void TR::ValidateNodeRefCountWithinBlock::validate(TR::TreeTop *firstTreeTop, TR::TreeTop *exitTreeTop) { _nodeChecklist.empty(); for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop(); tt = tt->getNextTreeTop()) { TR::Node *node = tt->getNode(); node->setLocalIndex(node->getReferenceCount()); validateRefCountPass1(node); } /** * We start again from the start of the block, and check the localIndex to * make sure it is 0. * * NOTE: Walking the tree backwards causes huge stack usage in validateRefCountPass2. */ _nodeChecklist.empty(); for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop(); tt = tt->getNextTreeTop()) { validateRefCountPass2(tt->getNode()); } }
int32_t OMR::Simplifier::perform() { vcount_t visitCount = comp()->incOrResetVisitCount(); TR::TreeTop * tt; for (tt = comp()->getStartTree(); tt; tt = tt->getNextTreeTop()) tt->getNode()->initializeFutureUseCounts(visitCount); comp()->incVisitCount(); for (tt = comp()->getStartTree(); tt; tt = tt->getNextTreeTop()) cleanupFlags(tt->getNode()); visitCount = comp()->incVisitCount(); tt = comp()->getStartTree(); while (tt) tt = simplifyExtendedBlock(tt); comp()->getFlowGraph()->removeUnreachableBlocks(); if (manager()->numPassesCompleted() == 0) manager()->incNumPassesCompleted(); return 1; }
void TR::ILValidator::checkSoundness(TR::TreeTop *start, TR::TreeTop *stop) { soundnessRule(start, start != NULL, "Start tree must exist"); soundnessRule(stop, !stop || stop->getNode() != NULL, "Stop tree must have a node"); TR::NodeChecklist treetopNodes(comp()), ancestorNodes(comp()), visitedNodes(comp()); // Can't use iterators here, because those presuppose the IL is sound. Walk trees the old-fashioned way. // for (TR::TreeTop *currentTree = start; currentTree != stop; currentTree = currentTree->getNextTreeTop()) { soundnessRule(currentTree, currentTree->getNode() != NULL, "Tree must have a node"); soundnessRule(currentTree, !treetopNodes.contains(currentTree->getNode()), "Treetop node n%dn encountered twice", currentTree->getNode()->getGlobalIndex()); treetopNodes.add(currentTree->getNode()); TR::TreeTop *next = currentTree->getNextTreeTop(); if (next) { soundnessRule(currentTree, next->getNode() != NULL, "Tree after n%dn must have a node", currentTree->getNode()->getGlobalIndex()); soundnessRule(currentTree, next->getPrevTreeTop() == currentTree, "Doubly-linked treetop list must be consistent: n%dn->n%dn<-n%dn", currentTree->getNode()->getGlobalIndex(), next->getNode()->getGlobalIndex(), next->getPrevTreeTop()->getNode()->getGlobalIndex()); } else { soundnessRule(currentTree, stop == NULL, "Reached the end of the trees after n%dn without encountering the stop tree n%dn", currentTree->getNode()->getGlobalIndex(), stop? stop->getNode()->getGlobalIndex() : 0); checkNodeSoundness(currentTree, currentTree->getNode(), ancestorNodes, visitedNodes); } } }
static bool safeToMoveGuard(TR::Block *destination, TR::TreeTop *guardCandidate, TR::TreeTop *branchDest, TR_BitVector &privArgSymRefs) { static char *disablePrivArgMovement = feGetEnv("TR_DisableRuntimeGuardPrivArgMovement"); TR::TreeTop *start = destination ? destination->getExit() : TR::comp()->getStartTree(); if (guardCandidate->getNode()->isHCRGuard()) { for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop()) { if (tt->getNode()->canGCandReturn()) return false; } } else if (guardCandidate->getNode()->isOSRGuard()) { for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop()) { if (TR::comp()->isPotentialOSRPoint(tt->getNode(), NULL, true)) return false; } } else { privArgSymRefs.empty(); for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop()) { // It's safe to move the guard if there are only priv arg stores and live monitor stores // ahead of the guard if (tt->getNode()->getOpCodeValue() != TR::BBStart && tt->getNode()->getOpCodeValue() != TR::BBEnd && !tt->getNode()->chkIsPrivatizedInlinerArg() && !(tt->getNode()->getOpCode().hasSymbolReference() && tt->getNode()->getSymbol()->holdsMonitoredObject()) && !tt->getNode()->isNopableInlineGuard()) return false; if (tt->getNode()->chkIsPrivatizedInlinerArg() && (disablePrivArgMovement || // If the priv arg is not for this guard (guardCandidate->getNode()->getInlinedSiteIndex() > -1 && // if priv arg store does not have the same inlined site index as the guard's caller, that means it is not a priv arg for this guard, // then we cannot move the guard and its priv args up across other calls' priv args tt->getNode()->getInlinedSiteIndex() != TR::comp()->getInlinedCallSite(guardCandidate->getNode()->getInlinedSiteIndex())._byteCodeInfo.getCallerIndex()))) return false; if (tt->getNode()->chkIsPrivatizedInlinerArg()) privArgSymRefs.set(tt->getNode()->getSymbolReference()->getReferenceNumber()); if (tt->getNode()->isNopableInlineGuard() && tt->getNode()->getBranchDestination() != branchDest) return false; } } return true; }
void TR_ReachingDefinitions::initializeGenAndKillSetInfo() { // For each block in the CFG build the gen and kill set for this analysis. // Go in treetop order, which guarantees that we see the correct (i.e. first) // evaluation point for each node. // TR::Block *block; int32_t blockNum = 0; bool seenException = false; TR_BitVector defsKilled(getNumberOfBits(), trMemory()->currentStackRegion()); comp()->incVisitCount(); for (TR::TreeTop *treeTop = comp()->getStartTree(); treeTop; treeTop = treeTop->getNextTreeTop()) { TR::Node *node = treeTop->getNode(); if (node->getOpCodeValue() == TR::BBStart) { block = node->getBlock(); blockNum = block->getNumber(); seenException = false; if (traceRD()) traceMsg(comp(), "\nNow generating gen and kill information for block_%d\n", blockNum); continue; } #if DEBUG if (node->getOpCodeValue() == TR::BBEnd && traceRD()) { traceMsg(comp(), " Block %d:\n", blockNum); traceMsg(comp(), " Gen set "); if (_regularGenSetInfo[blockNum]) _regularGenSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Kill set "); if (_regularKillSetInfo[blockNum]) _regularKillSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Exception Gen set "); if (_exceptionGenSetInfo[blockNum]) _exceptionGenSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); traceMsg(comp(), "\n Exception Kill set "); if (_exceptionKillSetInfo[blockNum]) _exceptionKillSetInfo[blockNum]->print(comp()); else traceMsg(comp(), "{}"); continue; } #endif initializeGenAndKillSetInfoForNode(node, defsKilled, seenException, blockNum, NULL); if (!seenException && treeHasChecks(treeTop)) seenException = true; } }
// Add an async check into a block - MUST be at block entry // void TR_AsyncCheckInsertion::insertAsyncCheck(TR::Block *block, TR::Compilation *comp, const char *counterPrefix) { TR::TreeTop *lastTree = block->getLastRealTreeTop(); TR::TreeTop *asyncTree = TR::TreeTop::create(comp, TR::Node::createWithSymRef(lastTree->getNode(), TR::asynccheck, 0, comp->getSymRefTab()->findOrCreateAsyncCheckSymbolRef(comp->getMethodSymbol()))); if (lastTree->getNode()->getOpCode().isReturn()) { TR::TreeTop *prevTree = lastTree->getPrevTreeTop(); prevTree->join(asyncTree); asyncTree->join(lastTree); } else { TR::TreeTop *nextTree = block->getEntry()->getNextTreeTop(); block->getEntry()->join(asyncTree); asyncTree->join(nextTree); } const char * const name = TR::DebugCounter::debugCounterName(comp, "asynccheck.insert/%s/(%s)/%s/block_%d", counterPrefix, comp->signature(), comp->getHotnessName(), block->getNumber()); TR::DebugCounter::prependDebugCounter(comp, name, asyncTree->getNextTreeTop()); }
