bool XorEncryptor::encryptData(std::fstream &original, std::fstream &result) { if (!original.is_open() || !result.is_open()) { return false; } original.seekg(0, std::ios::beg); result.seekp(0, std::ios::beg); char c = 0; unsigned i = 0; while (original.good()) { original.read(&c, 1); c ^= password[i]; if(original.gcount() > 0) { result.write(&c, 1); } if (++i == passSize) { i = 0; } } original.seekg(0, std::ios::beg); result.seekg(0, std::ios::beg); result.flush(); return true; }
NMPRKC_API nmprk_status_t NMPRK_StartDebugLogging( const char *filename) { char dateStr[MAX_DATE_STR_LEN]; char timeStr[MAX_DATE_STR_LEN]; if(si_fsDebugLog.is_open() == true) return NMPRK_FAILURE; try { si_debugModule = SI_DEBUG_MODULE_ALL; si_debugLevel = SI_DEBUG_LEVEL_ALL; si_fsDebugLog.open(filename, std::fstream::out | std::fstream::app); if(si_fsDebugLog.is_open() != true) return NMPRK_FAILURE; } catch (...) { return NMPRK_FAILURE; } #if defined WIN32 _strdate_s(dateStr, MAX_DATE_STR_LEN); _strtime_s(timeStr, MAX_DATE_STR_LEN); #else time_t mytime = time(NULL); strftime(dateStr, 9, "%D", localtime(&mytime)); strftime(timeStr, 9, "%T", localtime(&mytime)); #endif SI_DEBUG_INFO(SI_THIS_MODULE, "Debug Logging Started: %s %s", dateStr, timeStr); return NMPRK_SUCCESS; }
// Ensures the file is opened/closed properly and retries 5 times. // if choice is false, the file is closed and if it is 1, the file is opened. bool verifiedOC ( std::fstream& file, std::string fileDir, bool choice, std::ios::openmode io ) { unsigned int i = 0; // Declaring a counter variable. // Choice determines if we are opening or closing the file. (True to open, False to close) if ( choice ) { do { file.open ( fileDir.c_str(), io ); // Open file as user selection. if ( file.is_open() ) { return true; } else { // Prints that the attempt to change the file state has failed. std::cout << "The file " << fileDir.c_str() << " failed to open... Retrying " << ++i << "\n"; } // Will exit the loop after the the number of attempts FILE_OPEN_RETRIES specifies. if ( i >= FILE_OPEN_RETRIES ) { std::cout << "The file " << fileDir.c_str() << " failed to change open." << std::endl; return false; } } while ( !file.is_open() ); } else { file.close(); } return true; }
bool SnappyFile::rawOpen(const std::string &filename, File::Mode mode) { std::ios_base::openmode fmode = std::fstream::binary; if (mode == File::Write) { fmode |= (std::fstream::out | std::fstream::trunc); createCache(SNAPPY_CHUNK_SIZE); } else if (mode == File::Read) { fmode |= std::fstream::in; } m_stream.open(filename.c_str(), fmode); //read in the initial buffer if we're reading if (m_stream.is_open() && mode == File::Read) { m_stream.seekg(0, std::ios::end); m_endPos = m_stream.tellg(); m_stream.seekg(0, std::ios::beg); // read the snappy file identifier unsigned char byte1, byte2; m_stream >> byte1; m_stream >> byte2; assert(byte1 == SNAPPY_BYTE1 && byte2 == SNAPPY_BYTE2); flushReadCache(); } else if (m_stream.is_open() && mode == File::Write) {
bool ClassLabelChangeFilter::load( std::fstream &file ){ if( !file.is_open() ){ errorLog << "load(fstream &file) - The file is not open!" << std::endl; return false; } std::string word; //Load the header file >> word; if( word != "GRT_CLASS_LABEL_CHANGE_FILTER_FILE_V1.0" ){ errorLog << "load(fstream &file) - Invalid file format!" << std::endl; return false; } file >> word; if( word != "NumInputDimensions:" ){ errorLog << "load(fstream &file) - Failed to read NumInputDimensions header!" << std::endl; return false; } file >> numInputDimensions; //Load the number of output dimensions file >> word; if( word != "NumOutputDimensions:" ){ errorLog << "load(fstream &file) - Failed to read NumOutputDimensions header!" << std::endl; return false; } file >> numOutputDimensions; //Init the classLabelTimeoutFilter module to ensure everything is initialized correctly return init(); }
