2; } // i0 should always be > 0 but in case something goes wrong make a check if (i0 > 0) { g_log.debug() << "Noise start index " << i0 << std::endl; // high frequency filter values: smooth decreasing function double ri0f = static_cast<double>(i0 + 1); double xm = (1.0 + ri0f) / 2; ym /= ri0f; double a1 = (xy - ri0f * xm * ym) / (xx - ri0f * xm * xm); double b1 = ym - a1 * xm; g_log.debug() << "(a1,b1) = (" << a1 << ',' << b1 << ')' << std::endl; const double dblev = -20.0; // cut-off index double ri1 = floor((dblev / 4 - b1) / a1); if (ri1 < static_cast<double>(i0)) { g_log.warning() << "Failed to build Wiener filter: no smoothing." << std::endl; ri1 = static_cast<double>(i0); } size_t i1 = static_cast<size_t>(ri1); if (i1 > n2) i1 = n2; for (size_t i = i0; i < i1; ++i) { double s = exp(a1 * static_cast<double>(i + 1) + b1); wf[i] = s / (1.0 + s); } // wf[i] for i1 <= i < n2 are 0.0 g_log.debug() << "Cut-off index " << i1 << std::endl; } else { g_log.warning() << "Power spectrum has an unexpected shape: no smoothing" << std::endl; return copyInput(inputWS, wsIndex); } // multiply the fourier transform by the filter auto &re = fourierOut->dataY(0); auto &im = fourierOut->dataY(1); std::transform(re.begin(), re.end(), wf.begin(), re.begin(), std::multiplies<double>()); std::transform(im.begin(), im.end(), wf.begin(), im.begin(), std::multiplies<double>()); // inverse fourier transform fourier = createChildAlgorithm("RealFFT"); fourier->initialize(); fourier->setProperty("InputWorkspace", fourierOut); fourier->setProperty("IgnoreXBins", true); fourier->setPropertyValue("Transform", "Backward"); fourier->execute(); API::MatrixWorkspace_sptr out = fourier->getProperty("OutputWorkspace"); auto &background = fitOut->readY(1); auto &y = out->dataY(0); if (y.size() != background.size()) { throw std::logic_error("Logic error: inconsistent arrays"); } // add the spline "background" to the smoothed data std::transform(y.begin(), y.end(), background.begin(), y.begin(), std::plus<double>()); // copy the x-values and errors from the original spectrum // remove the last values for odd-sized inputs if (isOddSize) { out->dataX(0).assign(X.begin(), X.end() - 1); out->dataE(0).assign(E.begin(), E.end() - 1); out->dataY(0).resize(Y.size() - 1); } else { out->setX(0, X); out->dataE(0).assign(E.begin(), E.end()); } return out; }
/** Executes the regroup algorithm * * @throw runtime_error Thrown if */ void Regroup::exec() { // retrieve the properties std::vector<double> rb_params=getProperty("Params"); // Get the input workspace MatrixWorkspace_const_sptr inputW = getProperty("InputWorkspace"); // can work only if all histograms have the same boundaries if (!API::WorkspaceHelpers::commonBoundaries(inputW)) { g_log.error("Histograms with different boundaries"); throw std::runtime_error("Histograms with different boundaries"); } bool dist = inputW->isDistribution(); int histnumber = static_cast<int>(inputW->getNumberHistograms()); MantidVecPtr XValues_new; const MantidVec & XValues_old = inputW->readX(0); std::vector<int> xoldIndex;// indeces of new x in XValues_old // create new output X axis int ntcnew = newAxis(rb_params,XValues_old,XValues_new.access(),xoldIndex); // make output Workspace the same type is the input, but with new length of signal array API::MatrixWorkspace_sptr outputW = API::WorkspaceFactory::Instance().create(inputW,histnumber,ntcnew,ntcnew-1); int progress_step = histnumber / 100; if (progress_step == 0) progress_step = 1; for (int hist=0; hist < histnumber;hist++) { // get const references to input Workspace arrays (no copying) const MantidVec& XValues = inputW->readX(hist); const MantidVec& YValues = inputW->readY(hist); const MantidVec& YErrors = inputW->readE(hist); //get references to output workspace data (no copying) MantidVec& YValues_new=outputW->dataY(hist); MantidVec& YErrors_new=outputW->dataE(hist); // output data arrays are implicitly filled by function rebin(XValues,YValues,YErrors,xoldIndex,YValues_new,YErrors_new, dist); outputW->setX(hist,XValues_new); if (hist % progress_step == 0) { progress(double(hist)/histnumber); interruption_point(); } } outputW->isDistribution(dist); // Copy units if (outputW->getAxis(0)->unit().get()) outputW->getAxis(0)->unit() = inputW->getAxis(0)->unit(); try { if (inputW->getAxis(1)->unit().get()) outputW->getAxis(1)->unit() = inputW->getAxis(1)->unit(); } catch(Exception::IndexError) { // OK, so this isn't a Workspace2D } // Assign it to the output workspace property setProperty("OutputWorkspace",outputW); return; }