TR_DominatorVerifier::TR_DominatorVerifier(TR_Dominators &findDominators) : _compilation(findDominators.comp()) { TR::StackMemoryRegion stackMemoryRegion(*trMemory()); _dominators = &findDominators; TR::CFG *cfg = comp()->getFlowGraph(); _visitCount = comp()->incVisitCount(); _numBlocks = cfg->getNumberOfNodes()+1; if (debug("traceVER")) { dumpOptDetails(comp(), "Printing out the TreeTops from DominatorVerifier\n"); TR::TreeTop *currentTree = comp()->getStartTree(); while (!(currentTree == NULL)) { comp()->getDebug()->print(comp()->getOutFile(), currentTree); currentTree = currentTree->getNextTreeTop(); } dumpOptDetails(comp(), "Printing out the CFG from DominatorVerifier\n"); if (cfg != NULL) comp()->getDebug()->print(comp()->getOutFile(), cfg); } TR_DominatorsChk expensiveAlgorithm(comp()); expensiveAlgorithmCorrect = isExpensiveAlgorithmCorrect(expensiveAlgorithm); if (expensiveAlgorithmCorrect) { if (debug("traceVER")) dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are correct\n"); } else { if (debug("traceVER")) dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are NOT correct\n"); TR_ASSERT(0, "Dominators computed by the expensive algorithm are NOT correct\n"); } bothImplementationsConsistent = areBothImplementationsConsistent(expensiveAlgorithm, findDominators); if (bothImplementationsConsistent) { if (debug("traceVER")) dumpOptDetails(comp(), "Dominators computed by the two implementations are consistent\n"); } else { if (debug("traceVER")) dumpOptDetails(comp(), "Dominators computed by the two implementations are NOT consistent\n"); TR_ASSERT(0, "Dominators computed by the two implementations are NOT consistent\n"); } }
void TR::SoundnessRule::validate(TR::ResolvedMethodSymbol *methodSymbol) { TR::TreeTop *start = methodSymbol->getFirstTreeTop(); TR::TreeTop *stop = methodSymbol->getLastTreeTop(); checkSoundnessCondition(start, start != NULL, "Start tree must exist"); checkSoundnessCondition(stop, !stop || stop->getNode() != NULL, "Stop tree must have a node"); TR::NodeChecklist treetopNodes(comp()), ancestorNodes(comp()), visitedNodes(comp()); /* NOTE: Can't use iterators here, because iterators presuppose that the IL is sound. */ for (TR::TreeTop *currentTree = start; currentTree != stop; currentTree = currentTree->getNextTreeTop()) { checkSoundnessCondition(currentTree, currentTree->getNode() != NULL, "Tree must have a node"); checkSoundnessCondition(currentTree, !treetopNodes.contains(currentTree->getNode()), "Treetop node n%dn encountered twice", currentTree->getNode()->getGlobalIndex()); treetopNodes.add(currentTree->getNode()); TR::TreeTop *next = currentTree->getNextTreeTop(); if (next) { checkSoundnessCondition(currentTree, next->getNode() != NULL, "Tree after n%dn must have a node", currentTree->getNode()->getGlobalIndex()); checkSoundnessCondition(currentTree, next->getPrevTreeTop() == currentTree, "Doubly-linked treetop list must be consistent: n%dn->n%dn<-n%dn", currentTree->getNode()->getGlobalIndex(), next->getNode()->getGlobalIndex(), next->getPrevTreeTop()->getNode()->getGlobalIndex()); } else { checkSoundnessCondition(currentTree, stop == NULL, "Reached the end of the trees after n%dn without encountering the stop tree n%dn", currentTree->getNode()->getGlobalIndex(), stop? stop->getNode()->getGlobalIndex() : 0); checkNodeSoundness(currentTree, currentTree->getNode(), ancestorNodes, visitedNodes); } } }
TR::TreeTop * OMR::TreeTop::getExtendedBlockExitTreeTop() { TR_ASSERT(self()->getNode()->getOpCodeValue() == TR::BBStart, "getExitTreeTop, is only valid for a bbStart"); TR::Block * b; TR::TreeTop * exitTT = self()->getNode()->getBlock()->getExit(), * nextTT; while ((nextTT = exitTT->getNextTreeTop()) && (b = nextTT->getNode()->getBlock(), b->isExtensionOfPreviousBlock())) exitTT = b->getExit(); return exitTT; }
inline TR::TreeTop * OMR::TreeTop::getNextRealTreeTop() { TR::TreeTop *treeTop; for (treeTop = self()->getNextTreeTop(); treeTop && treeTop->getNode() && treeTop->getNode()->getOpCode().isExceptionRangeFence(); treeTop = treeTop->getNextTreeTop()) {} return treeTop; }
void OMR::CodeGenPhase::performCleanUpFlagsPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase) { TR::TreeTop * tt; vcount_t visitCount = cg->comp()->incVisitCount(); for (tt = cg->comp()->getStartTree(); tt; tt = tt->getNextTreeTop()) { cg->cleanupFlags(tt->getNode()); } }
int32_t TR::RegDepCopyRemoval::perform() { if (!cg()->supportsPassThroughCopyToNewVirtualRegister()) return 0; discardAllNodeChoices(); TR::TreeTop *tt; for (tt = comp()->getStartTree(); tt != NULL; tt = tt->getNextTreeTop()) { TR::Node *node = tt->getNode(); switch (node->getOpCodeValue()) { case TR::BBStart: if (!node->getBlock()->isExtensionOfPreviousBlock()) { if (trace()) traceMsg(comp(), "clearing remembered node choices at start of extended block at block_%d\n", node->getBlock()->getNumber()); discardAllNodeChoices(); } if (node->getNumChildren() > 0) processRegDeps(node->getFirstChild(), tt); break; case TR::BBEnd: if (node->getNumChildren() > 0) processRegDeps(node->getFirstChild(), tt); break; default: if (node->getOpCode().isSwitch()) { TR::Node *defaultDest = node->getSecondChild(); if (defaultDest->getNumChildren() > 0) processRegDeps(defaultDest->getFirstChild(), tt); } else if (node->getOpCode().isBranch()) { int nChildren = node->getNumChildren(); // only the last child may be GlRegDeps for (int i = 0; i < nChildren - 1; i++) TR_ASSERT(node->getChild(i)->getOpCodeValue() != TR::GlRegDeps, "GlRegDeps for branch is not the last child\n"); if (nChildren > 0) { TR::Node *lastChild = node->getChild(nChildren - 1); if (lastChild->getOpCodeValue() == TR::GlRegDeps) processRegDeps(lastChild, tt); } } break; } } return 1; // a bit arbitrary... }
static TR::TreeTop *findNextLegalTreeTop(TR::Compilation *comp, TR::Block *block) { vcount_t startVisitCount = comp->getStartTree()->getNode()->getVisitCount(); TR::TreeTop * tt = NULL; for (tt = comp->getStartTree(); tt; tt = tt->getNextTreeTop()) { if (tt->getNode()->getVisitCount() < startVisitCount) break; if (tt->getNode()->getOpCodeValue() == TR::BBStart) tt = tt->getNode()->getBlock()->getExit(); } return tt; }
static bool blockHasCalls(TR::Block *block, TR::Compilation *comp) { intptrj_t visitCount = comp->incVisitCount(); TR::TreeTop *currentTree = block->getEntry(); TR::TreeTop *exitTree = block->getExit(); bool hasCalls = false; while (!hasCalls && currentTree != exitTree) { hasCalls = examineNode(currentTree->getNode(), visitCount); currentTree = currentTree->getNextTreeTop(); } return hasCalls; }
inline TR::Block * OMR::TreeTop::getEnclosingBlock( bool forward) { TR::TreeTop * tt = self(); if (forward) while (tt->getNode()->getOpCodeValue() != TR::BBEnd) { tt = tt->getNextTreeTop(); //TR_ASSERT(tt && tt->getNode(), "either tt or node on a tt null here, we will segfault"); } else while (tt->getNode()->getOpCodeValue() != TR::BBStart) { tt = tt->getPrevTreeTop(); //TR_ASSERT(tt && tt->getNode(), "either tt or node on a tt null here, we will segfault"); } return tt->getNode()->getBlock(); }
int32_t OMR::Simplifier::performOnBlock(TR::Block * block) { if (block->getEntry()) { TR::TreeTop *extendedExitTree = block->getEntry()->getExtendedBlockExitTreeTop(); vcount_t visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTop * tt = block->getEntry(); tt; tt = tt->getNextTreeTop()) { tt->getNode()->initializeFutureUseCounts(visitCount); if (tt == extendedExitTree) break; } comp()->incVisitCount(); simplifyExtendedBlock(block->getEntry()); } return 0; }
void OMR::TreeTop::removeDeadTrees(TR::Compilation * comp, TR::TreeTop* first, TR::TreeTop* last) { for (TR::TreeTop* cur = first; cur != last; cur = cur->getNextTreeTop()) { int numChildren = cur->getNode()->getNumChildren(); for (int child = numChildren-1; child>0; --child) { TR::Node * node = cur->getNode()->getChild(child); cur->insertAfter(TR::TreeTop::create(comp, TR::Node::create(TR::treetop, 1, node))); node->decReferenceCount(); } if (numChildren != 0) { TR::Node * node = cur->getNode()->getChild(0); cur->setNode(TR::Node::create(TR::treetop, 1, node)); node->decReferenceCount(); } } }
