Exemple #1
0
void TR::ILValidator::updateNodeState(Location &newLocation)
   {
   TR::Node  *node = newLocation.currentNode();
   NodeState &state = _nodeStates[node];
   if (node->getReferenceCount() == state._futureReferenceCount)
      {
      // First occurrence -- do some bookkeeping
      //
      if (node->getReferenceCount() == 0)
         {
         validityRule(newLocation, node->getOpCode().isTreeTop(), "Only nodes with isTreeTop opcodes can have refcount == 0");
         }
      else
         {
         _liveNodes.add(node);
         }
      }

   if (_liveNodes.contains(node))
      {
      validityRule(newLocation, state._futureReferenceCount >= 1, "Node already has reference count 0");
      if (--state._futureReferenceCount == 0)
         {
         _liveNodes.remove(node);
         }
      }
   else
      {
      validityRule(newLocation, node->getOpCode().isTreeTop(), "Node has already gone dead");
      }

   if (isLoggingEnabled())
      {
      static const char *traceLiveNodesDuringValidation = feGetEnv("TR_traceLiveNodesDuringValidation");
      if (traceLiveNodesDuringValidation && !_liveNodes.isEmpty())
         {
         traceMsg(comp(), "    -- Live nodes: {");
         char *separator = "";
         for (LiveNodeWindow::Iterator lnwi(_liveNodes); lnwi.currentNode(); ++lnwi)
            {
            traceMsg(comp(), "%sn%dn", separator, lnwi.currentNode()->getGlobalIndex());
            separator = ", ";
            }
         traceMsg(comp(), "}\n");
         }
      }

   }
static void removeGlRegDep(TR::Node * parent, TR_GlobalRegisterNumber registerNum, TR::Block *containingBlock, TR::Optimization *opt)
   {
   if (parent->getNumChildren() == 0)
      return;

   TR_ASSERT(parent->getNumChildren() > 0, "expected TR::GlRegDeps %p", parent);
   TR::Node * predGlRegDeps = parent->getLastChild();

   if (predGlRegDeps->getOpCodeValue() != TR::GlRegDeps) // could be already removed
      return;

   TR_ASSERT(predGlRegDeps->getOpCodeValue() == TR::GlRegDeps, "expected TR::GlRegDeps");

   for (int32_t i = predGlRegDeps->getNumChildren() - 1; i >= 0; --i)
      if (predGlRegDeps->getChild(i)->getGlobalRegisterNumber() == registerNum)
         {
         dumpOptDetails(opt->comp(), "%sRemove GlRegDep : %p\n", opt->optDetailString(), predGlRegDeps->getChild(i));
         TR::Node *removedChild = predGlRegDeps->removeChild(i);
         if (removedChild->getReferenceCount() <= 1)
            {
            // The only remaining parent is the RegStore.  Another pass of
            // deadTrees may be able to eliminate that.
            //
            opt->requestOpt(OMR::deadTreesElimination, true, containingBlock);
            }
         break;
         }

   if (predGlRegDeps->getNumChildren() == 0)
      parent->removeLastChild();
   }
Exemple #3
0
static TR::Register *l2fd(TR::Node *node, TR::RealRegister *target, TR_X86OpCodes opRegMem8, TR_X86OpCodes opRegReg8, TR::CodeGenerator *cg)
   {
   TR::Node                *child = node->getFirstChild();
   TR::MemoryReference  *tempMR;

   TR_ASSERT(cg->useSSEForSinglePrecision(), "assertion failure");

   if (child->getRegister() == NULL &&
       child->getReferenceCount() == 1 &&
       child->getOpCode().isLoadVar())
      {
      tempMR = generateX86MemoryReference(child, cg);
      generateRegMemInstruction(opRegMem8, node, target, tempMR, cg);
      tempMR->decNodeReferenceCounts(cg);
      }
   else
      {
      TR::Register *intReg = cg->evaluate(child);
      generateRegRegInstruction(opRegReg8, node, target, intReg, cg);
      cg->decReferenceCount(child);
      }

   node->setRegister(target);
   return target;
   }
Exemple #4
0
void TR::ValidateNodeRefCountWithinBlock::validate(TR::TreeTop *firstTreeTop,
                                                      TR::TreeTop *exitTreeTop)
   {
   _nodeChecklist.empty();
   for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop();
        tt = tt->getNextTreeTop())
      {
      TR::Node *node = tt->getNode();
      node->setLocalIndex(node->getReferenceCount());
      validateRefCountPass1(node);
      }

   /**
    * We start again from the start of the block, and check the localIndex to
    * make sure it is 0.
    *
    * NOTE: Walking the tree backwards causes huge stack usage in validateRefCountPass2.
    */
   _nodeChecklist.empty();
   for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop();
        tt = tt->getNextTreeTop())
      {
      validateRefCountPass2(tt->getNode());
      }
   }
bool collectSymbolReferencesInNode(TR::Node *node,
                                   TR::SparseBitVector &symbolReferencesInNode,
                                   int32_t *numDeadSubNodes, vcount_t visitCount, TR::Compilation *comp,
                                   bool *seenInternalPointer, bool *seenArraylet,
                                   bool *cantMoveUnderBranch)
   {
   // The visit count in the node must be maintained by this method.
   //
   vcount_t oldVisitCount = node->getVisitCount();
   if (oldVisitCount == visitCount || oldVisitCount == comp->getVisitCount())
      return true;
   node->setVisitCount(comp->getVisitCount());

   //diagnostic("Walking node %p, height=%d, oldVisitCount=%d, visitCount=%d, compVisitCount=%d\n", node, *height, oldVisitCount, visitCount,comp->getVisitCount());

   // For all other subtrees collect all symbols that could be killed between
   // here and the next reference.
   //
   for (int32_t i = node->getNumChildren()-1; i >= 0; i--)
      {
      TR::Node *child = node->getChild(i);
      if (child->getFutureUseCount() == 1 &&
          child->getReferenceCount() > 1 &&
          !child->getOpCode().isLoadConst())
         *numDeadSubNodes = (*numDeadSubNodes) + 1;

      collectSymbolReferencesInNode(child, symbolReferencesInNode, numDeadSubNodes, visitCount, comp,
            seenInternalPointer, seenArraylet, cantMoveUnderBranch);
      }

   // detect if this is a direct load that shouldn't be moved under a branch (because an update was moved past
   // this load by treeSimplification)
   if (cantMoveUnderBranch &&
       (node->getOpCode().isLoadVarDirect() || node->getOpCode().isLoadReg()) &&
       node->isDontMoveUnderBranch())
      *cantMoveUnderBranch = true;

   if (seenInternalPointer && node->isInternalPointer() && node->getReferenceCount() > 1)
      *seenInternalPointer = true;

   if (seenArraylet)
      {
      if (node->getOpCode().hasSymbolReference() &&
          node->getSymbolReference()->getSymbol()->isArrayletShadowSymbol() &&
          node->getReferenceCount() > 1)
         {
         *seenArraylet = true;
         }
      }

   // Add this node's symbol reference to the set
   if (node->getOpCode().hasSymbolReference())
      {
      symbolReferencesInNode[node->getSymbolReference()->getReferenceNumber()]=true;
      }

   return true;
   }
//returns true if there is first reference of a call or check
bool TR_LocalLiveRangeReduction::containsCallOrCheck(TR_TreeRefInfo *treeRefInfo, TR::Node *node)
   {
   if ((node->getOpCode().isCall() &&
        (node->getReferenceCount()==1 || treeRefInfo->getFirstRefNodesList()->find(node))) ||
       node->getOpCode().isCheck())
      {
      return true;
      }

   for (int32_t i = 0; i < node->getNumChildren(); i++)
      {
      TR::Node *child = node->getChild(i);
      if (child->getReferenceCount()==1 || treeRefInfo->getFirstRefNodesList()->find(child))
         return containsCallOrCheck(treeRefInfo, child);
      }
   return false;
   }
Exemple #7
0
void
OMR::CodeGenerator::evaluateChildrenWithMultipleRefCount(TR::Node * node)
   {
   for (int i=0; i < node->getNumChildren(); i++)
      {
      TR::Node *child = node->getChild(i);
      if (child->getRegister() == NULL) // not already evaluated
         {
         // Note: we assume things without a symbol reference don't
         // necessarily need to be evaluated here, and can wait
         // until they are actually needed.
         //
         // vft pointers are speical - we need to evaluate the object in all cases
         // but for nopable virtual guards we can wait to load and mask the pointer
         // until we actually need to use it
         //
         if (child->getReferenceCount() > 1 && 
	     (child->getOpCode().hasSymbolReference() ||
	      (child->getOpCodeValue() == TR::l2a && child->getChild(0)->containsCompressionSequence())))
            {
            TR::SymbolReference *vftPointerSymRef = TR::comp()->getSymRefTab()->element(TR::SymbolReferenceTable::vftSymbol);
            if (node->isNopableInlineGuard()
                && self()->getSupportsVirtualGuardNOPing()
                && child->getOpCodeValue() == TR::aloadi
                && child->getChild(0)->getOpCode().hasSymbolReference()
                && child->getChild(0)->getSymbolReference() == vftPointerSymRef
                && child->getChild(0)->getOpCodeValue() == TR::aloadi)
               {
               if (!child->getChild(0)->getChild(0)->getRegister() &&
                   child->getChild(0)->getChild(0)->getReferenceCount() > 1)
                  self()->evaluate(child->getChild(0)->getChild(0));
               else
                  self()->evaluateChildrenWithMultipleRefCount(child->getChild(0)->getChild(0));
               }
            else
               {
               self()->evaluate(child);
               }
            }
         else
            {
            self()->evaluateChildrenWithMultipleRefCount(child);
            }
         }
      }
   }
Exemple #8
0
// TODO:AMD64: Could this be combined with istoreEvaluator without too much ugliness?
TR::Register *OMR::X86::AMD64::TreeEvaluator::lstoreEvaluator(TR::Node *node, TR::CodeGenerator *cg)
   {
   TR::Node *valueChild;
   TR::Compilation* comp = cg->comp();

   if (node->getOpCode().isIndirect())
      valueChild = node->getSecondChild();
   else
      valueChild = node->getFirstChild();

