int main(int, char**) { RandomLib::Random r; r.Reseed(); #if HAVE_LAMBDA std::cout << "Illustrate calling STL routines with lambda expressions\n"; #else std::cout << "Illustrate calling STL routines without lambda expressions\n"; #endif std::cout << "Using " << r.Name() << "\n" << "with seed " << r.SeedString() << "\n\n"; std::vector<unsigned> c(10); // Fill with unsigned in [0, 2^32) #if HAVE_LAMBDA std::generate(c.begin(), c.end(), [&r]() throw() -> unsigned { return r(); }); #else std::generate<std::vector<unsigned>::iterator, RandomLib::Random&> (c.begin(), c.end(), r); #endif std::vector<double> b(10); // Fill with normal deviates #if HAVE_LAMBDA RandomLib::NormalDistribution<> nf; std::generate(b.begin(), b.end(), [&r, &nf]() throw() -> double { return nf(r,0.0,2.0); }); #else std::generate(b.begin(), b.end(), RandomNormal<>(r,0.0,2.0)); #endif std::vector<int> a(20); // How to shuffle large vectors #if HAVE_LAMBDA int i = 0; std::generate(a.begin(), a.end(), [&i]() throw() -> int { return i++; }); std::random_shuffle(a.begin(), a.end(), [&r](unsigned long long n) throw() -> unsigned long long { return r.Integer<unsigned long long>(n); }); #else for (size_t i = 0; i < a.size(); ++i) a[i] = int(i); RandomInt<unsigned long long> shuffler(r); std::random_shuffle(a.begin(), a.end(), shuffler); #endif return 0; }
int main(int, char**) { // Create r with a random seed RandomLib::Random r; r.Reseed(); std::cout << "Using " << r.Name() << "\n" << "with seed " << r.SeedString() << "\n\n"; { std::cout << "Sampling exactly from the normal distribution. First number is\n" << "in binary with ... indicating an infinite sequence of random\n" << "bits. Second number gives the corresponding interval. Third\n" << "number is the result of filling in the missing bits and rounding\n" << "exactly to the nearest representable double.\n"; const int bits = 1; RandomLib::ExactNormal<bits> ndist; long long num = 20000000ll; long long bitcount = 0; int numprint = 16; for (long long i = 0; i < num; ++i) { long long k = r.Count(); RandomLib::RandomNumber<bits> x = ndist(r); // Sample bitcount += r.Count() - k; if (i < numprint) { std::pair<double, double> z = x.Range(); std::cout << x << " = " // Print in binary with ellipsis << "(" << z.first << "," << z.second << ")"; // Print range double v = x.Value<double>(r); // Round exactly to nearest double std::cout << " = " << v << "\n"; } else if (i == numprint) std::cout << std::flush; } std::cout << "Number of bits needed to obtain the binary representation averaged\n" << "over " << num << " samples = " << bitcount/double(num) << "\n\n"; } { std::cout << "Sampling exactly from exp(-x). First number is in binary with\n" << "... indicating an infinite sequence of random bits. Second\n" << "number gives the corresponding interval. Third number is the\n" << "result of filling in the missing bits and rounding exactly to\n" << "the nearest representable double.\n"; const int bits = 1; RandomLib::ExactExponential<bits> edist; long long num = 50000000ll; long long bitcount = 0; int numprint = 16; for (long long i = 0; i < num; ++i) { long long k = r.Count(); RandomLib::RandomNumber<bits> x = edist(r); // Sample bitcount += r.Count() - k; if (i < numprint) { std::pair<double, double> z = x.Range(); std::cout << x << " = " // Print in binary with ellipsis << "(" << z.first << "," << z.second << ")"; // Print range double v = x.Value<double>(r); // Round exactly to nearest double std::cout << " = " << v << "\n"; } else if (i == numprint) std::cout << std::flush; } std::cout << "Number of bits needed to obtain the binary representation averaged\n" << "over " << num << " samples = " << bitcount/double(num) << "\n\n"; } { std::cout << "Sampling exactly from the discrete normal distribution with\n" << "sigma = 7 and mu = 1/2.\n"; RandomLib::DiscreteNormal<int> gdist(7,1,1,2); long long num = 50000000ll; long long count = r.Count(); int numprint = 16; for (long long i = 0; i < num; ++i) { int k = gdist(r); // Sample if (i < numprint) std::cout << k << " "; else if (i == numprint) std::cout << std::endl; } count = r.Count() - count; std::cout << "Number of random variates needed averaged\n" << "over " << num << " samples = " << count/double(num) << "\n\n"; } { std::cout << "Sampling exactly from the discrete normal distribution with\n" << "sigma = 1024 and mu = 1/7. First result printed is a uniform\n" << "range (with covers a power of two). The second number is the\n" << "result of sampling additional bits within that range to obtain\n" << "a definite result.\n"; RandomLib::DiscreteNormalAlt<int,1> gdist(1024,1,1,7); long long num = 20000000ll; long long count = r.Count(); long long entropy = 0; int numprint = 16; for (long long i = 0; i < num; ++i) { RandomLib::UniformInteger<int,1> u = gdist(r); entropy += u.Entropy(); if (i < numprint) std::cout << u << " = "; int k = u(r); if (i < numprint) std::cout << k << "\n"; else if (i == numprint) std::cout << std::flush; } count = r.Count() - count; std::cout << "Number of random bits needed for full result (for range) averaged\n" << "over " << num << " samples = " << count/double(num) << " (" << (count - entropy)/double(num) << ")\n\n"; } { std::cout << "Random bits with 1 occurring with probability 1/pi exactly:\n"; long long num = 100000000ll; int numprint = 72; RandomLib::InversePiProb pp; long long nbits = 0; long long k = r.Count(); for (long long i = 0; i < num; ++i) { bool b = pp(r); nbits += int(b); if (i < numprint) std::cout << int(b); else if (i == numprint) std::cout << "..." << std::flush; } std::cout << "\n"; std::cout << "Frequency of 1 averaged over " << num << " samples = 1/" << double(num)/nbits << "\n" << "bits/sample = " << (r.Count() - k)/double(num) << "\n\n"; } { std::cout << "Random bits with 1 occurring with probability 1/e exactly:\n"; long long num = 200000000ll; int numprint = 72; RandomLib::InverseEProb ep; long long nbits = 0; long long k = r.Count(); for (long long i = 0; i < num; ++i) { bool b = ep(r); nbits += int(b); if (i < numprint) std::cout << int(b); else if (i == numprint) std::cout << "..." << std::flush; } std::cout << "\n"; std::cout << "Frequency of 1 averaged over " << num << " samples = 1/" << double(num)/nbits << "\n" << "bits/sample = " << (r.Count() - k)/double(num) << "\n"; } return 0; }