void TR_ExpressionsSimplification::invalidateCandidates() { _visitCount = comp()->incVisitCount(); if (trace()) { traceMsg(comp(), "Checking which candidates may be invalidated\n"); ListIterator<TR::TreeTop> treeTops(_candidateTTs); for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext()) { traceMsg(comp(), " Candidate treetop: %p node: %p\n", treeTop, treeTop->getNode()); } } TR_ScratchList<TR::Block> blocksInLoop(trMemory()); _currentRegion->getBlocks(&blocksInLoop); ListIterator<TR::Block> blocks(&blocksInLoop); for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock = blocks.getNext()) { TR::TreeTop *tt = currentBlock->getEntry(); TR::TreeTop *exitTreeTop = currentBlock->getExit(); while (tt != exitTreeTop) { TR::Node *currentNode = tt->getNode(); if (trace()) traceMsg(comp(), "Looking at treeTop [%p]\n", currentNode); removeCandidate(currentNode, tt); tt = tt->getNextTreeTop(); } } removeUnsupportedCandidates(); }
//---------------------------- collecting ref info at the beginning ----------------------------------------- void TR_LocalLiveRangeReduction::collectInfo(TR::TreeTop *entryTree,TR::TreeTop *exitTree) { TR::TreeTop *currentTree = entryTree; TR_TreeRefInfo *treeRefInfo; int32_t i = 0; int32_t maxRefCount = 0; vcount_t visitCount = comp()->getVisitCount(); while (!(currentTree == exitTree)) { treeRefInfo = new (trStackMemory()) TR_TreeRefInfo(currentTree, trMemory()); collectRefInfo(treeRefInfo, currentTree->getNode(),visitCount,&maxRefCount); _treesRefInfoArray[i++] = treeRefInfo; initPotentialDeps(treeRefInfo); treeRefInfo->resetSyms(); populatePotentialDeps(treeRefInfo,treeRefInfo->getTreeTop()->getNode()); currentTree = currentTree->getNextTreeTop(); } comp()->setVisitCount(visitCount+maxRefCount); }
bool TR_LocalLiveRangeReduction::moveTreeBefore(TR_TreeRefInfo *treeToMove,TR_TreeRefInfo *anchor,int32_t passNumber) { TR::TreeTop *treeToMoveTT = treeToMove->getTreeTop(); TR::TreeTop *anchorTT = anchor->getTreeTop(); if (treeToMoveTT->getNextRealTreeTop() == anchorTT) { addDepPair(treeToMove, anchor); return false; } if (!performTransformation(comp(), "%sPass %d: moving tree [%p] before Tree %p\n", OPT_DETAILS, passNumber, treeToMoveTT->getNode(),anchorTT->getNode())) return false; // printf("Moving [%p] before Tree %p\n", treeToMoveTT->getNode(),anchorTT->getNode()); //changing location in block TR::TreeTop *origPrevTree = treeToMoveTT->getPrevTreeTop(); TR::TreeTop *origNextTree = treeToMoveTT->getNextTreeTop(); origPrevTree->setNextTreeTop(origNextTree); origNextTree->setPrevTreeTop(origPrevTree); TR::TreeTop *prevTree = anchorTT->getPrevTreeTop(); anchorTT->setPrevTreeTop(treeToMoveTT); treeToMoveTT->setNextTreeTop(anchorTT); treeToMoveTT->setPrevTreeTop(prevTree); prevTree->setNextTreeTop(treeToMoveTT); //UPDATE REFINFO //find locations of treeTops in TreeTopsRefInfo array //startIndex points to the currentTree that has moved //endIndex points to the treeTop after which we moved the tree (nextTree) int32_t startIndex = getIndexInArray(treeToMove); int32_t endIndex = getIndexInArray(anchor)-1; int32_t i=0; for ( i = startIndex+1; i<= endIndex ; i++) { TR_TreeRefInfo *currentTreeRefInfo = _treesRefInfoArray[i]; List<TR::Node> *firstList = currentTreeRefInfo->getFirstRefNodesList(); List<TR::Node> *midList = currentTreeRefInfo->getMidRefNodesList(); List<TR::Node> *lastList = currentTreeRefInfo->getLastRefNodesList(); List<TR::Node> *M_firstList = treeToMove->getFirstRefNodesList(); List<TR::Node> *M_midList = treeToMove->getMidRefNodesList(); List<TR::Node> *M_lastList = treeToMove->getLastRefNodesList(); if (trace()) { traceMsg(comp(),"Before move:\n"); printRefInfo(treeToMove); printRefInfo(currentTreeRefInfo); } updateRefInfo(treeToMove->getTreeTop()->getNode(), currentTreeRefInfo, treeToMove , false); treeToMove->resetSyms(); currentTreeRefInfo->resetSyms(); populatePotentialDeps(currentTreeRefInfo,currentTreeRefInfo->getTreeTop()->getNode()); populatePotentialDeps(treeToMove,treeToMove->getTreeTop()->getNode()); if (trace()) { traceMsg(comp(),"After move:\n"); printRefInfo(treeToMove); printRefInfo(currentTreeRefInfo); traceMsg(comp(),"------------------------\n"); } } TR_TreeRefInfo *temp = _treesRefInfoArray[startIndex]; for (i = startIndex; i< endIndex ; i++) { _treesRefInfoArray[i] = _treesRefInfoArray[i+1]; } _treesRefInfoArray[endIndex]=temp; #if defined(DEBUG) || defined(PROD_WITH_ASSUMES) if (!(comp()->getOption(TR_EnableParanoidOptCheck) || debug("paranoidOptCheck"))) return true; //verifier { TR::StackMemoryRegion stackMemoryRegion(*trMemory()); vcount_t visitCount = comp()->getVisitCount(); int32_t maxRefCount = 0; TR::TreeTop *tt; TR_TreeRefInfo **treesRefInfoArrayTemp = (TR_TreeRefInfo**)trMemory()->allocateStackMemory(_numTreeTops*sizeof(TR_TreeRefInfo*)); memset(treesRefInfoArrayTemp, 0, _numTreeTops*sizeof(TR_TreeRefInfo*)); TR_TreeRefInfo *treeRefInfoTemp; //collect info for ( int32_t i = 0; i<_numTreeTops-1; i++) { tt =_treesRefInfoArray[i]->getTreeTop(); treeRefInfoTemp = new (trStackMemory()) TR_TreeRefInfo(tt, trMemory()); collectRefInfo(treeRefInfoTemp, tt->getNode(),visitCount,&maxRefCount); treesRefInfoArrayTemp[i] = treeRefInfoTemp; } comp()->setVisitCount(visitCount+maxRefCount); for ( int32_t i = 0; i<_numTreeTops-1; i++) { if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getFirstRefNodesList(),_treesRefInfoArray[i]->getFirstRefNodesList())) { printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]); TR_ASSERT(0,"fail to verify firstRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode()); } if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getMidRefNodesList(),_treesRefInfoArray[i]->getMidRefNodesList())) { printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]); TR_ASSERT(0,"fail to verify midRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode()); } if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getLastRefNodesList(),_treesRefInfoArray[i]->getLastRefNodesList())) { printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]); TR_ASSERT(0,"fail to verify lastRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode()); } } } // scope of the stack memory region #endif return true; }
TR_BitVector * addVeryRefinedCallAliasSets(TR::ResolvedMethodSymbol * methodSymbol, TR_BitVector * aliases, List<void> * methodsPeeked) { TR::Compilation *comp = TR::comp(); void * methodId = methodSymbol->getResolvedMethod()->getPersistentIdentifier(); if (methodsPeeked->find(methodId)) { // This can't be allocated into the alias region as it must be accessed across optimizations TR_BitVector *heapAliases = new (comp->trHeapMemory()) TR_BitVector(comp->getSymRefCount(), comp->trMemory(), heapAlloc, growable); *heapAliases |= *aliases; return heapAliases; } // stop if the peek is getting very deep // if (methodsPeeked->getSize() >= PEEK_THRESHOLD) return 0; methodsPeeked->add(methodId); dumpOptDetails(comp, "O^O REFINING ALIASES: Peeking into the IL to refine aliases \n"); if (!methodSymbol->getResolvedMethod()->genMethodILForPeeking(methodSymbol, comp, true)) return 0; TR::SymbolReferenceTable * symRefTab = comp->getSymRefTab(); for (TR::TreeTop * tt = methodSymbol->getFirstTreeTop(); tt; tt = tt->getNextTreeTop()) { TR::Node *node = tt->getNode(); if (node->getOpCode().isResolveCheck()) return 0; if ((node->getOpCodeValue() == TR::treetop) || (node->getOpCodeValue() == TR::compressedRefs) || node->getOpCode().isCheck()) node = node->getFirstChild(); if (node->getOpCode().isStore()) { TR::SymbolReference * symRefInCallee = node->getSymbolReference(), * symRefInCaller; TR::Symbol * symInCallee = symRefInCallee->getSymbol(); TR::DataType type = symInCallee->getDataType(); if (symInCallee->isShadow()) { if (symInCallee->isArrayShadowSymbol()) symRefInCaller = symRefTab->getSymRef(symRefTab->getArrayShadowIndex(type)); else if (symInCallee->isArrayletShadowSymbol()) symRefInCaller = symRefTab->getSymRef(symRefTab->getArrayletShadowIndex(type)); else symRefInCaller = symRefTab->findShadowSymbol(symRefInCallee->getOwningMethod(comp), symRefInCallee->getCPIndex(), type); if (symRefInCaller) { if (symRefInCaller->reallySharesSymbol(comp)) symRefInCaller->setSharedShadowAliases(aliases, symRefTab); aliases->set(symRefInCaller->getReferenceNumber()); } } else if (symInCallee->isStatic()) { symRefInCaller = symRefTab->findStaticSymbol(symRefInCallee->getOwningMethod(comp), symRefInCallee->getCPIndex(), type); if (symRefInCaller) { if (symRefInCaller->reallySharesSymbol(comp)) symRefInCaller->setSharedStaticAliases(aliases, symRefTab); else aliases->set(symRefInCaller->getReferenceNumber()); } } } else if (node->getOpCode().isCall()) { if (node->getOpCode().isCallIndirect()) return 0; TR::ResolvedMethodSymbol * calleeSymbol = node->getSymbol()->getResolvedMethodSymbol(); if (!calleeSymbol) return 0; TR_ResolvedMethod * calleeMethod = calleeSymbol->getResolvedMethod(); if (!calleeMethod->isCompilable(comp->trMemory()) || calleeMethod->isJNINative()) return 0; if (!addVeryRefinedCallAliasSets(calleeSymbol, aliases, methodsPeeked)) return 0; } else if (node->getOpCodeValue() == TR::monent) return 0; } // This can't be allocated into the alias region as it must be accessed across optimizations TR_BitVector *heapAliases = new (comp->trHeapMemory()) TR_BitVector(comp->getSymRefCount(), comp->trMemory(), heapAlloc, growable); *heapAliases |= *aliases; return heapAliases; }
int32_t TR_CatchBlockRemover::perform() { TR::CFG *cfg = comp()->getFlowGraph(); if (cfg == NULL) { if (trace()) traceMsg(comp(), "Can't do Catch Block Removal, no CFG\n"); return 0; } if (trace()) traceMsg(comp(), "Starting Catch Block Removal\n"); bool thereMayBeRemovableCatchBlocks = false; { TR::StackMemoryRegion stackMemoryRegion(*trMemory()); TR::Block *block; ListIterator<TR::CFGEdge> edgeIterator; // Go through all blocks that have exception successors and see if any of them // are not reached. Mark each of these edges with a visit count so they can // be identified later. // vcount_t visitCount = comp()->incOrResetVisitCount(); TR::CFGNode *cfgNode; for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext()) { if (cfgNode->getExceptionSuccessors().empty()) continue; block = toBlock(cfgNode); uint32_t reachedExceptions = 0; TR::TreeTop *treeTop; for (treeTop = block->getEntry(); treeTop != block->getExit(); treeTop = treeTop->getNextTreeTop()) { reachedExceptions |= treeTop->getNode()->exceptionsRaised(); if (treeTop->getNode()->getOpCodeValue() == TR::monexitfence) // for live monitor metadata reachedExceptions |= TR::Block::CanCatchMonitorExit; } if (reachedExceptions & TR::Block::CanCatchUserThrows) continue; for (auto edge = block->getExceptionSuccessors().begin(); edge != block->getExceptionSuccessors().end();) { TR::CFGEdge * current = *(edge++); TR::Block *catchBlock = toBlock(current->getTo()); if (catchBlock->isOSRCodeBlock() || catchBlock->isOSRCatchBlock()) continue; if (!reachedExceptions && performTransformation(comp(), "%sRemove redundant exception edge from block_%d at [%p] to catch block_%d at [%p]\n", optDetailString(), block->getNumber(), block, catchBlock->getNumber(), catchBlock)) { cfg->removeEdge(block, catchBlock); thereMayBeRemovableCatchBlocks = true; } else { if (!catchBlock->canCatchExceptions(reachedExceptions)) { current->setVisitCount(visitCount); thereMayBeRemovableCatchBlocks = true; } } } } bool edgesRemoved = false; // Now look to see if there are any catch blocks for which all exception // predecessors have the visit count set. If so, the block is unreachable and // can be removed. // If only some of the exception predecessors are marked, these edges are // left in place to identify the try/catch structure properly. // while (thereMayBeRemovableCatchBlocks) { thereMayBeRemovableCatchBlocks = false; for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext()) { if (cfgNode->getExceptionPredecessors().empty()) continue; auto edgeIt = cfgNode->getExceptionPredecessors().begin(); for (; edgeIt != cfgNode->getExceptionPredecessors().end(); ++edgeIt) { if ((*edgeIt)->getVisitCount() != visitCount) break; } if (edgeIt == cfgNode->getExceptionPredecessors().end() && performTransformation(comp(), "%sRemove redundant catch block_%d at [%p]\n", optDetailString(), cfgNode->getNumber(), cfgNode)) { while (!cfgNode->getExceptionPredecessors().empty()) { cfg->removeEdge(cfgNode->getExceptionPredecessors().front()); } edgesRemoved = true; thereMayBeRemovableCatchBlocks = true; } } } // Any transformations invalidate use/def and value number information // if (edgesRemoved) { optimizer()->setUseDefInfo(NULL); optimizer()->setValueNumberInfo(NULL); requestOpt(OMR::treeSimplification, true); } } // scope of the stack memory region if (trace()) traceMsg(comp(), "\nEnding Catch Block Removal\n"); return 1; // actual cost }
void TR::DeadTreesElimination::prePerformOnBlocks() { _cannotBeEliminated = false; _delayedRegStores = false; _targetTrees.deleteAll(); // Walk through all the blocks to remove trivial dead trees of the form // treetop // => node // The problem with these trees is in the scenario where the earlier use // of 'node' is also dead. However, our analysis won't find that because // the reference count is > 1. vcount_t visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTop *tt = comp()->getStartTree(); tt != 0; tt = tt->getNextTreeTop()) { bool removed = false; TR::Node *node = tt->getNode(); if (node->getOpCodeValue() == TR::treetop && node->getFirstChild()->getVisitCount() == visitCount && performTransformation(comp(), "%sRemove trivial dead tree: %p\n", optDetailString(), node)) { TR::TransformUtil::removeTree(comp(), tt); removed = true; } else { if (node->getOpCode().isCheck() && node->getFirstChild()->getOpCode().isCall() && node->getFirstChild()->getReferenceCount() == 1 && node->getFirstChild()->getSymbolReference()->getSymbol()->isResolvedMethod() && node->getFirstChild()->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree() && performTransformation(comp(), "%sRemove dead check of side-effect free call: %p\n", optDetailString(), node)) { TR::TransformUtil::removeTree(comp(), tt); removed = true; } } if (removed && tt->getNextTreeTop()->getNode()->getOpCodeValue() == TR::Goto && tt->getPrevTreeTop()->getNode()->getOpCodeValue() == TR::BBStart && !tt->getPrevTreeTop()->getNode()->getBlock()->isExtensionOfPreviousBlock()) { requestOpt(OMR::redundantGotoElimination, tt->getEnclosingBlock()); } if (node->getVisitCount() >= visitCount) continue; TR::TransformUtil::recursivelySetNodeVisitCount(tt->getNode(), visitCount); } // If the last use of an iRegLoad has been removed, then remove the node from // the BBStart and remove the corresponding dependency node from each of the block's // predecessors. // while (1) { bool glRegDepRemoved = false; for (TR::Block * b = comp()->getStartBlock(); b; b = b->getNextBlock()) { TR::TreeTop * startTT = b->getEntry(); TR::Node * startNode = startTT->getNode(); if (startNode->getNumChildren() > 0 && !debug("disableEliminationOfGlRegDeps")) { TR::Node * glRegDeps = startNode->getFirstChild(); TR_ASSERT(glRegDeps->getOpCodeValue() == TR::GlRegDeps, "expected TR::GlRegDeps"); for (int32_t i = glRegDeps->getNumChildren() - 1; i >= 0; --i) { TR::Node * dep = glRegDeps->getChild(i); if (dep->getReferenceCount() == 1 && (!dep->getOpCode().isFloatingPoint() || cg()->getSupportsJavaFloatSemantics()) && performTransformation(comp(), "%sRemove GlRegDep : %p\n", optDetailString(), glRegDeps->getChild(i))) { glRegDeps->removeChild(i); glRegDepRemoved = true; TR_GlobalRegisterNumber registerNum = dep->getGlobalRegisterNumber(); for (auto e = b->getPredecessors().begin(); e != b->getPredecessors().end(); ++e) { TR::Block * pred = toBlock((*e)->getFrom()); if (pred == comp()->getFlowGraph()->getStart()) continue; TR::Node * parent = pred->getLastRealTreeTop()->getNode(); if ( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) { for (int32_t j = parent->getCaseIndexUpperBound() - 1; j > 0; --j) { TR::Node * caseNode = parent->getChild(j); TR_ASSERT(caseNode->getOpCode().isCase() || caseNode->getOpCodeValue() == TR::branch, "having problems navigating a switch"); if (caseNode->getBranchDestination() == startTT && caseNode->getNumChildren() > 0 && 0) // can't do this now that all glRegDeps are hung off the default branch removeGlRegDep(caseNode, registerNum, pred, this); } } else if (!parent->getOpCode().isReturn() && parent->getOpCodeValue() != TR::igoto && !( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) && !(parent->getOpCodeValue()==TR::treetop && parent->getFirstChild()->getOpCode().isCall() && parent->getFirstChild()->getOpCode().isIndirect())) { if (pred->getNextBlock() == b) parent = pred->getExit()->getNode(); removeGlRegDep(parent, registerNum, pred, this); } } } } if (glRegDeps->getNumChildren() == 0) startNode->removeChild(0); } } if (!glRegDepRemoved) break; } }