   // Handle special cases
   //
   if (valueChild->getRegister() == NULL &&
       valueChild->getReferenceCount() == 1)
      {
      // Special case storing a double value into long variable
      //
      if (valueChild->getOpCodeValue() == TR::dbits2l &&
          !valueChild->normalizeNanValues())
         {
         if (node->getOpCode().isIndirect())
            {
            node->setChild(1, valueChild->getFirstChild());
            TR::Node::recreate(node, TR::dstorei);
            TR::TreeEvaluator::floatingPointStoreEvaluator(node, cg);
            node->setChild(1, valueChild);
            TR::Node::recreate(node, TR::lstorei);
            }
         else
            {
            node->setChild(0, valueChild->getFirstChild());
            TR::Node::recreate(node, TR::dstore);
            TR::TreeEvaluator::floatingPointStoreEvaluator(node, cg);
            node->setChild(0, valueChild);
            TR::Node::recreate(node, TR::lstore);
            }
         cg->decReferenceCount(valueChild);
         return NULL;
         }
      }

   return TR::TreeEvaluator::integerStoreEvaluator(node, cg);
   }
Exemple #9
0
TR::Register *OMR::X86::AMD64::TreeEvaluator::l2iEvaluator(TR::Node *node, TR::CodeGenerator *cg)
   {
   TR::Node     *child = node->getFirstChild();
   TR::Register *reg   = cg->evaluate(child);
   if (child->getReferenceCount() > 1)
      {
      // This catches two scenarios:
      //
      // 1) A longClobberEvaluate (or any other register-clobbering logic) on
      // the l2i node could see a refcount of 1, and hence won't make a copy.
      // If child's refcount is more than 1, we do in fact need a copy, so we'd
      // better do it here.
      //
      // 2) If the child is commoned, and the l2i node is also commoned, then
      // we may end up with a situation where the last evaluation of the child
      // is a clobberEvaluate.  By that time, the child's refcount would be 1,
      // so no copy is made, and the register would be clobbered.  Therefore,
      // the l2i node can't return that same register, or else the other uses
      // of the node will end up getting the clobbered value.
      //
      // Note that case 2 is conservative, in that it presumes that the child's
      // register will be clobbered by another node.  If this does not occur,
      // then the copy we're about to make is unnecessary.
      //
      TR::Register *childReg = reg;
      reg = cg->allocateRegister();
      // to support signExtension in GRA, need to preserve upper word
      // in this move
      generateRegRegInstruction(MOV8RegReg, node, reg, childReg, cg);
      }

   node->setRegister(reg);
   cg->decReferenceCount(child);

   if (cg->enableRegisterInterferences() && node->getOpCode().getSize() == 1)
      cg->getLiveRegisters(TR_GPR)->setByteRegisterAssociation(node->getRegister());

   return reg;
   }
Exemple #10
0
/**
 * In pass_1(validateRefCountPass1), the Local Index (which is set to the Ref
 * Count) for each child is decremented for each visit. The second pass is to
 * make sure that the Local Index is zero by the end of the block. A non-zero
 * Local Index would indicate that the Ref count was wrong at the start
 * of the Validation Process.
 */
void TR::ValidateNodeRefCountWithinBlock::validateRefCountPass1(TR::Node *node)
   {
   /* If this is the first time through this node, verify the children. */
   if (!_nodeChecklist.isSet(node->getGlobalIndex()))
      {
      _nodeChecklist.set(node->getGlobalIndex());
      for (int32_t i = node->getNumChildren() - 1; i >= 0; --i)
         {
         TR::Node *child = node->getChild(i);
         if (_nodeChecklist.isSet(child->getGlobalIndex()))
            {
            /* If the child has already been visited, decrement its verifyRefCount. */
            child->decLocalIndex();
            }
         else
            {
            /* If the child has not yet been visited, set its localIndex and visit it. */
            child->setLocalIndex(child->getReferenceCount() - 1);
            validateRefCountPass1(child);
            }
         }
      }
   }
Exemple #11
0
TR::Register *TR_X86FPCompareAnalyser::fpCompareAnalyser(TR::Node       *root,
                                                         TR_X86OpCodes cmpRegRegOpCode,
                                                         TR_X86OpCodes cmpRegMemOpCode,
                                                         TR_X86OpCodes cmpiRegRegOpCode,
                                                         bool           useFCOMIInstructions)
   {
   TR::Node      *firstChild,
                *secondChild;
   TR::ILOpCodes  cmpOp = root->getOpCodeValue();
   bool          reverseMemOp = false;
   bool          reverseCmpOp = false;
   TR::Compilation* comp = _cg->comp();
   TR_X86OpCodes cmpInstr = useFCOMIInstructions ? cmpiRegRegOpCode : cmpRegRegOpCode;

   // Some operators must have their operands swapped to improve the generated
   // code needed to evaluate the result of the comparison.
   //
   bool mustSwapOperands = (cmpOp == TR::iffcmple ||
                            cmpOp == TR::ifdcmple ||
                            cmpOp == TR::iffcmpgtu ||
                            cmpOp == TR::ifdcmpgtu ||
                            cmpOp == TR::fcmple ||
                            cmpOp == TR::dcmple ||
                            cmpOp == TR::fcmpgtu ||
                            cmpOp == TR::dcmpgtu ||
                            (useFCOMIInstructions &&
                             (cmpOp == TR::iffcmplt ||
                              cmpOp == TR::ifdcmplt ||
                              cmpOp == TR::iffcmpgeu ||
                              cmpOp == TR::ifdcmpgeu ||
                              cmpOp == TR::fcmplt ||
                              cmpOp == TR::dcmplt ||
                              cmpOp == TR::fcmpgeu ||
                              cmpOp == TR::dcmpgeu))) ? true : false;

   // Some operators should not have their operands swapped to improve the generated
   // code needed to evaluate the result of the comparison.
   //
   bool preventOperandSwapping = (cmpOp == TR::iffcmpltu ||
                                  cmpOp == TR::ifdcmpltu ||
                                  cmpOp == TR::iffcmpge ||
                                  cmpOp == TR::ifdcmpge ||
                                  cmpOp == TR::fcmpltu ||
                                  cmpOp == TR::dcmpltu ||
                                  cmpOp == TR::fcmpge ||
                                  cmpOp == TR::dcmpge ||
                                  (useFCOMIInstructions &&
                                   (cmpOp == TR::iffcmpgt ||
                                    cmpOp == TR::ifdcmpgt ||
                                    cmpOp == TR::iffcmpleu ||
                                    cmpOp == TR::ifdcmpleu ||
                                    cmpOp == TR::fcmpgt ||
                                    cmpOp == TR::dcmpgt ||
                                    cmpOp == TR::fcmpleu ||
                                    cmpOp == TR::dcmpleu))) ? true : false;

   // For correctness, don't swap operands of these operators.
   //
   if (cmpOp == TR::fcmpg || cmpOp == TR::fcmpl ||
       cmpOp == TR::dcmpg || cmpOp == TR::dcmpl)
      {
      preventOperandSwapping = true;
      }

   // Initial operand evaluation ordering.
   //
   if (preventOperandSwapping || (!mustSwapOperands && _cg->whichChildToEvaluate(root) == 0))
      {
      firstChild  = root->getFirstChild();
      secondChild = root->getSecondChild();
      setReversedOperands(false);
      }
   else
      {
      firstChild  = root->getSecondChild();
      secondChild = root->getFirstChild();
      setReversedOperands(true);
      }

   TR::Register *firstRegister  = firstChild->getRegister();
   TR::Register *secondRegister = secondChild->getRegister();

   setInputs(firstChild,
             firstRegister,
             secondChild,
             secondRegister,
             useFCOMIInstructions,

             // If either 'preventOperandSwapping' or 'mustSwapOperands' is set then the
             // initial operand ordering set above must be maintained.
             //
             preventOperandSwapping || mustSwapOperands);

   // Make sure any required operand ordering is respected.
   //
   if ((getCmpReg2Reg1() || getCmpReg2Mem1()) &&
       (mustSwapOperands || preventOperandSwapping))
      {
      reverseCmpOp = getCmpReg2Reg1() ? true : false;
      reverseMemOp = getCmpReg2Mem1() ? true : false;
      }