bool TimeDomainFeatures::saveModelToFile( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "saveModelToFile(fstream &file) - The file is not open!" << std::endl; return false; } //Write the file header file << "GRT_TIME_DOMAIN_FEATURES_FILE_V1.0" << std::endl; //Save the base settings to the file if( !saveFeatureExtractionSettingsToFile( file ) ){ errorLog << "saveFeatureExtractionSettingsToFile(fstream &file) - Failed to save base feature extraction settings to file!" << std::endl; return false; } //Write the time domain settings to the file file << "BufferLength: " << bufferLength << std::endl; file << "NumFrames: " << numFrames << std::endl; file << "OffsetInput: " << offsetInput << std::endl; file << "UseMean: " << useMean << std::endl; file << "UseStdDev: " << useStdDev << std::endl; file << "UseEuclideanNorm: " << useEuclideanNorm << std::endl; file << "UseRMS: " << useRMS << std::endl; return true; }
bool RBMQuantizer::save( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "save(fstream &file) - The file is not open!" << std::endl; return false; } //Write the header file << "RBM_QUANTIZER_FILE_V1.0" << std::endl; //Save the base feature extraction settings to the file if( !saveFeatureExtractionSettingsToFile( file ) ){ errorLog << "saveFeatureExtractionSettingsToFile(fstream &file) - Failed to save base feature extraction settings to file!" << std::endl; return false; } file << "QuantizerTrained: " << trained << std::endl; file << "NumClusters: " << numClusters << std::endl; if( trained ){ if( !rbm.save( file ) ){ errorLog << "save(fstream &file) - Failed to save RBM settings to file!" << std::endl; return false; } } return true; }
bool PostProcessing::loadPostProcessingSettingsFromFile(std::fstream &file){ if( !file.is_open() ){ errorLog << "loadPostProcessingSettingsFromFile(fstream &file) - The file is not open!" << std::endl; return false; } //Try and load the base settings from the file if( !MLBase::loadBaseSettingsFromFile( file ) ){ return false; } std::string word; //Load if the filter has been initialized file >> word; if( word != "Initialized:" ){ errorLog << "loadPostProcessingSettingsFromFile(fstream &file) - Failed to read Initialized header!" << std::endl; clear(); return false; } file >> initialized; //If the module has been initalized then call the init function to setup the processed data vector if( initialized ){ return init(); } return true; }
bool LinearRegression::saveModelToFile( std::fstream &file ) const{ if(!file.is_open()) { errorLog << "loadModelFromFile(fstream &file) - The file is not open!" << std::endl; return false; } //Write the header info file<<"GRT_LINEAR_REGRESSION_MODEL_FILE_V2.0\n"; //Write the regressifier settings to the file if( !Regressifier::saveBaseSettingsToFile(file) ){ errorLog <<"saveModelToFile(fstream &file) - Failed to save Regressifier base settings to file!" << std::endl; return false; } if( trained ){ file << "Weights: "; file << w0; for(UINT j=0; j<numInputDimensions; j++){ file << " " << w[j]; } file << std::endl; } return true; }
void read_matrix_size(std::fstream& f, std::size_t & sz1, std::size_t & sz2) { if(!f.is_open()) throw std::invalid_argument("File is not opened"); f >> sz1 >> sz2; }
int main(int argc, char *argv[]) { //Initialize symbol table code. Pin does not read symbols unless this is called PIN_InitSymbols(); //initialize Pin system if(PIN_Init(argc,argv)) { return Usage(); } string filename = KnobOutputFile.Value(); //file to record all instructions #ifdef LOG_ASSEM //TraceFile.open(filename, ios::out); AxOpenFile(TraceFile, filename); if (TraceFile.is_open()) { PRINT_SCN(filename << " : Start to make trace at instruction #" << InsCount); } else { PRINT_SCN("cannot open"); return -1; } #endif //file to record all memory accesses MemFile.open("mem.txt", ios::out); //add a function used to instrument at instruction granularity INS_AddInstrumentFunction(Instruction, 0); //call 'Fini' immediately before the application exits PIN_AddFiniFunction(Fini, 0); //starts executing the application PIN_StartProgram(); return 0; }
bool TimeseriesBuffer::load( std::fstream &file ){ if( !file.is_open() ){ errorLog << "load(fstream &file) - The file is not open!" << std::endl; return false; } std::string word; //Load the header file >> word; if( word != "GRT_TIMESERIES_BUFFER_FILE_V1.0" ){ errorLog << "load(fstream &file) - Invalid file format!" << std::endl; return false; } if( !loadFeatureExtractionSettingsFromFile( file ) ){ errorLog << "loadFeatureExtractionSettingsFromFile(fstream &file) - Failed to load base feature extraction settings from file!" << std::endl; return false; } file >> word; if( word != "BufferSize:" ){ errorLog << "load(fstream &file) - Failed to read BufferSize header!" << std::endl; return false; } file >> bufferSize; //Init the TimeseriesBuffer module to ensure everything is initialized correctly return init(bufferSize,numInputDimensions); }