/** * A runtime guard block may have monitor stores and privarg stores along with the guard * it self. This method will rearrange these stores and split the block, managing any * uncommoning necessary for eventual block order. * * The provided block will become the privarg block, containing any privarg stores and additonal * temps for uncommoning. It must be evaluated first. The returned block will contain monitor * stores and the guard. If no split is required, the provided block will be returned. * * @param comp Compilation object * @param block Block to manipulate * @param cfg Current CFG * @return The block containing the guard. */ static TR::Block* splitRuntimeGuardBlock(TR::Compilation *comp, TR::Block* block, TR::CFG *cfg) { TR::NodeChecklist checklist(comp); TR::TreeTop *start = block->getFirstRealTreeTop(); TR::TreeTop *guard = block->getLastRealTreeTop(); TR::TreeTop *firstPrivArg = NULL; TR::TreeTop *firstMonitor = NULL; // Manage the unexpected case that monitors and priv args are reversed bool privThenMonitor = false; TR_ASSERT(isMergeableGuard(guard->getNode()), "last node must be guard %p", guard->getNode()); // Search for privarg and monitor stores // Only commoned nodes under the guard are required to be anchored, due to the guard being // evaluted before the monitor stores later on bool anchoredTemps = false; for (TR::TreeTop *tt = start; tt && tt->getNode()->getOpCodeValue() != TR::BBEnd; tt = tt->getNextTreeTop()) { TR::Node * node = tt->getNode(); if (node->getOpCode().hasSymbolReference() && node->getSymbol()->holdsMonitoredObject()) firstMonitor = firstMonitor == NULL ? tt : firstMonitor; else if (node->chkIsPrivatizedInlinerArg()) { if (firstPrivArg == NULL) { firstPrivArg = tt; privThenMonitor = (firstMonitor == NULL); } } else if (isMergeableGuard(node)) anchoredTemps |= anchorCommonNodes(comp, node, start, checklist); else TR_ASSERT(0, "Node other than monitor or privarg store %p before runtime guard", node); } // If there are monitors then privargs, they must be swapped around, such that all privargs are // evaluated first if (firstPrivArg && firstMonitor && !privThenMonitor) { TR::TreeTop *monitorEnd = firstPrivArg->getPrevTreeTop(); firstMonitor->getPrevTreeTop()->join(firstPrivArg); guard->getPrevTreeTop()->join(firstMonitor); monitorEnd->join(guard); } // If there were temps created or privargs in the block, perform a split TR::TreeTop *split = NULL; if (firstPrivArg) split = firstMonitor ? firstMonitor : guard; else if (anchoredTemps) split = start; if (split) return block->split(split, cfg, true /* fixupCommoning */, false /* copyExceptionSuccessors */); return block; }
TR_LocalAnalysisInfo::TR_LocalAnalysisInfo(TR::Compilation *c, bool t) : _compilation(c), _trace(t), _trMemory(c->trMemory()) { _numNodes = -1; #if 0 // somehow stops PRE from happening // We are going to increment visit count for every tree so can reach max // for big methods quickly. Perhaps can improve containsCall() in the future. comp()->resetVisitCounts(0); #endif if (comp()->getVisitCount() > HIGH_VISIT_COUNT) { _compilation->resetVisitCounts(1); dumpOptDetails(comp(), "\nResetting visit counts for this method before LocalAnalysisInfo\n"); } TR::CFG *cfg = comp()->getFlowGraph(); _numBlocks = cfg->getNextNodeNumber(); TR_ASSERT(_numBlocks > 0, "Local analysis, node numbers not assigned"); // Allocate information on the stack. It is the responsibility of the user // of this class to determine the life of the information by using jitStackMark // and jitStackRelease. // //_blocksInfo = (TR::Block **) trMemory()->allocateStackMemory(_numBlocks*sizeof(TR::Block *)); //memset(_blocksInfo, 0, _numBlocks*sizeof(TR::Block *)); TR::TreeTop *currentTree = comp()->getStartTree(); // Only do this if not done before; typically this would be done in the // first call to this method through LocalTransparency and would NOT // need to be re-done by LocalAnticipatability. // if (_numNodes < 0) { _optimizer = comp()->getOptimizer(); int32_t numBuckets; int32_t numNodes = comp()->getNodeCount(); if (numNodes < 10) numBuckets = 1; else if (numNodes < 100) numBuckets = 7; else if (numNodes < 500) numBuckets = 31; else if (numNodes < 3000) numBuckets = 127; else if (numNodes < 6000) numBuckets = 511; else numBuckets = 1023; // Allocate hash table for matching expressions // HashTable hashTable(numBuckets, comp()); _hashTable = &hashTable; // Null checks are handled differently as the criterion for // commoning a null check is different than that used for // other nodes; for a null check, the null check reference is // important (and not the actual indirect access itself) // _numNullChecks = 0; while (currentTree) { if (currentTree->getNode()->getOpCodeValue() == TR::NULLCHK) //////if (currentTree->getNode()->getOpCode().isNullCheck()) _numNullChecks++; currentTree = currentTree->getNextTreeTop(); } if (_numNullChecks == 0) _nullCheckNodesAsArray = NULL; else { _nullCheckNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNullChecks*sizeof(TR::Node*)); memset(_nullCheckNodesAsArray, 0, _numNullChecks*sizeof(TR::Node*)); } currentTree = comp()->getStartTree(); int32_t symRefCount = comp()->getSymRefCount(); _checkSymbolReferences = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc); _numNodes = 1; _numNullChecks = 0; // This loop counts all the nodes that are going to take part in PRE. // This is a computation intensive loop as we check if the node that // is syntactically equivalent to a given node has been seen before // and if so we use the local index of the original node (that // is syntactically equivalent to the given node). Could be improved // in complexity with value numbering at some stage. // _visitCount = comp()->incVisitCount(); while (currentTree) { TR::Node *firstNodeInTree = currentTree->getNode(); TR::ILOpCode *opCode = &firstNodeInTree->getOpCode(); if (((firstNodeInTree->getOpCodeValue() == TR::treetop) || (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) && (firstNodeInTree->getFirstChild()->getOpCode().isStore())) { firstNodeInTree->setLocalIndex(-1); if (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor()) firstNodeInTree->getSecondChild()->setLocalIndex(-1); firstNodeInTree = firstNodeInTree->getFirstChild(); opCode = &firstNodeInTree->getOpCode(); } // This call finds nodes with opcodes that are supported by PRE // in this subtree; this accounts for all opcodes other than stores/checks // which are handled later on below // bool firstNodeInTreeHasCallsInStoreLhs = false; countSupportedNodes(firstNodeInTree, NULL, firstNodeInTreeHasCallsInStoreLhs); if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) || opCode->isCheck()) { int32_t oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree); // // Return value 0 denotes that the node contains some sub-expression // that cannot participate in PRE; e.g. a call or a new // // Return value -1 denotes that the node can participate in PRE // but did not match with any existing expression seen so far // // Any other return value (should be positive always) denotes that // the node can participate in PRE and has been matched with a seen // expression having local index == return value // if (oldExpressionOnRhs == -1) { if (trace()) { traceMsg(comp(), "\nExpression #%d is : \n", _numNodes); comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree, 6, true); } firstNodeInTree->setLocalIndex(_numNodes++); } else firstNodeInTree->setLocalIndex(oldExpressionOnRhs); if (opCode->isCheck() && (firstNodeInTree->getFirstChild()->getOpCode().isStore() && !