   // If we are not comparing with a memory operand, one of them evaluates
   // to a zero, and the zero is not already on the stack, then we can use
   // FTST to save a register.
   //
   // (With a memory operand, either the constant zero needs to be loaded
   // to use FCOM, or the memory operand needs to be loaded to use FTST,
   // so there is no gain in using FTST.)
   //
   // If the constant zero is in the target register, using FTST means the
   // comparison will be reversed. We cannot do this if the initial ordering
   // of the operands must be maintained.
   //
   // Finally, if FTST is used and this is the last use of the target, the
   // target register may need to be explicitly popped.
   //
   TR::Register *targetRegisterForFTST = NULL;
   TR::Node     *targetChildForFTST = NULL;

   if (getEvalChild1() && isUnevaluatedZero(firstChild))  // do we need getEvalChild1() here?
      {
      if ( ((getCmpReg1Reg2() || reverseCmpOp) && !(preventOperandSwapping || mustSwapOperands)) ||
            (getCmpReg2Reg1() && !reverseCmpOp))
         {
         if (getEvalChild2())
            {
            secondRegister = _cg->evaluate(secondChild);
            }
         targetRegisterForFTST = secondRegister;
         targetChildForFTST = secondChild;
         notReversedOperands();
         }
      }
   else if (getEvalChild2() && isUnevaluatedZero(secondChild))  // do we need getEvalChild2() here?
      {
      if ( (getCmpReg1Reg2() || reverseCmpOp) ||
           (getCmpReg2Reg1() && !reverseCmpOp && !(preventOperandSwapping || mustSwapOperands)) )
         {
         if (getEvalChild1())
            {
            firstRegister = _cg->evaluate(firstChild);
            }
         targetRegisterForFTST = firstRegister;
         targetChildForFTST = firstChild;
         }
      }

   if (!targetRegisterForFTST)
      {
      // If we have a choice, evaluate the target operand last.  By doing so, we
      // help out the register assigner because the target must be TOS.  This
      // avoids an unneccessary FXCH for the target.
      //
      if (getEvalChild1() && getEvalChild2())
         {
         if (getCmpReg1Reg2() || getCmpReg1Mem2())
            {
            secondRegister = _cg->evaluate(secondChild);
            firstRegister = _cg->evaluate(firstChild);
            }
         else
            {
            firstRegister = _cg->evaluate(firstChild);
            secondRegister = _cg->evaluate(secondChild);
            }
         }
      else
         {
         if (getEvalChild1())
            {
            firstRegister = _cg->evaluate(firstChild);
            }

         if (getEvalChild2())
            {
            secondRegister = _cg->evaluate(secondChild);
            }
         }
      }

   // Adjust the FP precision of feeding operands.
   //
   if (firstRegister &&
       (firstRegister->needsPrecisionAdjustment() ||
        comp->getOption(TR_StrictFPCompares) ||
        (firstRegister->mayNeedPrecisionAdjustment() && secondChild->getOpCode().isLoadConst()) ||
        (firstRegister->mayNeedPrecisionAdjustment() && !secondRegister)))
      {
      TR::TreeEvaluator::insertPrecisionAdjustment(firstRegister, root, _cg);
      }

   if (secondRegister &&
       (secondRegister->needsPrecisionAdjustment() ||
        comp->getOption(TR_StrictFPCompares) ||
        (secondRegister->mayNeedPrecisionAdjustment() && firstChild->getOpCode().isLoadConst()) ||
        (secondRegister->mayNeedPrecisionAdjustment() && !firstRegister)))
      {
      TR::TreeEvaluator::insertPrecisionAdjustment(secondRegister, root, _cg);
      }

   // Generate the compare instruction.
   //
   if (targetRegisterForFTST)
      {
      generateFPRegInstruction(FTSTReg, root, targetRegisterForFTST, _cg);
      }
   else if (!useFCOMIInstructions && (getCmpReg1Mem2() || reverseMemOp))
      {
      TR::MemoryReference  *tempMR = generateX86MemoryReference(secondChild, _cg);
      generateFPRegMemInstruction(cmpRegMemOpCode, root, firstRegister, tempMR, _cg);
      tempMR->decNodeReferenceCounts(_cg);
      }
   else if (!useFCOMIInstructions && getCmpReg2Mem1())
      {
      TR::MemoryReference  *tempMR = generateX86MemoryReference(firstChild, _cg);
      generateFPRegMemInstruction(cmpRegMemOpCode, root, secondRegister, tempMR, _cg);
      notReversedOperands();
      tempMR->decNodeReferenceCounts(_cg);
      }
   else if (getCmpReg1Reg2() || reverseCmpOp)
      {
      generateFPCompareRegRegInstruction(cmpInstr, root, firstRegister, secondRegister, _cg);
      }
   else if (getCmpReg2Reg1())
      {
      generateFPCompareRegRegInstruction(cmpInstr, root, secondRegister, firstRegister, _cg);
      notReversedOperands();
      }

   _cg->decReferenceCount(firstChild);
   _cg->decReferenceCount(secondChild);

   // Evaluate the comparison.
   //
   if (getReversedOperands())
      {
      cmpOp = TR::ILOpCode(cmpOp).getOpCodeForSwapChildren();
      TR::Node::recreate(root, cmpOp);
      }

   if (useFCOMIInstructions && !targetRegisterForFTST)
      {
      return NULL;
      }

   // We must manually move the FP condition flags to the EFLAGS register if we don't
   // use the FCOMI instructions.
   //
   TR::Register *accRegister = _cg->allocateRegister();
   TR::RegisterDependencyConditions  *dependencies = generateRegisterDependencyConditions((uint8_t)1, 1, _cg);
   dependencies->addPreCondition(accRegister, TR::RealRegister::eax, _cg);
   dependencies->addPostCondition(accRegister, TR::RealRegister::eax, _cg);
   generateRegInstruction(STSWAcc, root, accRegister, dependencies, _cg);

   // Pop the FTST target register if it is not used any more.
   //
   if (targetRegisterForFTST &&
       targetChildForFTST && targetChildForFTST->getReferenceCount() == 0)
      {
      generateFPSTiST0RegRegInstruction(FSTRegReg, root, targetRegisterForFTST, targetRegisterForFTST, _cg);
      }

   return accRegister;
   }
Exemple #12
0
int32_t
OMR::X86::I386::CodeGenerator::getMaximumNumberOfGPRsAllowedAcrossEdge(TR::Node *node)
   {
   // TODO: Currently, lookupEvaluator doesn't deal properly with different
   // glRegDeps on different cases of a lookupswitch.
   //
   static const char *enableLookupswitch = feGetEnv("TR_enableGRAAcrossLookupSwitch");
   if (!enableLookupswitch && node->getOpCode().getOpCodeValue()==TR::lookup)
      return 1;

   if (node->getOpCode().getOpCodeValue()==TR::table)
      {
      // 1 for jump table base reg, which is not apparent in the trees
      // 1 for ebp when it is needed for the VMThread
      //
      return self()->getNumberOfGlobalGPRs() - 2;
      }

   if (node->getOpCode().isIf())
      {
      // we run out of all but one/two registers in these cases
      //
      if (node->getFirstChild()->getType().isInt64())
         {
         if (node->getOpCode().isBranch())
            {
            TR::Node *firstChild = node->getFirstChild();
            TR::Node *secondChild = node->getSecondChild();
            int extraRegsAvailable = 0;


            if(firstChild->getOpCodeValue() == TR::d2l ||
               secondChild->getOpCodeValue() == TR::d2l)
               {
               return 1;
               }

            if ((firstChild->getReferenceCount() == 1 &&
                firstChild->getOpCode().isLoadVarDirect()) ||
                (secondChild->getReferenceCount() == 1 &&
                 firstChild->getOpCode().isLoadVarDirect()))
               extraRegsAvailable += 0; // TODO: put it back to 2 when looking at GRA, GRA pushes allocation of 8 registers

            return 2 + extraRegsAvailable;
            }
         else
            {
            // TR_lcmpXX opcodes take up 5 regs
            //
            return 1;
            }
         }

      // we run out of all but one register in these cases....last time I tried....
      //

      if (node->getFirstChild()->getOpCodeValue() == TR::instanceof)
         {
         if (!TR::TreeEvaluator::instanceOfOrCheckCastNeedSuperTest(node->getFirstChild(), self())  &&
             TR::TreeEvaluator::instanceOfOrCheckCastNeedEqualityTest(node->getFirstChild(), self()))
            return self()->getNumberOfGlobalGPRs() - 4; // ebp plus three other regs if vft masking is enabled
         else
            return 0;
         }

      // All other conditional branches, we usually need one reg for the compare and possibly one for the vmthread
      //return getNumberOfGlobalGPRs() - 1 - (node->isVMThreadRequired()? 1 : 0);
      // vmThread required might be set on a node after GRA has ran
      return self()->getNumberOfGlobalGPRs() - 2;
      }

   return INT_MAX;
   }
Exemple #13
0
TR::Register *
OMR::CodeGenerator::evaluate(TR::Node * node)
   {
   TR::Register *reg;

   bool trace = self()->comp()->getOptions()->getTraceCGOption(TR_TraceCGEvaluation);
   TR::ILOpCodes opcode = node->getOpCodeValue();

   TR_ASSERT(!self()->comp()->getOption(TR_EnableParanoidRefCountChecks) || node->getOpCode().isTreeTop() || node->getReferenceCount() > 0,
      "OMR::CodeGenerator::evaluate invoked for nontreetop node [%s] with count == 0", node->getName(self()->comp()->getDebug()));

   if (opcode != TR::BBStart && node->getRegister())
      {
      reg = node->getRegister();
      if (trace)
         {
         self()->getDebug()->printNodeEvaluation(node, ":  ", reg);
         }
      }
   else
      {
      if (trace)
         {
         self()->getDebug()->printNodeEvaluation(node);
         _indentation += 2;
         }