bool FFT::loadModelFromFile( std::fstream &file ){ if( !file.is_open() ){ errorLog << "loadModelFromFile(fstream &file) - The file is not open!" << std::endl; return false; } std::string word; //Load the header file >> word; if( word != "GRT_FFT_FILE_V1.0" ){ errorLog << "loadModelFromFile(fstream &file) - Invalid file format!" << std::endl; return false; } if( !loadFeatureExtractionSettingsFromFile( file ) ){ errorLog << "loadFeatureExtractionSettingsFromFile(fstream &file) - Failed to load base feature extraction settings from file!" << std::endl; return false; } file >> word; if( word != "HopSize:" ){ errorLog << "loadModelFromFile(fstream &file) - Failed to read HopSize header!" << std::endl; return false; } file >> hopSize; file >> word; if( word != "FftWindowSize:" ){ errorLog << "loadModelFromFile(fstream &file) - Failed to read FftWindowSize header!" << std::endl; return false; } file >> fftWindowSize; file >> word; if( word != "FftWindowFunction:" ){ errorLog << "loadModelFromFile(fstream &file) - Failed to read FftWindowFunction header!" << std::endl; return false; } file >> fftWindowFunction; file >> word; if( word != "ComputeMagnitude:" ){ errorLog << "loadModelFromFile(fstream &file) - Failed to read ComputeMagnitude header!" << std::endl; return false; } file >> computeMagnitude; file >> word; if( word != "ComputePhase:" ){ errorLog << "loadModelFromFile(fstream &file) - Failed to read ComputePhase header!" << std::endl; return false; } file >> computePhase; //Init the FFT module to ensure everything is initialized correctly return init(fftWindowSize,hopSize,numInputDimensions,fftWindowFunction,computeMagnitude,computePhase); }
bool DecisionTreeClusterNode::loadParametersFromFile( std::fstream &file ){ if(!file.is_open()) { errorLog << __GRT_LOG__ << " File is not open!" << std::endl; return false; } //Load the DecisionTreeNode parameters if( !DecisionTreeNode::loadParametersFromFile( file ) ){ errorLog << __GRT_LOG__ << " Failed to load DecisionTreeNode parameters from file!" << std::endl; return false; } std::string word; //Load the custom DecisionTreeThresholdNode Parameters file >> word; if( word != "FeatureIndex:" ){ errorLog << __GRT_LOG__ << " Failed to find FeatureIndex header!" << std::endl; return false; } file >> featureIndex; file >> word; if( word != "Threshold:" ){ errorLog << __GRT_LOG__ << " Failed to find Threshold header!" << std::endl; return false; } file >> threshold; return true; }
bool FFT::saveModelToFile( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "saveModelToFile(fstream &file) - The file is not open!" << std::endl; return false; } //Write the file header file << "GRT_FFT_FILE_V1.0" << std::endl; //Save the base settings to the file if( !saveFeatureExtractionSettingsToFile( file ) ){ errorLog << "saveFeatureExtractionSettingsToFile(fstream &file) - Failed to save base feature extraction settings to file!" << std::endl; return false; } //Write the FFT settings file << "HopSize: " << hopSize << std::endl; file << "FftWindowSize: " << fftWindowSize << std::endl; file << "FftWindowFunction: " << fftWindowFunction << std::endl; file << "ComputeMagnitude: " << computeMagnitude << std::endl; file << "ComputePhase: " << computePhase << std::endl; return true; }
bool FFTFeatures::saveModelToFile( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "saveModelToFile(fstream &file) - The file is not open!" << std::endl; return false; } //Write the file header file << "GRT_FFT_FEATURES_FILE_V1.0" << std::endl; //Save the base settings to the file if( !saveFeatureExtractionSettingsToFile( file ) ){ errorLog << "saveFeatureExtractionSettingsToFile(fstream &file) - Failed to save base feature extraction settings to file!" << std::endl; return false; } //Write the FFT features settings file << "FFTWindowSize: " << fftWindowSize << std::endl; file << "NumChannelsInFFTSignal: " << numChannelsInFFTSignal << std::endl; file << "ComputeMaxFreqFeature: " << computeMaxFreqFeature << std::endl; file << "ComputeMaxFreqSpectrumRatio: " << computeMaxFreqSpectrumRatio << std::endl; file << "ComputeCentroidFeature: " << computeCentroidFeature << std::endl; file << "ComputeTopNFreqFeatures: " << computeTopNFreqFeatures << std::endl; file << "N: " << N << std::endl; return true; }