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm())) { int oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree->getFirstChild()); if (oldExpressionOnRhs == -1) { if (trace()) { traceMsg(comp(), "\nExpression #%d is : \n", _numNodes); comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree->getFirstChild(), 6, true); } firstNodeInTree->getFirstChild()->setLocalIndex(_numNodes++); } else firstNodeInTree->getFirstChild()->setLocalIndex(oldExpressionOnRhs); } } else firstNodeInTree->setLocalIndex(-1); currentTree = currentTree->getNextTreeTop(); } } _supportedNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNodes*sizeof(TR::Node*)); memset(_supportedNodesAsArray, 0, _numNodes*sizeof(TR::Node*)); _checkExpressions = new (trStackMemory()) TR_BitVector(_numNodes, trMemory(), stackAlloc); //_checkExpressions.init(_numNodes, trMemory(), stackAlloc); // This loop goes through the trees and collects the nodes // that would take part in PRE. Each node has its local index set to // the bit position that it occupies in the bit vector analyses. // currentTree = comp()->getStartTree(); _visitCount = comp()->incVisitCount(); while (currentTree) { TR::Node *firstNodeInTree = currentTree->getNode(); TR::ILOpCode *opCode = &firstNodeInTree->getOpCode(); if (((firstNodeInTree->getOpCodeValue() == TR::treetop) || (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) && (firstNodeInTree->getFirstChild()->getOpCode().isStore())) { firstNodeInTree = firstNodeInTree->getFirstChild(); opCode = &firstNodeInTree->getOpCode(); } collectSupportedNodes(firstNodeInTree, NULL); if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) || opCode->isCheck()) { if (opCode->isCheck()) { _checkSymbolReferences->set(firstNodeInTree->getSymbolReference()->getReferenceNumber()); _checkExpressions->set(firstNodeInTree->getLocalIndex()); } if (!_supportedNodesAsArray[firstNodeInTree->getLocalIndex()]) _supportedNodesAsArray[firstNodeInTree->getLocalIndex()] = firstNodeInTree; if (opCode->isCheck() && firstNodeInTree->getFirstChild()->getOpCode().isStore() && !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm() && !_supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()]) _supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()] = firstNodeInTree->getFirstChild(); } currentTree = currentTree->getNextTreeTop(); } //initialize(toBlock(cfg->getStart())); }
void TR_ExpressionsSimplification::simplifyInvariantLoopExpressions(ListIterator<TR::Block> &blocks) { // Need to locate the induction variable of the loop // LoopInfo *loopInfo = findLoopInfo(_currentRegion); if (trace()) { if (!loopInfo) { traceMsg(comp(), "Accurate loop info is not found, cannot carry out summation reduction\n"); } else { traceMsg(comp(), "Accurate loop info has been found, will try to carry out summation reduction\n"); if (loopInfo->getBoundaryNode()) { traceMsg(comp(), "Variable iterations from node %p has not been handled\n",loopInfo->getBoundaryNode()); } else { traceMsg(comp(), "Natural Loop %p will run %d times\n", _currentRegion, loopInfo->getNumIterations()); } } } // Initialize the list of candidates // _candidateTTs = new (trStackMemory()) TR_ScratchList<TR::TreeTop>(trMemory()); for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock = blocks.getNext()) { if (trace()) traceMsg(comp(), "Analyzing block #%d, which must be executed once per iteration\n", currentBlock->getNumber()); // Scan through each node in the block // TR::TreeTop *tt = currentBlock->getEntry(); TR::TreeTop *exitTreeTop = currentBlock->getExit(); while (tt != exitTreeTop) { TR::Node *currentNode = tt->getNode(); if (trace()) traceMsg(comp(), "Analyzing tree top node %p\n", currentNode); if (loopInfo) { // requires loop info for the number of iterations setSummationReductionCandidates(currentNode, tt); } setStoreMotionCandidates(currentNode, tt); tt = tt->getNextTreeTop(); } } // New code: without using any UDI // walk through the trees in the loop // to invalidate the candidates // if (!_supportedExpressions) { _supportedExpressions = new (trStackMemory()) TR_BitVector(comp()->getNodeCount(), trMemory(), stackAlloc, growable); } invalidateCandidates(); ListIterator<TR::TreeTop> treeTops(_candidateTTs); for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext()) { if (trace()) traceMsg(comp(), "Candidate TreeTop: %p, Node:%p\n", treeTop, treeTop->getNode()); bool usedCandidate = false; bool isPreheaderBlockInvalid = false; if (loopInfo) { usedCandidate = tranformSummationReductionCandidate(treeTop, loopInfo, &isPreheaderBlockInvalid); } if (isPreheaderBlockInvalid) { break; } if (!usedCandidate) { tranformStoreMotionCandidate(treeTop, &isPreheaderBlockInvalid); } if (isPreheaderBlockInvalid) { break; } } }
TR_ExpressionsSimplification::LoopInfo* TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region) { ListIterator<TR::CFGEdge> exitEdges(®ion->getExitEdges()); if (region->getExitEdges().getSize() != 1) { if (trace()) traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n"); return 0; } TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom()); if (!exitNode->getStructure()->asBlock()) { if (trace()) traceMsg(comp(), "The exit block can't be found\n"); return 0; } TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock(); TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode(); if (trace()) { traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber()); traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock); } if (!lastTreeInExitBlock->getOpCode().isBranch()) { if (trace()) traceMsg(comp(), "The branch node couldn't be found\n"); return 0; } if (lastTreeInExitBlock->getNumChildren() < 2) { if (trace()) traceMsg(comp(), "The branch node has less than 2 children\n"); return 0; } TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild(); TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild(); if (!firstChildOfLastTree->getOpCode().hasSymbolReference()) { if (trace()) traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree); return 0; } TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference(); if (trace()) traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol()); // Locate the induction variable that matches with the exit node symbol // TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef); if (!indVar) return 0; if (!indVar->getIncr()->asIntConst()) { if (trace()) traceMsg(comp(), "Increment is not a constant\n"); return 0; } int32_t increment = indVar->getIncr()->getLowInt(); _visitCount = comp()->incVisitCount(); bool indVarWrittenAndUsedUnexpectedly = false; if (firstChildOfLastTree->getReferenceCount() > 1) { TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry(); TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit(); bool loadSeen = false; while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock) { TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode(); if (checkForLoad(cursorNode, firstChildOfLastTree)) loadSeen = true; if (!cursorNode->getOpCode().isStore() && (cursorNode->getNumChildren() > 0)) cursorNode = cursorNode->getFirstChild(); if (cursorNode->getOpCode().isStore() && (cursorNode->getSymbolReference() == firstChildSymRef)) { indVarWrittenAndUsedUnexpectedly = true; if ((cursorNode->getFirstChild() == firstChildOfLastTree) || !loadSeen) indVarWrittenAndUsedUnexpectedly = false; else break; } cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop(); } } if (indVarWrittenAndUsedUnexpectedly) { return 0; } int32_t lowerBound; int32_t upperBound = 0; TR::Node *bound = 0; bool equals = false; switch(lastTreeInExitBlock->getOpCodeValue()) { case TR::ificmplt: case TR::ificmpgt: equals = true; case TR::ificmple: case TR::ificmpge: if (!(indVar->getEntry() && indVar->getEntry()->asIntConst())) { if (trace()) traceMsg(comp(), "Entry value is not a constant\n"); return 0; } lowerBound = indVar->getEntry()->getLowInt(); if (secondChildOfLastTree->getOpCode().isLoadConst()) { upperBound = secondChildOfLastTree->getInt(); } else if (secondChildOfLastTree->getOpCode().isLoadVar()) { bound = secondChildOfLastTree; } else { if (trace()) traceMsg(comp(), "Second child is not a const or a load\n"); return 0; } return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals); default: if (trace()) traceMsg(comp(), "The condition has not been implemeted\n"); return 0; } return 0; }