      // Evaluation of a TR IL tree can be performed by many functions:
      //
      // 1) evaluate(...)
      // 2) populateMemoryReference(...)
      // 3) populateAddTree(...)
      // ...
      //
      // However all of these functions can be categorized into two classes:
      //
      // A) functions which completely evaluate their subtree.
      // B) functions which partially evaluate their subtree.
      //
      // Because functions of class A and class B can be used interchangably to
      // perform a recursive decent of a TR IL tree, and because A or B functions
      // can perform a destructive evaluation of their subtree, a bug can occur where
      // the results of a partial evalutation are destructively overwritten before
      // being completely evalutated.
      //
      // Ex: the motivating case is the following evaluation pattern:
      //
      // node_A evaluate
      //    node_B populateMemoryReference
      //    node_C evaluate
      //
      // where
      //
      // a) there is a common node between the subtrees of node_B and node_C.
      // b) calling populateMemoryReference on node_B reduces the reference count of one
      //    of the base or index nodes to 1, creating the "opportunity" for a destructive
      //    evaluation.
      //
      // The following chain of events occurs:
      //
      // 1) evaluate is called on node_A. This evaluator can produce instructions of RX form,
      //    and chooses to do so for this node.
      //
      // 2) populateMemoryReference is called on node_B, and evaluates the subtree, returning
      //    a TR_MemoryReference to node_A's evaluator. This memory reference has not been
      //    dereferenced yet, and the base (and optionally index) nodes may have registers
      //    assigned to them.
      //
      // 3) evaluate is called on node_C, which chooses to destructively evaluate the commoned
      //    base node. The memory reference's base register now contains a garbage value.
      //
      // 4) control passes to node_A's evaluator, which emits an RX instruction using node_B's
      //    memory reference and node_C's register.
      //
      // In the past, the fix for this was to switch the order of evaluation: call evaluate
      // on node_C and then call populateMemoryReference on node_B. This fixes this scenario, but
      // the capability of another tree and evaluation pattern to create this bug still exists.
      //
      // As well, more insidious trees exist:
      //
      // ificmpeq
      //    iiload
      //       i2l
      //          x
      //    iiload
      //       ishl
      //          ==> i2l
      //          4
      //
      // The evaluation pattern here could be:
      //
      // evaluate
      //    populateMemoryReference
      //       evaluate
      //    populateMemoryReference
      //       evaluate
      //
      // If the commoned node's reference count is 2 coming into ificmpeq's evaluator, then
      // the second sub-evaluate call could be destructive to the first populateMemoryReference.
      //
      // Even worse, if either subtree could be destructive, then there would be no correct order to
      // perform the function calls:
      //
      // ificmpeq
      //    iiload
      //       ishl
      //          ==> x
      //          7
      //    iiload
      //       ishl
      //          ==> x
      //          4
      //
      // Generally, two conditions must be true for this bug to be possible:
      //
      // 1) the following two classes of recursive decent functions must exist:
      //    A) functions which completely evaluate their subtree.
      //    B) functions which partially evaluate their subtree.
      //
      // 2) destructive evaluation by either class of function must be possible.
      //
      // This code implements changes to eliminate the second condition for this bug by performing
      // the following check and fixup:
      //
      // If in a function which partially evaluates its subtree, note all non-restricted nodes that
      // have a reference count > 1. If any of those node's reference counts reach 1, then artificially
      // inflate those reference counts by 1 for the lifetime of the parent evaluation.
      //
      int32_t topOfNodeStackBeforeEvaluation = _stackOfArtificiallyInflatedNodes.topIndex();

      // Memory references are not like registers, and should not be allowed to escape their evaluator.
      // Explicitly note memory references that are not loaded into registers and automatically call
      // stopUsingMemRefRegister on all memory references that have "escaped".
      //
      // Only the s390 memory references are tracked in this way.
      //
      int32_t topOfMemRefStackBeforeEvaluation = _stackOfMemoryReferencesCreatedDuringEvaluation.topIndex();

      reg = _nodeToInstrEvaluators[opcode](node, self());

      if (self()->comp()->getOptions()->getTraceCGOption(TR_TraceCGEvaluation))
         {
         self()->getDebug()->printNodeEvaluation(node, "<- ", reg, false);
         _indentation -= 2;
         }
      if (self()->comp()->getOption(TR_TraceRegisterPressureDetails))
         {
         traceMsg(self()->comp(), "  evaluated %s", self()->getDebug()->getName(node));
         self()->getDebug()->dumpLiveRegisters();
         traceMsg(self()->comp(), "\n");
         }

      // Pop off and decrement tracked nodes
      //
      while (_stackOfArtificiallyInflatedNodes.topIndex() > topOfNodeStackBeforeEvaluation)
         {
         TR::Node * artificiallyInflatedNode = _stackOfArtificiallyInflatedNodes.pop();

         if (artificiallyInflatedNode->getReferenceCount() == 1)
            {
            // When inflating reference counts, two cases exist:
            //
            // 1) N's ref count reaches 1 in a populate* call, which is then inc'ed to 2.
            //
            // 1a) N is never evaluated, so the ref count never goes down to 1. (node was not commoned in another subtree)
            //
            //     - no tree difference should be seen in this case.
            //
            // 1b) N is evaluated, so the ref count then goes down to 1. (node was commoned in another subtree)
            //
            //     - register shuffling _could_ be seen in this case.
            //     - but a bug might have been avoided: partial and complete evaluation of a commoned node occurred.
            //
            if (self()->comp()->getOption(TR_TraceCG))
               {
               self()->comp()->getDebug()->trace(" _stackOfArtificiallyInflatedNodes.pop(): node %p part of commoned case, might have avoided a bug!\n", artificiallyInflatedNode);
               }
            }

         self()->decReferenceCount(artificiallyInflatedNode);

#ifdef J9_PROJECT_SPECIFIC
#if defined(TR_TARGET_S390)
         if (artificiallyInflatedNode->getOpaquePseudoRegister())
            {
            TR_OpaquePseudoRegister *reg = artificiallyInflatedNode->getOpaquePseudoRegister();
            TR_StorageReference *ref = reg->getStorageReference();
            self()->processUnusedStorageRef(ref);
            }
#endif
#endif

         if (self()->comp()->getOption(TR_TraceCG))
            {
            self()->comp()->getDebug()->trace(" _stackOfArtificiallyInflatedNodes.pop() %p, decReferenceCount(...) called. reg=%s\n", artificiallyInflatedNode,
                                      artificiallyInflatedNode->getRegister()?artificiallyInflatedNode->getRegister()->getRegisterName(self()->comp()):"null");
            }
         }

#if defined(TR_TARGET_S390)
      self()->StopUsingEscapedMemRefsRegisters(topOfMemRefStackBeforeEvaluation);
#endif

      bool checkRefCount = (node->getReferenceCount() <= 1 ||
                              (reg && reg == node->getRegister()));
      // for anchor mode, if node is an indirect store, it can have
      // ref count <= 2
      // but for compressedRefs, the indirect store must be an address
      if (self()->comp()->useAnchors())
         {
         if (((node->getOpCode().isStoreIndirect() &&
               (self()->comp()->useCompressedPointers() && (node->getSymbolReference()->getSymbol()->getDataType() == TR::Address))) ||
                opcode == TR::wrtbari) &&
               node->getReferenceCount() <= 2 &&
               !checkRefCount)
            checkRefCount = true;
         }

      TR_ASSERT(checkRefCount,
                  "evaluate: the node's register wasn't set (node [%s])", node->getName(self()->comp()->getDebug()));
      }

   return reg;
   }
Exemple #14
0
void TR::DeadTreesElimination::prePerformOnBlocks()
   {
   _cannotBeEliminated = false;
   _delayedRegStores = false;

   _targetTrees.deleteAll();

   // Walk through all the blocks to remove trivial dead trees of the form
   // treetop
   //   => node
   // The problem with these trees is in the scenario where the earlier use
   // of 'node' is also dead.  However, our analysis won't find that because
   // the reference count is > 1.
   vcount_t visitCount = comp()->incOrResetVisitCount();
   for (TR::TreeTop *tt = comp()->getStartTree();
        tt != 0;
        tt = tt->getNextTreeTop())
      {
      bool removed = false;

      TR::Node *node = tt->getNode();
      if (node->getOpCodeValue() == TR::treetop &&
          node->getFirstChild()->getVisitCount() == visitCount &&
          performTransformation(comp(), "%sRemove trivial dead tree: %p\n", optDetailString(), node))
         {
         TR::TransformUtil::removeTree(comp(), tt);
         removed = true;
         }
      else
         {
         if (node->getOpCode().isCheck() &&
             node->getFirstChild()->getOpCode().isCall() &&
             node->getFirstChild()->getReferenceCount() == 1 &&
             node->getFirstChild()->getSymbolReference()->getSymbol()->isResolvedMethod() &&
             node->getFirstChild()->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree() &&
             performTransformation(comp(), "%sRemove dead check of side-effect free call: %p\n", optDetailString(), node))
            {
            TR::TransformUtil::removeTree(comp(), tt);
            removed = true;
            }
         }

      if (removed
          && tt->getNextTreeTop()->getNode()->getOpCodeValue() == TR::Goto
          && tt->getPrevTreeTop()->getNode()->getOpCodeValue() == TR::BBStart
          && !tt->getPrevTreeTop()->getNode()->getBlock()->isExtensionOfPreviousBlock())
         {
         requestOpt(OMR::redundantGotoElimination, tt->getEnclosingBlock());
         }

      if (node->getVisitCount() >= visitCount)
         continue;
      TR::TransformUtil::recursivelySetNodeVisitCount(tt->getNode(), visitCount);
      }

   // If the last use of an iRegLoad has been removed, then remove the node from
   // the BBStart and remove the corresponding dependency node from each of the block's
   // predecessors.
   //
   while (1)
      {
      bool glRegDepRemoved = false;
      for (TR::Block * b = comp()->getStartBlock(); b; b = b->getNextBlock())
         {
         TR::TreeTop * startTT = b->getEntry();
         TR::Node * startNode = startTT->getNode();
         if (startNode->getNumChildren() > 0 && !debug("disableEliminationOfGlRegDeps"))
            {
            TR::Node * glRegDeps = startNode->getFirstChild();
            TR_ASSERT(glRegDeps->getOpCodeValue() == TR::GlRegDeps, "expected TR::GlRegDeps");
            for (int32_t i = glRegDeps->getNumChildren() - 1; i >= 0; --i)
               {
               TR::Node * dep = glRegDeps->getChild(i);
               if (dep->getReferenceCount() == 1 &&
                   (!dep->getOpCode().isFloatingPoint() ||
                    cg()->getSupportsJavaFloatSemantics()) &&
                   performTransformation(comp(), "%sRemove GlRegDep : %p\n", optDetailString(), glRegDeps->getChild(i)))