bool Softmax::save( std::fstream &file ) const{ if(!file.is_open()) { errorLog << __GRT_LOG__ << " The file is not open!" << std::endl; return false; } //Write the header info file<<"GRT_SOFTMAX_MODEL_FILE_V2.0\n"; //Write the classifier settings to the file if( !Classifier::saveBaseSettingsToFile(file) ){ errorLog << __GRT_LOG__ << " Failed to save classifier base settings to file!" << std::endl; return false; } if( trained ){ file << "Models:\n"; for(UINT k=0; k<numClasses; k++){ file << "ClassLabel: " << models[k].classLabel << std::endl; file << "Weights: " << models[k].w0; for(UINT n=0; n<numInputDimensions; n++){ file << " " << models[k].w[n]; } file << std::endl; } } return true; }
bool KMeans::saveModelToFile( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "saveModelToFile(fstream &file) - Failed to save model, file is not open!" << std::endl; return false; } file << "GRT_KMEANS_MODEL_FILE_V1.0\n"; if( !saveClustererSettingsToFile( file ) ){ errorLog << "saveModelToFile(fstream &file) - Failed to save clusterer settings to file!" << std::endl; return false; } if( trained ){ file << "Clusters:\n"; for(UINT k=0; k<numClusters; k++){ for(UINT n=0; n<numInputDimensions; n++){ file << clusters[k][n] << "\t"; }file << std::endl; } } return true; }
bool HierarchicalClustering::saveModelToFile( std::fstream &file ) const{ if( !file.is_open() ){ errorLog << "saveModelToFile(string filename) - Failed to open file!" << std::endl; return false; } file << "GRT_HIERARCHICAL_CLUSTERING_FILE_V1.0\n"; if( !saveClustererSettingsToFile( file ) ){ errorLog << "saveModelToFile(fstream &file) - Failed to save cluster settings to file!" << std::endl; return false; } if( trained ){ file << "M: " << M << std::endl; file << "N: " << N << std::endl; file << "NumLevels: " << clusters.getSize() << std::endl; for(UINT i=0; i<clusters.getSize(); i++){ file << "Level: " << clusters[i].getLevel() << std::endl; file << "NumClusters: " << clusters[i].getNumClusters() << std::endl; } } return true; }
void check_is_file_open( const std::fstream& file, const char *path) { if ( !file.is_open() ) { std::cerr << "Failed to open file " << path << std::endl; exit( 1 ); } }
void PcieAccessInterfaceTest::write_file(char* data, const std::string& path, uint32_t size, uint32_t offset) { memory_file.open(path, std::ios::out |std::ios::binary | std::ios::trunc); if (memory_file.is_open()) { memory_file.seekg(offset, std::ios::beg); memory_file.write(data, size); memory_file.close(); } }
int deserialize(hash_map<K,V> &map, std::fstream& in) { if(!in.is_open()) throw serialize_exception(); // TODO return -1; }
int serialize(hash_map<K,V>& map, std::fstream& out) { if(!out.is_open()) throw serialize_exception(); // TODO return -1; }
bool BernoulliRBM::saveModelToFile( std::fstream &file ) const{ if(!file.is_open()) { errorLog <<"saveModelToFile(fstream &file) - The file is not open!" << std::endl; return false; } //Write the header info file<<"GRT_BERNOULLI_RBM_MODEL_FILE_V1.1\n"; if( !saveBaseSettingsToFile( file ) ){ errorLog <<"saveModelToFile(fstream &file) - Failed to save base settings to file!" << std::endl; return false; } file << "NumVisibleUnits: " << numVisibleUnits << std::endl; file << "NumHiddenUnits: " << numHiddenUnits << std::endl; file << "BatchSize: " << batchSize << std::endl; file << "BatchStepSize: " << batchStepSize << std::endl; file << "LearningRate: " << learningRate << std::endl; file << "LearningRateUpdate: " << learningRateUpdate << std::endl; file << "Momentum: " << momentum << std::endl; file << "RandomizeWeightsForTraining: " << randomizeWeightsForTraining << std::endl; file << "Ranges: \n"; for(UINT n=0; n<ranges.size(); n++){ file << ranges[n].minValue << "\t" << ranges[n].maxValue << std::endl; } //If the model has been trained then write the model if( trained ){ file << "WeightsMatrix: " << std::endl; for(UINT i=0; i<weightsMatrix.getNumRows(); i++){ for(UINT j=0; j<weightsMatrix.getNumCols(); j++){ file << weightsMatrix[i][j]; if( j < weightsMatrix.getNumCols()-1 ) file << " "; } file << std::endl; } file << "VisibleLayerBias: "; for(unsigned int i=0; i<visibleLayerBias.size(); i++){ file << visibleLayerBias[i]; if( i < visibleLayerBias.size()-1 ) file << " "; } file << std::endl; file << "HiddenLayerBias: "; for(unsigned int i=0; i<hiddenLayerBias.size(); i++){ file << hiddenLayerBias[i]; if( i < hiddenLayerBias.size()-1 ) file << " "; } file << std::endl; } return true; }
bool ParticleClassifier::saveModelToFile( std::fstream &file ) const{ if(!file.is_open()) { errorLog <<"saveModelToFile(fstream &file) - The file is not open!" << std::endl; return false; } return true; }
NMPRKC_API nmprk_status_t NMPRK_StopDebugLogging() { if(si_fsDebugLog.is_open() == true) { SI_DEBUG_INFO(SI_THIS_MODULE, "Debug Logging Stopped"); si_fsDebugLog.close(); } return NMPRK_SUCCESS; }
void load_terran() { terrain_stream.open("Data/Terrain.raw", std::ios::out | std::ios::binary | std::ios::in); if (terrain_stream.is_open()) { fprintf(stdout, "Terrain file open success\n"); } else { fprintf(stderr, "Terrain file open fail\n"); } terrain_stream.read((char*)terrain, MAP_SIZE * MAP_SIZE); }
bool MovementDetector::loadModelFromFile( std::fstream &file ){ clear(); if(!file.is_open()) { errorLog << "loadModelFromFile(string filename) - Could not open file to load model!" << std::endl; return false; } std::string word; file >> word; //Write the header info if( word != "GRT_MOVEMENT_DETECTOR_MODEL_FILE_V1.0" ){ errorLog <<"loadModelFromFile(fstream &file) - Failed to read file header!" << std::endl; return false; } //Load the base settings from the file if( !MLBase::loadBaseSettingsFromFile(file) ){ errorLog << "loadModelFromFile(string filename) - Failed to load base settings from file!" << std::endl; return false; } file >> word; if( word != "SearchTimeout:" ){ errorLog <<"loadModelFromFile(fstream &file) - Failed to read SearchTimeout header!" << std::endl; return false; } file >> searchTimeout; file >> word; if( word != "UpperThreshold:" ){ errorLog <<"loadModelFromFile(fstream &file) - Failed to read UpperThreshold header!" << std::endl; return false; } file >> upperThreshold; file >> word; if( word != "LowerThreshold:" ){ errorLog <<"loadModelFromFile(fstream &file) - Failed to read LowerThreshold header!" << std::endl; return false; } file >> lowerThreshold; file >> word; if( word != "Gamma:" ){ errorLog <<"loadModelFromFile(fstream &file) - Failed to read Gamma header!" << std::endl; return false; } file >> gamma; return true; }
bool BAG::save( std::fstream &file ) const{ if(!file.is_open()) { errorLog <<"save(fstream &file) - The file is not open!" << std::endl; return false; } const UINT ensembleSize = getEnsembleSize(); //Write the header info file << "GRT_BAG_MODEL_FILE_V2.0\n"; //Write the classifier settings to the file if( !Classifier::saveBaseSettingsToFile(file) ){ errorLog <<"save(fstream &file) - Failed to save classifier base settings to file!" << std::endl; return false; } if( trained ){ file << "EnsembleSize: " << ensembleSize << std::endl; if( getEnsembleSize() > 0 ){ //Save the weights file << "Weights: "; for(UINT i=0; i<getEnsembleSize(); i++){ file << weights[i]; if( i < ensembleSize-1 ) file << "\t"; else file << "\n"; } //Save the classifier types file << "ClassifierTypes: "; for(UINT i=0; i<getEnsembleSize(); i++){ file << ensemble[i]->getClassifierType() << std::endl; } //Save the ensemble file << "Ensemble: \n"; for(UINT i=0; i<getEnsembleSize(); i++){ if( !ensemble[i]->save( file ) ){ errorLog <<"save(fstream &file) - Failed to save classifier " << i << " to file!" << std::endl; return false; } } } } //NOTE: We do not need to close the file return true; }
void read_vector_body(std::fstream& f, std::vector<ScalarType>& v) { if(!f.is_open()) throw std::invalid_argument("File is not opened"); for(std::size_t i = 0; i < v.size(); i++) { ScalarType val = 0.0; f >> val; v[i] = val; } }