static bool isSafeToReplaceNode(TR::Node *currentNode, TR::TreeTop *curTreeTop, bool *seenConditionalBranch, vcount_t visitCount, TR::Compilation *comp, List<OMR::TreeInfo> *targetTrees, bool &cannotBeEliminated, LongestPathMap &longestPaths) { LexicalTimer tx("safeToReplace", comp->phaseTimer()); TR::SparseBitVector symbolReferencesInNode(comp->allocator()); // Collect all symbols that could be killed between here and the next reference // comp->incVisitCount(); //////vcount_t visitCount = comp->getVisitCount(); int32_t numDeadSubNodes = 0; bool cantMoveUnderBranch = false; bool seenInternalPointer = false; bool seenArraylet = false; int32_t curMaxHeight = getLongestPathOfDAG(currentNode, longestPaths); collectSymbolReferencesInNode(currentNode, symbolReferencesInNode, &numDeadSubNodes, visitCount, comp, &seenInternalPointer, &seenArraylet, &cantMoveUnderBranch); bool registersScarce = comp->cg()->areAssignableGPRsScarce(); #ifdef J9_PROJECT_SPECIFIC bool isBCD = currentNode->getType().isBCD(); #endif if (numDeadSubNodes > 1 && #ifdef J9_PROJECT_SPECIFIC !isBCD && #endif registersScarce) { return false; } OMR::TreeInfo *curTreeInfo = findOrCreateTreeInfo(curTreeTop, targetTrees, comp); int32_t curHeight = curTreeInfo->getHeight()+curMaxHeight; if (curHeight > MAX_ALLOWED_HEIGHT) { cannotBeEliminated = true; return false; } // TEMPORARY // Don't allow removal of a node containing an unresolved reference if // the gcOnResolve option is set // bool isUnresolvedReference = currentNode->hasUnresolvedSymbolReference(); if (isUnresolvedReference) return false; bool mayBeVolatileReference = currentNode->mightHaveVolatileSymbolReference(); //if (mayBeVolatileReference) // return false; // Now scan forwards through the trees looking for the next use and checking // to see if any symbols in the subtree are getting modified; if so it is not // safe to replace the node at its next use. // comp->incVisitCount(); for (TR::TreeTop *treeTop = curTreeTop->getNextTreeTop(); treeTop; treeTop = treeTop->getNextTreeTop()) { TR::Node *node = treeTop->getNode(); if(node->getOpCodeValue() == TR::treetop) node = node->getFirstChild(); if (node->getOpCodeValue() == TR::BBStart && !node->getBlock()->isExtensionOfPreviousBlock()) return true; if (cantMoveUnderBranch && (node->getOpCode().isBranch() || node->getOpCode().isJumpWithMultipleTargets())) return false; if (node->canGCandReturn() && seenInternalPointer) return false; int32_t tempHeight = 0; int32_t maxHeight = 0; bool canMoveIfVolatile = true; if (containsNode(node, currentNode, visitCount, comp, &tempHeight, &maxHeight, canMoveIfVolatile)) { // TEMPORARY // Disable moving an unresolved reference down to the middle of a // JNI call, until the resolve helper is fixed properly // if (isUnresolvedReference && node->getFirstChild()->getOpCode().isCall() && node->getFirstChild()->getSymbol()->castToMethodSymbol()->isJNI()) return false; if (curTreeInfo) { OMR::TreeInfo *treeInfo = findOrCreateTreeInfo(treeTop, targetTrees, comp); int32_t height = treeInfo->getHeight(); int32_t maxHeightUsed = maxHeight; if (maxHeightUsed < curMaxHeight) maxHeightUsed = curMaxHeight; if (height < curTreeInfo->getHeight()) height = curTreeInfo->getHeight(); height++; if ((height+maxHeightUsed) > MAX_ALLOWED_HEIGHT) { cannotBeEliminated = true; return false; } treeInfo->setHeight(height); } return true; } if (mayBeVolatileReference && !canMoveIfVolatile) return false; if ((node->getOpCode().isBranch() && (node->getOpCodeValue() != TR::Goto)) || (node->getOpCode().isJumpWithMultipleTargets() && node->getOpCode().hasBranchChildren())) *seenConditionalBranch = true; if (node->getOpCodeValue() == TR::treetop || node->getOpCode().isNullCheck() || node->getOpCode().isResolveCheck() || node->getOpCodeValue() == TR::ArrayStoreCHK || node->getOpCode().isSpineCheck()) { node = node->getFirstChild(); } if (node->getOpCode().isStore()) { // For a store, just the single symbol reference is killed. // Resolution of the store symbol is handled by TR::ResolveCHK // if (symbolReferencesInNode.ValueAt(node->getSymbolReference()->getReferenceNumber())) return false; } // Node Aliasing Changes // Check if the definition modifies any symbol in the subtree // if (node->mayKill(true).containsAny(symbolReferencesInNode, comp)) return false; } return true; }
int32_t TR::DeadTreesElimination::process(TR::TreeTop *startTree, TR::TreeTop *endTree) { TR::StackMemoryRegion stackRegion(*comp()->trMemory()); LongestPathMap longestPaths(std::less<TR::Node*>(), stackRegion); typedef TR::typed_allocator<CRAnchor, TR::Region&> CRAnchorAlloc; typedef TR::forward_list<CRAnchor, CRAnchorAlloc> CRAnchorList; CRAnchorList anchors(stackRegion); vcount_t visitCount = comp()->incOrResetVisitCount(); TR::TreeTop *treeTop; for (treeTop = startTree; (treeTop != endTree); treeTop = treeTop->getNextTreeTop()) treeTop->getNode()->initializeFutureUseCounts(visitCount); TR::Block *block = NULL; bool delayedRegStoresBeforeThisPass = _delayedRegStores; // Update visitCount as they are used in this optimization and need to be visitCount = comp()->incOrResetVisitCount(); for (TR::TreeTopIterator iter(startTree, comp()); iter != endTree; ++iter) { TR::Node *node = iter.currentTree()->getNode(); if (node->getOpCodeValue() == TR::BBStart) { block = node->getBlock(); if (!block->isExtensionOfPreviousBlock()) longestPaths.clear(); } int vcountLimit = MAX_VCOUNT - 3; if (comp()->getVisitCount() > vcountLimit) { dumpOptDetails(comp(), "%sVisit count %d exceeds limit %d; stopping\n", optDetailString(), comp()->getVisitCount(), vcountLimit); return 0; } // correct at all intermediate stages // if ((node->getOpCodeValue() != TR::treetop) && (!node->getOpCode().isAnchor() || (node->getFirstChild()->getReferenceCount() != 1)) && (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() != 1)) && (delayedRegStoresBeforeThisPass || (iter.currentTree() == block->getLastRealTreeTop()) || !node->getOpCode().isStoreReg() || (node->getVisitCount() == visitCount))) { if (node->getOpCode().isAnchor() && node->getFirstChild()->getOpCode().isLoadIndirect()) anchors.push_front(CRAnchor(iter.currentTree(), block)); TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); continue; } if (node->getOpCode().isStoreReg()) _delayedRegStores = true; TR::Node *child = node->getFirstChild(); if (child->getOpCodeValue() == TR::PassThrough) { TR::Node *newChild = child->getFirstChild(); node->setAndIncChild(0, newChild); newChild->incFutureUseCount(); if (child->getReferenceCount() <= 1) optimizer()->prepareForNodeRemoval(child); child->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); child = newChild; } bool treeTopCanBeEliminated = false; // If the treetop child has been seen before then it must be anchored // somewhere above already; so we don't need the treetop to be anchoring // this node (as the computation is already done at the first reference to // the node). // if (visitCount == child->getVisitCount()) { treeTopCanBeEliminated = true; } else { TR::ILOpCode &childOpCode = child->getOpCode(); TR::ILOpCodes opCodeValue = childOpCode.getOpCodeValue(); bool seenConditionalBranch = false; bool callWithNoSideEffects = child->getOpCode().isCall() && child->getSymbolReference()->getSymbol()->isResolvedMethod() && child->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree(); if (callWithNoSideEffects) { treeTopCanBeEliminated = true; } else if (!