                  {
                  glRegDeps->removeChild(i);
                  glRegDepRemoved = true;
                  TR_GlobalRegisterNumber registerNum = dep->getGlobalRegisterNumber();
                  for (auto e = b->getPredecessors().begin(); e != b->getPredecessors().end(); ++e)
                     {
                     TR::Block * pred = toBlock((*e)->getFrom());
                     if (pred == comp()->getFlowGraph()->getStart())
                        continue;

                     TR::Node * parent = pred->getLastRealTreeTop()->getNode();
                     if ( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren())
                        {
                        for (int32_t j = parent->getCaseIndexUpperBound() - 1; j > 0; --j)
                           {
                           TR::Node * caseNode = parent->getChild(j);
                           TR_ASSERT(caseNode->getOpCode().isCase() || caseNode->getOpCodeValue() == TR::branch,
                                  "having problems navigating a switch");
                           if (caseNode->getBranchDestination() == startTT &&
                               caseNode->getNumChildren() > 0 &&
                               0) // can't do this now that all glRegDeps are hung off the default branch
                              removeGlRegDep(caseNode, registerNum, pred, this);
                           }
                        }
                     else if (!parent->getOpCode().isReturn() &&
                              parent->getOpCodeValue() != TR::igoto &&
                              !( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) &&
                              !(parent->getOpCodeValue()==TR::treetop &&
                              parent->getFirstChild()->getOpCode().isCall() &&
                              parent->getFirstChild()->getOpCode().isIndirect()))

                        {
                        if (pred->getNextBlock() == b)
                           parent = pred->getExit()->getNode();
                        removeGlRegDep(parent, registerNum, pred, this);
                        }
                     }
                  }
               }

            if (glRegDeps->getNumChildren() == 0)
               startNode->removeChild(0);
            }
         }

      if (!glRegDepRemoved)
         break;
      }
   }
Exemple #15
0
int32_t TR::DeadTreesElimination::process(TR::TreeTop *startTree, TR::TreeTop *endTree)
   {
   TR::StackMemoryRegion stackRegion(*comp()->trMemory());
   LongestPathMap longestPaths(std::less<TR::Node*>(), stackRegion);

   typedef TR::typed_allocator<CRAnchor, TR::Region&> CRAnchorAlloc;
   typedef TR::forward_list<CRAnchor, CRAnchorAlloc> CRAnchorList;
   CRAnchorList anchors(stackRegion);

   vcount_t visitCount = comp()->incOrResetVisitCount();
   TR::TreeTop *treeTop;
   for (treeTop = startTree; (treeTop != endTree); treeTop = treeTop->getNextTreeTop())
      treeTop->getNode()->initializeFutureUseCounts(visitCount);

   TR::Block *block = NULL;
   bool delayedRegStoresBeforeThisPass = _delayedRegStores;

   // Update visitCount as they are used in this optimization and need to be
   visitCount = comp()->incOrResetVisitCount();
   for (TR::TreeTopIterator iter(startTree, comp()); iter != endTree; ++iter)
      {
      TR::Node *node = iter.currentTree()->getNode();

      if (node->getOpCodeValue() == TR::BBStart)
         {
         block = node->getBlock();
         if (!block->isExtensionOfPreviousBlock())
            longestPaths.clear();
         }

      int vcountLimit = MAX_VCOUNT - 3;
      if (comp()->getVisitCount() > vcountLimit)
         {
         dumpOptDetails(comp(),
            "%sVisit count %d exceeds limit %d; stopping\n",
            optDetailString(), comp()->getVisitCount(), vcountLimit);
         return 0;
         }

      // correct at all intermediate stages
      //
      if ((node->getOpCodeValue() != TR::treetop) &&
          (!node->getOpCode().isAnchor() || (node->getFirstChild()->getReferenceCount() != 1)) &&
          (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() != 1)) &&
          (delayedRegStoresBeforeThisPass ||
           (iter.currentTree() == block->getLastRealTreeTop()) ||
           !node->getOpCode().isStoreReg() ||
           (node->getVisitCount() == visitCount)))
         {
         if (node->getOpCode().isAnchor() && node->getFirstChild()->getOpCode().isLoadIndirect())
            anchors.push_front(CRAnchor(iter.currentTree(), block));

         TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount);
         continue;
         }

      if (node->getOpCode().isStoreReg())
         _delayedRegStores = true;

      TR::Node *child = node->getFirstChild();
      if (child->getOpCodeValue() == TR::PassThrough)
         {
         TR::Node *newChild = child->getFirstChild();
         node->setAndIncChild(0, newChild);
         newChild->incFutureUseCount();
         if (child->getReferenceCount() <= 1)
            optimizer()->prepareForNodeRemoval(child);
         child->recursivelyDecReferenceCount();
         recursivelyDecFutureUseCount(child);
         child = newChild;
         }

      bool treeTopCanBeEliminated = false;

      // If the treetop child has been seen before then it must be anchored
      // somewhere above already; so we don't need the treetop to be anchoring
      // this node (as the computation is already done at the first reference to
      // the node).
      //

      if (visitCount == child->getVisitCount())
         {
         treeTopCanBeEliminated = true;
         }
      else
         {
         TR::ILOpCode &childOpCode = child->getOpCode();
         TR::ILOpCodes opCodeValue = childOpCode.getOpCodeValue();
         bool seenConditionalBranch = false;

         bool callWithNoSideEffects = child->getOpCode().isCall() &&
              child->getSymbolReference()->getSymbol()->isResolvedMethod() &&
              child->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree();

         if (callWithNoSideEffects)
            {
            treeTopCanBeEliminated = true;
            }
         else if (!((childOpCode.isCall() && !callWithNoSideEffects) ||
               childOpCode.isStore() ||
               ((opCodeValue == TR::New ||
                 opCodeValue == TR::anewarray ||
                 opCodeValue == TR::newarray) &&
                 child->getReferenceCount() > 1) ||
                 opCodeValue == TR::multianewarray ||
                 opCodeValue == TR::MergeNew ||
               opCodeValue == TR::checkcast ||
               opCodeValue == TR::Prefetch ||
               opCodeValue == TR::iu2l ||
               ((childOpCode.isDiv() ||
                 childOpCode.isRem()) &&
                 child->getNumChildren() == 3)))
            {
            // Perform the rather complex check to see whether its safe
            // to disconnect the child node from the treetop
            //
            bool safeToReplaceNode = false;
            if (child->getReferenceCount() == 1)
               {
               safeToReplaceNode = true;
#ifdef J9_PROJECT_SPECIFIC
               if (child->getOpCode().isPackedExponentiation())
                  {
                  // pdexp has a possible message side effect in truncating or no significant digits left cases
                  safeToReplaceNode = false;
                  }
#endif
               if (opCodeValue == TR::loadaddr)
                  treeTopCanBeEliminated = true;
               }
            else if (!_cannotBeEliminated)
               {
               safeToReplaceNode = isSafeToReplaceNode(
                  child,
                  iter.currentTree(),
                  &seenConditionalBranch,
                  visitCount,
                  comp(),
                  &_targetTrees,
                  _cannotBeEliminated,
                  longestPaths);
               }

            if (safeToReplaceNode)
               {
               if (childOpCode.hasSymbolReference())
                  {
                  TR::SymbolReference *symRef = child->getSymbolReference();

                  if (symRef->getSymbol()->isAuto() || symRef->getSymbol()->isParm())
                     treeTopCanBeEliminated = true;
                  else
                     {
                     if (childOpCode.isLoad() ||
                         (opCodeValue == TR::loadaddr) ||
                         (opCodeValue == TR::instanceof) ||
                         (((opCodeValue == TR::New)  ||
                            (opCodeValue == TR::anewarray ||
                              opCodeValue == TR::newarray)) &&
                          ///child->getFirstChild()->isNonNegative()))
                           child->markedAllocationCanBeRemoved()))
                       //        opCodeValue == TR::multianewarray ||
                       //        opCodeValue == TR::MergeNew)
                        treeTopCanBeEliminated = true;
                     }
                  }
               else
                  treeTopCanBeEliminated = true;
               }
            }

         // Fix for the case when a float to non-float conversion node swings
         // down past a branch on IA32; this would cause a FP value to be commoned
         // across a branch where there was none originally; this causes pblms
         // as a value is left on the stack.
         //
         if (treeTopCanBeEliminated &&
             seenConditionalBranch)
            {
            if (!cg()->getSupportsJavaFloatSemantics())
               {
               if (child->getOpCode().isConversion() ||
                   child->getOpCode().isBooleanCompare())
                 {
                 if (child->getFirstChild()->getOpCode().isFloatingPoint() &&
                     !child->getOpCode().isFloatingPoint())
                     treeTopCanBeEliminated = false;
                 }
               }
            }

         if (treeTopCanBeEliminated)
            {
            TR::NodeChecklist visited(comp());
            bool containsFloatingPoint = false;
            for (int32_t i = 0; i < child->getNumChildren(); ++i)
               {
               // Anchor nodes with reference count > 1
               //
               bool highGlobalIndex = false;
               if (fixUpTree(child->getChild(i), iter.currentTree(), visited, highGlobalIndex, self(), visitCount))
                  containsFloatingPoint = true;
               if (highGlobalIndex)
                  {
                  dumpOptDetails(comp(),
                     "%sGlobal index limit exceeded; stopping\n",
                     optDetailString());
                  return 0;
                  }
               }

            if (seenConditionalBranch &&
                containsFloatingPoint)
               {
               if (!cg()->getSupportsJavaFloatSemantics())
                  treeTopCanBeEliminated = false;
               }
            }
         }

      // Update visitCount as they are used in this optimization and need to be
      // correct at all intermediate stages
      //
      if (!treeTopCanBeEliminated)
         TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount);

      if (treeTopCanBeEliminated)
         {
         TR::TreeTop *prevTree = iter.currentTree()->getPrevTreeTop();
         TR::TreeTop *nextTree = iter.currentTree()->getNextTreeTop();

         if (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() == 1))
            {
            // Actually going to remove the treetop now
            //
            if (performTransformation(comp(), "%sRemove tree : [" POINTER_PRINTF_FORMAT "] ([" POINTER_PRINTF_FORMAT "] = %s)\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName()))
               {
               prevTree->join(nextTree);
               optimizer()->prepareForNodeRemoval(node);
               ///child->recursivelyDecReferenceCount();
               node->recursivelyDecReferenceCount();
               recursivelyDecFutureUseCount(child);
               iter.jumpTo(prevTree);
               if (child->getReferenceCount() == 1)
                  requestOpt(OMR::treeSimplification, true, block);

               if (nextTree->getNode()->getOpCodeValue() == TR::Goto
                   && prevTree->getNode()->getOpCodeValue() == TR::BBStart
                   && !prevTree->getNode()->getBlock()->isExtensionOfPreviousBlock())
                  {
                  requestOpt(
                     OMR::redundantGotoElimination,
                     prevTree->getNode()->getBlock());
                  }
               }
            }
         else
            {
            if (performTransformation(comp(), "%sMove tree : [" POINTER_PRINTF_FORMAT "]([" POINTER_PRINTF_FORMAT "] = %s) to end of block\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName()))
               {
               prevTree->join(nextTree);
               node->setVisitCount(visitCount);

               TR::TreeTop *lastTree = findLastTreetop(block, prevTree);
               TR::TreeTop *prevLastTree = lastTree->getPrevTreeTop();

               TR::TreeTop *cursorTreeTop = nextTree;
               while (cursorTreeTop != lastTree)
                  {
                  if (cursorTreeTop->getNode()->getOpCode().isStoreReg() &&
                      (cursorTreeTop->getNode()->getGlobalRegisterNumber() == iter.currentTree()->getNode()->getGlobalRegisterNumber()))
                     {
                     lastTree = cursorTreeTop;
                     prevLastTree = lastTree->getPrevTreeTop();
                     break;
                     }

                  cursorTreeTop = cursorTreeTop->getNextTreeTop();
                  }

               if (lastTree->getNode()->getOpCodeValue() == TR::BBStart)
                  {
                  prevLastTree = lastTree;
                  lastTree = block->getExit();
                  }

               TR::Node *lastNode = lastTree->getNode();
               TR::Node *prevLastNode = prevLastTree->getNode();

               if (lastNode->getOpCode().isIf() && !lastNode->getOpCode().isCompBranchOnly() &&
                   prevLastNode->getOpCode().isStoreReg() &&
                   ((prevLastNode->getFirstChild() == lastNode->getFirstChild()) ||
                    (prevLastNode->getFirstChild() == lastNode->getSecondChild())))
                  {
                  lastTree = prevLastTree;
                  prevLastTree = lastTree->getPrevTreeTop();
                  }

               prevLastTree->join(iter.currentTree());
               iter.currentTree()->join(lastTree);

               iter.jumpTo(prevTree);
               requestOpt(OMR::treeSimplification, true, block);
               }
            }
         }
      }

   for (auto it = anchors.begin(); it != anchors.end(); ++it)
      {
      TR::Node *anchor = it->tree->getNode();
      TR::Node *load = anchor->getChild(0);
      if (load->getReferenceCount() > 1)
         continue;

      // We can eliminate the indirect load immediately, but for the moment the
      // subtree providing the base object has to be anchored.

      TR::Node *heapBase = anchor->getChild(1);

      TR::Node::recreate(anchor, TR::treetop);
      anchor->setAndIncChild(0, load->getChild(0));
      anchor->setChild(1, NULL);
      anchor->setNumChildren(1);

      if (!heapBase->getOpCode().isLoadConst())
         {
         it->tree->insertAfter(
            TR::TreeTop::create(
               comp(),
               TR::Node::create(heapBase, TR::treetop, 1, heapBase)));
         }

      load->recursivelyDecReferenceCount();
      heapBase->recursivelyDecReferenceCount();

      // A later pass of dead trees can likely move (or even remove) the base
      // object expression.

      requestOpt(OMR::deadTreesElimination, true, it->block);
      }

   return 1; // actual cost
   }
// Returns true if there is any constraint to the move
bool TR_LocalLiveRangeReduction::isAnySymInDefinedOrUsedBy(TR_TreeRefInfo *currentTreeRefInfo, TR::Node *currentNode, TR_TreeRefInfo *movingTreeRefInfo )
   {
   TR::Node *movingNode = movingTreeRefInfo->getTreeTop()->getNode();
   // ignore anchors
   //
   if (movingNode->getOpCode().isAnchor())
      movingNode = movingNode->getFirstChild();

   TR::ILOpCode &opCode = currentNode->getOpCode();

   ////if ((opCode.getOpCodeValue() == TR::monent) || (opCode.getOpCodeValue() == TR::monexit))
   if (nodeMaybeMonitor(currentNode))
      {
      if (trace())
    	 traceMsg(comp(),"cannot move %p beyond monitor %p\n",movingNode,currentNode);
      return true;
      }

   // Don't move gc points or things across gc points
   //
   if (movingNode->canGCandReturn() ||
         currentNode->canGCandReturn())
      {
      if (trace())
         traceMsg(comp(), "cannot move gc points %p past %p\n", movingNode, currentNode);
      return true;
      }

   // Don't move checks or calls at all
   //
   if (containsCallOrCheck(movingTreeRefInfo,movingNode))
      {
      if (trace())
    	   traceMsg(comp(),"cannot move check or call %s\n", getDebug()->getName(movingNode));
      return true;
      }

   // Don't move object header store past a GC point
   //
   if ((currentNode->getOpCode().isWrtBar() || currentNode->canCauseGC()) && mayBeObjectHeaderStore(movingNode, fe()))
      {
      if (trace())
    	   traceMsg(comp(),"cannot move possible object header store %s past GC point %s\n", getDebug()->getName(movingNode), getDebug()->getName(currentNode));
      return true;
      }

   if (TR::Compiler->target.cpu.isPower() && opCode.getOpCodeValue() == TR::allocationFence)
      {
      // Can't move allocations past flushes
      if (movingNode->getOpCodeValue() == TR::treetop &&
          movingNode->getFirstChild()->getOpCode().isNew() &&
          (currentNode->getAllocation() == NULL ||
           currentNode->getAllocation() == movingNode->getFirstChild()))
         {
         if (trace())
            {
            traceMsg(comp(),"cannot move %p beyond flush %p - ", movingNode, currentNode);
            if (currentNode->getAllocation() == NULL)
               traceMsg(comp(),"(flush with null allocation)\n");
            else
               traceMsg(comp(),"(flush for allocation %p)\n", currentNode->getAllocation());
            }
         return true;
         }

      // Can't move certain stores past flushes
      // Exclude all indirect stores, they may be for stack allocs, in which case the flush is needed at least as a scheduling barrier
      // Direct stores to autos and parms are the only safe candidates
      if (movingNode->getOpCode().isStoreIndirect() ||
          (movingNode->getOpCode().isStoreDirect() && !movingNode->getSymbol()->isParm() && !movingNode->getSymbol()->isAuto()))
         {
         if (trace())
            traceMsg(comp(),"cannot move %p beyond flush %p - (flush for possible stack alloc)", movingNode, currentNode);
         return true;
         }
      }

   for (int32_t i = 0; i < currentNode->getNumChildren(); i++)
      {
      TR::Node *child = currentNode->getChild(i);

      //Any node that has side effects (like call and newarrya) cannot be evaluated in the middle of the tree.
      if (movingTreeRefInfo->getFirstRefNodesList()->find(child))
         {
         //for calls and unresolve symbol that are not under check

         if (child->exceptionsRaised() ||
             (child->getOpCode().hasSymbolReference() && child->getSymbolReference()->isUnresolved()))
    	    {
    	    if (trace())
    	       traceMsg(comp(),"cannot move %p beyond %p - cannot change evaluation point of %p\n ",movingNode,currentTreeRefInfo->getTreeTop()->getNode(),child);
            return true;
    	    }

         else if(movingNode->getOpCode().isStore())
            {
            TR::SymbolReference *stSymRef = movingNode->getSymbolReference();
            int32_t stSymRefNum = stSymRef->getReferenceNumber();
            //TR::SymbolReference *stSymRef = movingNode->getSymbolReference();
            int32_t numHelperSymbols = comp()->getSymRefTab()->getNumHelperSymbols();
            if ((comp()->getSymRefTab()->isNonHelper(stSymRefNum, TR::SymbolReferenceTable::vftSymbol))||
                (comp()->getSymRefTab()->isNonHelper(stSymRefNum, TR::SymbolReferenceTable::contiguousArraySizeSymbol))||
                (comp()->getSymRefTab()->isNonHelper(stSymRefNum, TR::SymbolReferenceTable::discontiguousArraySizeSymbol))||
                (stSymRef == comp()->getSymRefTab()->findHeaderFlagsSymbolRef())||
                (stSymRef->getSymbol() == comp()->getSymRefTab()->findGenericIntShadowSymbol()))

               return true;
            }

         else if (movingNode->getOpCode().isResolveOrNullCheck())
            {
    	    if (trace())
    	       traceMsg(comp(),"cannot move %p beyond %p - node %p under ResolveOrNullCheck",movingNode,currentTreeRefInfo->getTreeTop()->getNode(),currentNode);
            return true;
            }

    	 else if (TR::Compiler->target.is64Bit() &&
    		  movingNode->getOpCode().isBndCheck() &&
    		  ((opCode.getOpCodeValue() == TR::i2l) || (opCode.getOpCodeValue() == TR::iu2l)) &&
    		  !child->isNonNegative())
    	    {
    	    if (trace())
    	       traceMsg(comp(),"cannot move %p beyond %p - changing the eval point of %p will casue extra cg instruction ",movingNode,currentTreeRefInfo->getTreeTop()->getNode(),currentNode);
    	    return true;
    	    }
         }