((childOpCode.isCall() && !callWithNoSideEffects) || childOpCode.isStore() || ((opCodeValue == TR::New || opCodeValue == TR::anewarray || opCodeValue == TR::newarray) && child->getReferenceCount() > 1) || opCodeValue == TR::multianewarray || opCodeValue == TR::MergeNew || opCodeValue == TR::checkcast || opCodeValue == TR::Prefetch || opCodeValue == TR::iu2l || ((childOpCode.isDiv() || childOpCode.isRem()) && child->getNumChildren() == 3))) { // Perform the rather complex check to see whether its safe // to disconnect the child node from the treetop // bool safeToReplaceNode = false; if (child->getReferenceCount() == 1) { safeToReplaceNode = true; #ifdef J9_PROJECT_SPECIFIC if (child->getOpCode().isPackedExponentiation()) { // pdexp has a possible message side effect in truncating or no significant digits left cases safeToReplaceNode = false; } #endif if (opCodeValue == TR::loadaddr) treeTopCanBeEliminated = true; } else if (!_cannotBeEliminated) { safeToReplaceNode = isSafeToReplaceNode( child, iter.currentTree(), &seenConditionalBranch, visitCount, comp(), &_targetTrees, _cannotBeEliminated, longestPaths); } if (safeToReplaceNode) { if (childOpCode.hasSymbolReference()) { TR::SymbolReference *symRef = child->getSymbolReference(); if (symRef->getSymbol()->isAuto() || symRef->getSymbol()->isParm()) treeTopCanBeEliminated = true; else { if (childOpCode.isLoad() || (opCodeValue == TR::loadaddr) || (opCodeValue == TR::instanceof) || (((opCodeValue == TR::New) || (opCodeValue == TR::anewarray || opCodeValue == TR::newarray)) && ///child->getFirstChild()->isNonNegative())) child->markedAllocationCanBeRemoved())) // opCodeValue == TR::multianewarray || // opCodeValue == TR::MergeNew) treeTopCanBeEliminated = true; } } else treeTopCanBeEliminated = true; } } // Fix for the case when a float to non-float conversion node swings // down past a branch on IA32; this would cause a FP value to be commoned // across a branch where there was none originally; this causes pblms // as a value is left on the stack. // if (treeTopCanBeEliminated && seenConditionalBranch) { if (!cg()->getSupportsJavaFloatSemantics()) { if (child->getOpCode().isConversion() || child->getOpCode().isBooleanCompare()) { if (child->getFirstChild()->getOpCode().isFloatingPoint() && !child->getOpCode().isFloatingPoint()) treeTopCanBeEliminated = false; } } } if (treeTopCanBeEliminated) { TR::NodeChecklist visited(comp()); bool containsFloatingPoint = false; for (int32_t i = 0; i < child->getNumChildren(); ++i) { // Anchor nodes with reference count > 1 // bool highGlobalIndex = false; if (fixUpTree(child->getChild(i), iter.currentTree(), visited, highGlobalIndex, self(), visitCount)) containsFloatingPoint = true; if (highGlobalIndex) { dumpOptDetails(comp(), "%sGlobal index limit exceeded; stopping\n", optDetailString()); return 0; } } if (seenConditionalBranch && containsFloatingPoint) { if (!cg()->getSupportsJavaFloatSemantics()) treeTopCanBeEliminated = false; } } } // Update visitCount as they are used in this optimization and need to be // correct at all intermediate stages // if (!treeTopCanBeEliminated) TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount); if (treeTopCanBeEliminated) { TR::TreeTop *prevTree = iter.currentTree()->getPrevTreeTop(); TR::TreeTop *nextTree = iter.currentTree()->getNextTreeTop(); if (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() == 1)) { // Actually going to remove the treetop now // if (performTransformation(comp(), "%sRemove tree : [" POINTER_PRINTF_FORMAT "] ([" POINTER_PRINTF_FORMAT "] = %s)\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); optimizer()->prepareForNodeRemoval(node); ///child->recursivelyDecReferenceCount(); node->recursivelyDecReferenceCount(); recursivelyDecFutureUseCount(child); iter.jumpTo(prevTree); if (child->getReferenceCount() == 1) requestOpt(OMR::treeSimplification, true, block); if (nextTree->getNode()->getOpCodeValue() == TR::Goto && prevTree->getNode()->getOpCodeValue() == TR::BBStart && !prevTree->getNode()->getBlock()->isExtensionOfPreviousBlock()) { requestOpt( OMR::redundantGotoElimination, prevTree->getNode()->getBlock()); } } } else { if (performTransformation(comp(), "%sMove tree : [" POINTER_PRINTF_FORMAT "]([" POINTER_PRINTF_FORMAT "] = %s) to end of block\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName())) { prevTree->join(nextTree); node->setVisitCount(visitCount); TR::TreeTop *lastTree = findLastTreetop(block, prevTree); TR::TreeTop *prevLastTree = lastTree->getPrevTreeTop(); TR::TreeTop *cursorTreeTop = nextTree; while (cursorTreeTop != lastTree) { if (cursorTreeTop->getNode()->getOpCode().isStoreReg() && (cursorTreeTop->getNode()->getGlobalRegisterNumber() == iter.currentTree()->getNode()->getGlobalRegisterNumber())) { lastTree = cursorTreeTop; prevLastTree = lastTree->getPrevTreeTop(); break; } cursorTreeTop = cursorTreeTop->getNextTreeTop(); } if (lastTree->getNode()->getOpCodeValue() == TR::BBStart) { prevLastTree = lastTree; lastTree = block->getExit(); } TR::Node *lastNode = lastTree->getNode(); TR::Node *prevLastNode = prevLastTree->getNode(); if (lastNode->getOpCode().isIf() && !lastNode->getOpCode().isCompBranchOnly() && prevLastNode->getOpCode().isStoreReg() && ((prevLastNode->getFirstChild() == lastNode->getFirstChild()) || (prevLastNode->getFirstChild() == lastNode->getSecondChild()))) { lastTree = prevLastTree; prevLastTree = lastTree->getPrevTreeTop(); } prevLastTree->join(iter.currentTree()); iter.currentTree()->join(lastTree); iter.jumpTo(prevTree); requestOpt(OMR::treeSimplification, true, block); } } } } for (auto it = anchors.begin(); it != anchors.end(); ++it) { TR::Node *anchor = it->tree->getNode(); TR::Node *load = anchor->getChild(0); if (load->getReferenceCount() > 1) continue; // We can eliminate the indirect load immediately, but for the moment the // subtree providing the base object has to be anchored. TR::Node *heapBase = anchor->getChild(1); TR::Node::recreate(anchor, TR::treetop); anchor->setAndIncChild(0, load->getChild(0)); anchor->setChild(1, NULL); anchor->setNumChildren(1); if (!heapBase->getOpCode().isLoadConst()) { it->tree->insertAfter( TR::TreeTop::create( comp(), TR::Node::create(heapBase, TR::treetop, 1, heapBase))); } load->recursivelyDecReferenceCount(); heapBase->recursivelyDecReferenceCount(); // A later pass of dead trees can likely move (or even remove) the base // object expression. requestOpt(OMR::deadTreesElimination, true, it->block); } return 1; // actual cost }
/** * Search for direct loads in the taken side of a guard * * @param firstBlock The guard's branch destination * @param coldPathLoads BitVector of symbol reference numbers for any direct loads seen until the merge back to mainline */ static void collectColdPathLoads(TR::Block* firstBlock, TR_BitVector &coldPathLoads) { TR_Stack<TR::Block*> blocksToCheck(TR::comp()->trMemory(), 8, false, stackAlloc); blocksToCheck.push(firstBlock); TR::NodeChecklist checklist(TR::comp()); coldPathLoads.empty(); while (!blocksToCheck.isEmpty()) { TR::Block *block = blocksToCheck.pop(); for (TR::TreeTop *tt = block->getFirstRealTreeTop(); tt->getNode()->getOpCodeValue() != TR::BBEnd; tt = tt->getNextTreeTop()) collectDirectLoads(tt->getNode(), coldPathLoads, checklist); // Search for any successors that have not merged with the mainline for (auto itr = block->getSuccessors().begin(), end = block->getSuccessors().end(); itr != end; ++itr) { TR::Block *dest = (*itr)->getTo()->asBlock(); if (dest != TR::comp()->getFlowGraph()->getEnd() && dest->getPredecessors().size() == 1) blocksToCheck.push(dest); } } }