      //don't recurse over nodes each are not the first reference
      if (child->getReferenceCount()==1 || currentTreeRefInfo->getFirstRefNodesList()->find(child))
         {
         if (isAnySymInDefinedOrUsedBy(currentTreeRefInfo, child, movingTreeRefInfo ))
            return true;
         }
      }

   return false;
   }
void TR_LocalLiveRangeReduction::populatePotentialDeps(TR_TreeRefInfo *treeRefInfo,TR::Node *node)
   {
   TR::ILOpCode &opCode = node->getOpCode();
   if (node->getOpCode().hasSymbolReference())
      {
      TR::SymbolReference *symRef = node->getSymbolReference();
      int32_t symRefNum = symRef->getReferenceNumber();

      //set defSym - all symbols that might be written

      if (opCode.isCall() || opCode.isResolveCheck()|| opCode.isStore() || node->mightHaveVolatileSymbolReference())
         {

         bool isCallDirect = false;
         if (node->getOpCode().isCallDirect())
            isCallDirect = true;

         if (!symRef->getUseDefAliases(isCallDirect).isZero(comp()))
            {
            TR::SparseBitVector useDefAliases(comp()->allocator());
            symRef->getUseDefAliases(isCallDirect).getAliases(useDefAliases);
            TR::SparseBitVector::Cursor aliasCursor(useDefAliases);
            for (aliasCursor.SetToFirstOne(); aliasCursor.Valid(); aliasCursor.SetToNextOne())
               {
               int32_t nextAlias = aliasCursor;
               treeRefInfo->getDefSym()->set(nextAlias);
               }
            }

         if (opCode.isStore())
            treeRefInfo->getDefSym()->set(symRefNum);
         }
      //set useSym - all symbols that are used
      if (opCode.canRaiseException())
         {
         TR::SparseBitVector useAliases(comp()->allocator());
         symRef->getUseonlyAliases().getAliases(useAliases);
            {
            TR::SparseBitVector::Cursor aliasesCursor(useAliases);
            for (aliasesCursor.SetToFirstOne(); aliasesCursor.Valid(); aliasesCursor.SetToNextOne())
               {
               int32_t nextAlias = aliasesCursor;
               treeRefInfo->getUseSym()->set(nextAlias);
               }
            }
         }
      if (opCode.isLoadVar() || (opCode.getOpCodeValue() == TR::loadaddr))
         {
         treeRefInfo->getUseSym()->set(symRefNum);
         }

      }
   for (int32_t i = 0; i < node->getNumChildren(); i++)
      {
      TR::Node *child = node->getChild(i);

      //don't recurse over references (nodes which are not the first reference)
      //
      if (child->getReferenceCount()==1 || treeRefInfo->getFirstRefNodesList()->find(child))
         populatePotentialDeps(treeRefInfo,child );
      }
   return;
   }
Exemple #18
0
// Build arguments for system linkage dispatch.
//
int32_t TR::AMD64SystemLinkage::buildArgs(
      TR::Node *callNode,
      TR::RegisterDependencyConditions *deps)
   {
   TR::SymbolReference *methodSymRef = callNode->getSymbolReference();
   TR::MethodSymbol *methodSymbol = methodSymRef->getSymbol()->castToMethodSymbol();
   TR::RealRegister::RegNum noReg = TR::RealRegister::NoReg;
   TR::RealRegister *espReal = machine()->getX86RealRegister(TR::RealRegister::esp);
   int32_t firstNodeArgument = callNode->getFirstArgumentIndex();
   int32_t lastNodeArgument = callNode->getNumChildren() - 1;
   int32_t offset = 0;
   int32_t sizeOfOutGoingArgs= 0;
   uint16_t numIntArgs = 0,
            numFloatArgs = 0;
   int32_t first, last, direction;
   int32_t numCopiedRegs = 0;
   TR::Register *copiedRegs[TR::X86LinkageProperties::MaxArgumentRegisters];

   if (getProperties().passArgsRightToLeft())
      {
      first = lastNodeArgument;
      last  = firstNodeArgument - 1;
      direction = -1;
      }
   else
      {
      first = firstNodeArgument;
      last  = lastNodeArgument + 1;
      direction = 1;
      }

   // If the dispatch is indirect we must add the VFT register to the preconditions
   // so that it gets register assigned with the other preconditions to the call.
   //
   if (callNode->getOpCode().isIndirect())
      {
      TR::Node *vftChild = callNode->getFirstChild();
      TR_ASSERT(vftChild->getRegister(), "expecting VFT child to be evaluated");
      TR::RealRegister::RegNum scratchRegIndex = getProperties().getIntegerScratchRegister(1);
      deps->addPreCondition(vftChild->getRegister(), scratchRegIndex, cg());
      }

   int32_t i;
   for (i = first; i != last; i += direction)
      {
      TR::parmLayoutResult layoutResult;
      TR::RealRegister::RegNum rregIndex = noReg;
      TR::Node *child = callNode->getChild(i);

      layoutParm(child, sizeOfOutGoingArgs, numIntArgs, numFloatArgs, layoutResult);

      if (layoutResult.abstract & TR::parmLayoutResult::IN_LINKAGE_REG_PAIR)
         {
         // TODO: AMD64 SysV ABI might put a struct into a pair of linkage registerr
         TR_ASSERT(false, "haven't support linkage_reg_pair yet.\n");
         }
      else if (layoutResult.abstract & TR::parmLayoutResult::IN_LINKAGE_REG)
         {
         TR_RegisterKinds regKind = layoutResult.regs[0].regKind;
         uint32_t regIndex = layoutResult.regs[0].regIndex;
         TR_ASSERT(regKind == TR_GPR || regKind == TR_FPR, "linkage registers includes TR_GPR and TR_FPR\n");
         rregIndex = (regKind == TR_FPR) ? getProperties().getFloatArgumentRegister(regIndex): getProperties().getIntegerArgumentRegister(regIndex);
         }
      else
         {
         offset = layoutResult.offset;
         }

      TR::Register *vreg;
      vreg = cg()->evaluate(child);

      bool needsStackOffsetUpdate = false;
      if (rregIndex != noReg)
         {
         // For NULL JNI reference parameters, it is possible that the NULL value will be evaluated into
         // a different register than the child.  In that case it is not necessary to copy the temporary scratch
         // register across the call.
         //
         if ((child->getReferenceCount() > 1) &&
             (vreg == child->getRegister()))
            {
            TR::Register *argReg = cg()->allocateRegister();
            if (vreg->containsCollectedReference())
               argReg->setContainsCollectedReference();
            generateRegRegInstruction(TR::Linkage::movOpcodes(RegReg, movType(child->getDataType())), child, argReg, vreg, cg());
            vreg = argReg;
            copiedRegs[numCopiedRegs++] = vreg;
            }

         deps->addPreCondition(vreg, rregIndex, cg());
         }
      else
         {
         // Ideally, we would like to push rather than move
         generateMemRegInstruction(TR::Linkage::movOpcodes(MemReg, fullRegisterMovType(vreg)),
                                   child,
                                   generateX86MemoryReference(espReal, offset, cg()),
                                   vreg,
                                   cg());
         }

      cg()->decReferenceCount(child);
      }

   // Now that we're finished making the preconditions, all the interferences
   // are established and we can kill these regs.
   //
   for (i = 0; i < numCopiedRegs; i++)
      cg()->stopUsingRegister(copiedRegs[i]);

   deps->stopAddingPreConditions();

   return sizeOfOutGoingArgs;
   }
Exemple #19
0
TR::Register *
TR::AMD64SystemLinkage::buildVolatileAndReturnDependencies(
      TR::Node *callNode,
      TR::RegisterDependencyConditions *deps)
   {

   if (callNode->getOpCode().isIndirect())
      {
      TR::Node *vftChild = callNode->getFirstChild();
      if (vftChild->getRegister() && (vftChild->getReferenceCount() > 1))
         {
         }
      else
         {
         // VFT child dies here; decrement it early so it doesn't interfere with dummy regs.
         cg()->recursivelyDecReferenceCount(vftChild);
         }
      }

   TR_ASSERT(deps != NULL, "expected register dependencies");

   // Figure out which is the return register.
   //
   TR::RealRegister::RegNum returnRegIndex;
   TR_RegisterKinds returnKind;

   switch (callNode->getDataType())
      {
      case TR::NoType:
         returnRegIndex = TR::RealRegister::NoReg;
         returnKind = TR_NoRegister;
         break;

      case TR::Int8:
      case TR::Int16:
      case TR::Int32:
      case TR::Int64:
      case TR::Address:
         returnRegIndex = getProperties().getIntegerReturnRegister();
         returnKind = TR_GPR;
         break;

      case TR::Float:
      case TR::Double:
         returnRegIndex = getProperties().getFloatReturnRegister();
         returnKind = TR_FPR;
         break;

      case TR::Aggregate:
      default:
         TR_ASSERT(false, "Unrecognized call node data type: #%d", (int)callNode->getDataType());
         break;
      }

   // Kill all non-preserved int and float regs besides the return register.
   //
   int32_t i;
   TR::RealRegister::RegNum scratchIndex = getProperties().getIntegerScratchRegister(1);
   for (i=0; i<getProperties().getNumVolatileRegisters(); i++)
      {
      TR::RealRegister::RegNum regIndex = getProperties()._volatileRegisters[i];

      if (regIndex != returnRegIndex)
         {
         TR_RegisterKinds rk = (i < getProperties()._numberOfVolatileGPRegisters) ? TR_GPR : TR_FPR;
         TR::Register *dummy = cg()->allocateRegister(rk);
         deps->addPostCondition(dummy, regIndex, cg());

         // Note that we don't setPlaceholderReg here.  If this volatile reg is also volatile
         // in the caller's linkage, then that flag doesn't matter much anyway.  If it's preserved
         // in the caller's linkage, then we don't want to set that flag because we want this
         // use of the register to count as a "real" use, thereby motivating the prologue to
         // preserve the register.

         // A scratch register is necessary to call the native without a trampoline.
         //
         if (callNode->getOpCode().isIndirect() || (regIndex != scratchIndex))
            cg()->stopUsingRegister(dummy);
         }
      }

#if defined (PYTHON) && 0
   // Evict the preserved registers across the call
   //
   for (i=0; i<getProperties().getNumberOfPreservedGPRegisters(); i++)
      {
      TR::RealRegister::RegNum regIndex = getProperties()._preservedRegisters[i];

      TR::Register *dummy = cg()->allocateRegister(TR_GPR);
      deps->addPostCondition(dummy, regIndex, cg());

      // Note that we don't setPlaceholderReg here.  If this volatile reg is also volatile
      // in the caller's linkage, then that flag doesn't matter much anyway.  If it's preserved
      // in the caller's linkage, then we don't want to set that flag because we want this
      // use of the register to count as a "real" use, thereby motivating the prologue to
      // preserve the register.

      // A scratch register is necessary to call the native without a trampoline.
      //
      if (callNode->getOpCode().isIndirect() || (regIndex != scratchIndex))
         cg()->stopUsingRegister(dummy);
      }
#endif

   if (callNode->getOpCode().isIndirect())
      {
      TR::Node *vftChild = callNode->getFirstChild();
      if (vftChild->getRegister() && (vftChild->getReferenceCount() > 1))
         {
         // VFT child survives the call, so we must include it in the postconditions.
         deps->addPostCondition(vftChild->getRegister(), TR::RealRegister::NoReg, cg());
         cg()->recursivelyDecReferenceCount(vftChild);
         }
      }

   // Now that everything is dead, we can allocate the return register without
   // interference
   //
   TR::Register *returnRegister;
   if (returnRegIndex)
      {
      TR_ASSERT(returnKind != TR_NoRegister, "assertion failure");

      if (callNode->getDataType() == TR::Address)
         returnRegister = cg()->allocateCollectedReferenceRegister();
      else
         {
         returnRegister = cg()->allocateRegister(returnKind);
         if (callNode->getDataType() == TR::Float)
            returnRegister->setIsSinglePrecision();
         }

      deps->addPostCondition(returnRegister, returnRegIndex, cg());
      }
   else
      returnRegister = NULL;


 // The reg dependency is left open intentionally, and need to be closed by
 // the caller. The reason is because, child class might call this method, while
 // adding more register dependecies;  if we close the reg dependency here,
 // the child class won't be able to add more register dependencies.

   return returnRegister;
   }
void TR_ExpressionsSimplification::setSummationReductionCandidates(TR::Node *node, TR::TreeTop *tt)
   {
   // Must be a store node
   //
   if (node->getOpCodeValue() != TR::istore
   /* || node->getOpCodeValue() != TR::astore */)
      {
      if (trace())
         traceMsg(comp(), "Node %p: The opcode is not istore so not a summation reduction candidate\n",node);
      return;
      }

   TR::Node *opNode = node->getFirstChild();

   if (opNode->getOpCodeValue() == TR::iadd ||
       opNode->getOpCodeValue() == TR::isub)
      {
      TR::Node *firstNode = opNode->getFirstChild();
      TR::Node *secondNode = opNode->getSecondChild();

      if (firstNode->getOpCode().hasSymbolReference() &&
            node->getSymbolReference() == firstNode->getSymbolReference() &&
            opNode->getReferenceCount() == 1 && firstNode->getReferenceCount() == 1)
         {
         // The second node must be loop invariant
         //
         if (!_currentRegion->isExprInvariant(secondNode))
            {
            if (trace())
               {
               traceMsg(comp(), "The node %p is not loop invariant\n",secondNode);

               // This can be the arithmetic series case
               // only when the node is an induction variable
               if (secondNode->getNumChildren() == 1 && secondNode->getOpCode().hasSymbolReference())
                  {
                  TR_InductionVariable *indVar = _currentRegion->findMatchingIV(secondNode->getSymbolReference());
                  if (indVar)
                     {
                     //printf("Found Candidate of arithmetic series\n" );
                     }
                  }
               }
            return;
            }

         _candidateTTs->add(tt);
         }
      else if (secondNode->getOpCode().hasSymbolReference() &&
            node->getSymbolReference() == secondNode->getSymbolReference() &&
            opNode->getReferenceCount() == 1 && secondNode->getReferenceCount() == 1 &&
            _currentRegion->isExprInvariant(firstNode))
         {
         _candidateTTs->add(tt);
         }
      }
   else if (opNode->getOpCodeValue() == TR::ixor ||
            opNode->getOpCodeValue() == TR::ineg)
      {
      if (opNode->getFirstChild()->getOpCode().hasSymbolReference() &&
            node->getSymbolReference() == opNode->getFirstChild()->getSymbolReference() &&
            opNode->getReferenceCount() == 1 && opNode->getFirstChild()->getReferenceCount() == 1 &&
            (opNode->getOpCodeValue() == TR::ineg || _currentRegion->isExprInvariant(opNode->getSecondChild())))
         _candidateTTs->add(tt);
      else if (opNode->getOpCodeValue() == TR::ixor && opNode->getSecondChild()->getOpCode().hasSymbolReference() &&
            node->getSymbolReference() == opNode->getSecondChild()->getSymbolReference() &&
            opNode->getReferenceCount() == 1 && opNode->getSecondChild()->getReferenceCount() == 1 &&
            _currentRegion->isExprInvariant(opNode->getFirstChild()))
         _candidateTTs->add(tt);
      }
   }
TR_ExpressionsSimplification::LoopInfo*
TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region)
   {
   ListIterator<TR::CFGEdge> exitEdges(&region->getExitEdges());

   if (region->getExitEdges().getSize() != 1)
      {
      if (trace())
         traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n");
      return 0;
      }

   TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom());

   if (!exitNode->getStructure()->asBlock())
      {
      if (trace())
         traceMsg(comp(), "The exit block can't be found\n");
      return 0;
      }

   TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock();
   TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode();

   if (trace())
      {
      traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber());
      traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock);
      }


   if (!lastTreeInExitBlock->getOpCode().isBranch())
      {
      if (trace())
         traceMsg(comp(), "The branch node couldn't be found\n");
      return 0;
      }

   if (lastTreeInExitBlock->getNumChildren() < 2)
      {
      if (trace())
         traceMsg(comp(), "The branch node has less than 2 children\n");
      return 0;
      }

   TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild();
   TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild();

   if (!firstChildOfLastTree->getOpCode().hasSymbolReference())
      {
      if (trace())
         traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree);
      return 0;
      }

   TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference();

   if (trace())
      traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol());

   // Locate the induction variable that matches with the exit node symbol
   //
   TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef);
   if (!indVar) return 0;

   if (!indVar->getIncr()->asIntConst())
      {
      if (trace())
         traceMsg(comp(), "Increment is not a constant\n");
      return 0;
      }

   int32_t increment = indVar->getIncr()->getLowInt();

   _visitCount = comp()->incVisitCount();
   bool indVarWrittenAndUsedUnexpectedly = false;
   if (firstChildOfLastTree->getReferenceCount() > 1)
      {
      TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry();
      TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit();

      bool loadSeen = false;
      while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock)
         {
         TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode();
         if (checkForLoad(cursorNode, firstChildOfLastTree))
            loadSeen = true;

         if (!cursorNode->getOpCode().isStore() &&
             (cursorNode->getNumChildren() > 0))
           cursorNode = cursorNode->getFirstChild();

         if (cursorNode->getOpCode().isStore() &&
             (cursorNode->getSymbolReference() == firstChildSymRef))
            {
            indVarWrittenAndUsedUnexpectedly = true;
            if ((cursorNode->getFirstChild() == firstChildOfLastTree) ||
                !loadSeen)
               indVarWrittenAndUsedUnexpectedly = false;
            else
               break;
            }

         cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop();
         }
      }

   if (indVarWrittenAndUsedUnexpectedly)
      {
      return 0;
      }

   int32_t lowerBound;
   int32_t upperBound = 0;
   TR::Node *bound = 0;
   bool equals = false;

   switch(lastTreeInExitBlock->getOpCodeValue())
      {
      case TR::ificmplt:
      case TR::ificmpgt:
         equals = true;
      case TR::ificmple:
      case TR::ificmpge:
         if (!(indVar->getEntry() && indVar->getEntry()->asIntConst()))
            {
            if (trace())
               traceMsg(comp(), "Entry value is not a constant\n");
            return 0;
            }
         lowerBound = indVar->getEntry()->getLowInt();

         if (secondChildOfLastTree->getOpCode().isLoadConst())
            {
            upperBound = secondChildOfLastTree->getInt();
            }
         else if (secondChildOfLastTree->getOpCode().isLoadVar())
            {
            bound = secondChildOfLastTree;
            }
         else
            {
            if (trace())
               traceMsg(comp(), "Second child is not a const or a load\n");
            return 0;
            }
         return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals);


      default:
         if (trace())
            traceMsg(comp(), "The condition has not been implemeted\n");
         return 0;
      }

   return 0;
   }